linux/arch/x86/kernel/suspend_64.c
Andrew Morton 5867a78f41 revert "Hibernation: Use temporary page tables for kernel text mapping on x86_64"
Revert commit efa4d2fb04 ("Hibernation:
Use temporary page tables for kernel text mapping on x86_64") because it
causes my t61p to reboot right at the end of resume-from-disk.  For
reasons unknown at this time.

Cc: Pavel Machek <pavel@ucw.cz>
Cc: Andi Kleen <ak@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 19:28:15 -08:00

295 lines
7.0 KiB
C

/*
* Suspend support specific for i386.
*
* Distribute under GPLv2
*
* Copyright (c) 2002 Pavel Machek <pavel@suse.cz>
* Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
*/
#include <linux/smp.h>
#include <linux/suspend.h>
#include <asm/proto.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/mtrr.h>
/* References to section boundaries */
extern const void __nosave_begin, __nosave_end;
struct saved_context saved_context;
void __save_processor_state(struct saved_context *ctxt)
{
kernel_fpu_begin();
/*
* descriptor tables
*/
store_gdt((struct desc_ptr *)&ctxt->gdt_limit);
store_idt((struct desc_ptr *)&ctxt->idt_limit);
store_tr(ctxt->tr);
/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
/*
* segment registers
*/
asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
rdmsrl(MSR_FS_BASE, ctxt->fs_base);
rdmsrl(MSR_GS_BASE, ctxt->gs_base);
rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
mtrr_save_fixed_ranges(NULL);
/*
* control registers
*/
rdmsrl(MSR_EFER, ctxt->efer);
ctxt->cr0 = read_cr0();
ctxt->cr2 = read_cr2();
ctxt->cr3 = read_cr3();
ctxt->cr4 = read_cr4();
ctxt->cr8 = read_cr8();
}
void save_processor_state(void)
{
__save_processor_state(&saved_context);
}
static void do_fpu_end(void)
{
/*
* Restore FPU regs if necessary
*/
kernel_fpu_end();
}
void __restore_processor_state(struct saved_context *ctxt)
{
/*
* control registers
*/
wrmsrl(MSR_EFER, ctxt->efer);
write_cr8(ctxt->cr8);
write_cr4(ctxt->cr4);
write_cr3(ctxt->cr3);
write_cr2(ctxt->cr2);
write_cr0(ctxt->cr0);
/*
* now restore the descriptor tables to their proper values
* ltr is done i fix_processor_context().
*/
load_gdt((const struct desc_ptr *)&ctxt->gdt_limit);
load_idt((const struct desc_ptr *)&ctxt->idt_limit);
/*
* segment registers
*/
asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
load_gs_index(ctxt->gs);
asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
wrmsrl(MSR_FS_BASE, ctxt->fs_base);
wrmsrl(MSR_GS_BASE, ctxt->gs_base);
wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
fix_processor_context();
do_fpu_end();
mtrr_ap_init();
}
void restore_processor_state(void)
{
__restore_processor_state(&saved_context);
}
void fix_processor_context(void)
{
int cpu = smp_processor_id();
struct tss_struct *t = &per_cpu(init_tss, cpu);
set_tss_desc(cpu,t); /* This just modifies memory; should not be necessary. But... This is necessary, because 386 hardware has concept of busy TSS or some similar stupidity. */
cpu_gdt(cpu)[GDT_ENTRY_TSS].type = 9;
syscall_init(); /* This sets MSR_*STAR and related */
load_TR_desc(); /* This does ltr */
load_LDT(&current->active_mm->context); /* This does lldt */
/*
* Now maybe reload the debug registers
*/
if (current->thread.debugreg7){
loaddebug(&current->thread, 0);
loaddebug(&current->thread, 1);
loaddebug(&current->thread, 2);
loaddebug(&current->thread, 3);
/* no 4 and 5 */
loaddebug(&current->thread, 6);
loaddebug(&current->thread, 7);
}
}
#ifdef CONFIG_HIBERNATION
/* Defined in arch/x86_64/kernel/suspend_asm.S */
