forked from Minki/linux
8f19f27e3e
Abstract out the firmware for the drx-d so that it can be loaded by the request_firmware() interface. The firmware licensing permits free redistribution, and can be found here: http://kernellabs.com/firmware/drxd Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2858 lines
72 KiB
C
2858 lines
72 KiB
C
/*
|
|
* drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
|
|
*
|
|
* Copyright (C) 2003-2007 Micronas
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 only, as published by the Free Software Foundation.
|
|
*
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA
|
|
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/version.h>
|
|
#include <asm/div64.h>
|
|
|
|
#include "dvb_frontend.h"
|
|
#include "drxd.h"
|
|
#include "drxd_firm.h"
|
|
|
|
#define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
|
|
#define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
|
|
|
|
#define CHK_ERROR(s) if( (status = s)<0 ) break
|
|
#define CHUNK_SIZE 48
|
|
|
|
#define DRX_I2C_RMW 0x10
|
|
#define DRX_I2C_BROADCAST 0x20
|
|
#define DRX_I2C_CLEARCRC 0x80
|
|
#define DRX_I2C_SINGLE_MASTER 0xC0
|
|
#define DRX_I2C_MODEFLAGS 0xC0
|
|
#define DRX_I2C_FLAGS 0xF0
|
|
|
|
#ifndef SIZEOF_ARRAY
|
|
#define SIZEOF_ARRAY(array) (sizeof((array))/sizeof((array)[0]))
|
|
#endif
|
|
|
|
#define DEFAULT_LOCK_TIMEOUT 1100
|
|
|
|
#define DRX_CHANNEL_AUTO 0
|
|
#define DRX_CHANNEL_HIGH 1
|
|
#define DRX_CHANNEL_LOW 2
|
|
|
|
#define DRX_LOCK_MPEG 1
|
|
#define DRX_LOCK_FEC 2
|
|
#define DRX_LOCK_DEMOD 4
|
|
|
|
|
|
/****************************************************************************/
|
|
|
|
enum CSCDState {
|
|
CSCD_INIT = 0,
|
|
CSCD_SET,
|
|
CSCD_SAVED
|
|
};
|
|
|
|
enum CDrxdState {
|
|
DRXD_UNINITIALIZED = 0,
|
|
DRXD_STOPPED,
|
|
DRXD_STARTED
|
|
};
|
|
|
|
enum AGC_CTRL_MODE {
|
|
AGC_CTRL_AUTO = 0,
|
|
AGC_CTRL_USER,
|
|
AGC_CTRL_OFF
|
|
};
|
|
|
|
enum OperationMode {
|
|
OM_Default,
|
|
OM_DVBT_Diversity_Front,
|
|
OM_DVBT_Diversity_End
|
|
};
|
|
|
|
struct SCfgAgc {
|
|
enum AGC_CTRL_MODE ctrlMode;
|
|
u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
|
|
u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */
|
|
u16 minOutputLevel;/* range [0, ... , 1023], 1/n of fullscale range */
|
|
u16 maxOutputLevel;/* range [0, ... , 1023], 1/n of fullscale range */
|
|
u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */
|
|
|
|
u16 R1;
|
|
u16 R2;
|