extern int restore_image(void);
/*
* Address to jump to in the last phase of restore in order to get to the image
* kernel's text (this value is passed in the image header).
*/
unsigned long restore_jump_address;
/*
* Value of the cr3 register from before the hibernation (this value is passed
* in the image header).
*/
unsigned long restore_cr3;
pgd_t *temp_level4_pgt;
void *relocated_restore_code;
static int res_phys_pud_init(pud_t *pud, unsigned long address, unsigned long end)
{
long i, j;
i = pud_index(address);
pud = pud + i;
for (; i < PTRS_PER_PUD; pud++, i++) {
unsigned long paddr;
pmd_t *pmd;
paddr = address + i*PUD_SIZE;
if (paddr >= end)
break;
pmd = (pmd_t *)get_safe_page(GFP_ATOMIC);
if (!pmd)
return -ENOMEM;
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
for (j = 0; j < PTRS_PER_PMD; pmd++, j++, paddr += PMD_SIZE) {
unsigned long pe;
if (paddr >= end)
break;
pe = __PAGE_KERNEL_LARGE_EXEC | paddr;
pe &= __supported_pte_mask;
set_pmd(pmd, __pmd(pe));
}
}
return 0;
}
static int set_up_temporary_mappings(void)
{
unsigned long start, end, next;
int error;
temp_level4_pgt = (pgd_t *)get_safe_page(GFP_ATOMIC);
if (!temp_level4_pgt)
return -ENOMEM;
/* It is safe to reuse the original kernel mapping */
set_pgd(temp_level4_pgt + pgd_index(__START_KERNEL_map),
init_level4_pgt[pgd_index(__START_KERNEL_map)]);
/* Set up the direct mapping from scratch */
start = (unsigned long)pfn_to_kaddr(0);
end = (unsigned long)pfn_to_kaddr(end_pfn);
for (; start < end; start = next) {
pud_t *pud = (pud_t *)get_safe_page(GFP_ATOMIC);
if (!pud)
return -ENOMEM;
next = start + PGDIR_SIZE;
if (next > end)
next = end;
if ((error = res_phys_pud_init(pud, __pa(start), __pa(next))))
return error;
set_pgd(temp_level4_pgt + pgd_index(start),
mk_kernel_pgd(__pa(pud)));
}
return 0;
}
int swsusp_arch_resume(void)
{
int error;
/* We have got enough memory and from now on we cannot recover */
if ((error = set_up_temporary_mappings()))
return error;
relocated_restore_code = (void *)get_safe_page(GFP_ATOMIC);
if (!relocated_restore_code)
return -ENOMEM;
memcpy(relocated_restore_code, &core_restore_code,
&restore_registers - &core_restore_code);
restore_image();
return 0;
}
/*
* pfn_is_nosave - check if given pfn is in the 'nosave' section
*/
int pfn_is_nosave(unsigned long pfn)
{
unsigned long nosave_begin_pfn = __pa_symbol(&__nosave_begin) >> PAGE_SHIFT;
unsigned long nosave_end_pfn = PAGE_ALIGN(__pa_symbol(&__nosave_end)) >> PAGE_SHIFT;
return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
}
struct restore_data_record {
unsigned long jump_address;
unsigned long cr3;
unsigned long magic;
};
#define RESTORE_MAGIC 0x0123456789ABCDEFUL
/**
* arch_hibernation_header_save - populate the architecture specific part
* of a hibernation image header
* @addr: address to save the data at
*/
int arch_hibernation_header_save(void *addr, unsigned int max_size)
{
struct restore_data_record *rdr = addr;
if (max_size < sizeof(struct restore_data_record))
return -EOVERFLOW;
rdr->jump_address = restore_jump_address;
rdr->cr3 = restore_cr3;
rdr->magic = RESTORE_MAGIC;
return 0;
}
/**
* arch_hibernation_header_restore - read the architecture specific data
* from the hibernation image header
* @addr: address to read the data from
*/
int arch_hibernation_header_restore(void *addr)
{
struct restore_data_record *rdr = addr;
restore_jump_address = rdr->jump_address;
restore_cr3 = rdr->cr3;
return (rdr->magic == RESTORE_MAGIC) ? 0 : -EINVAL;
}
#endif /* CONFIG_HIBERNATION */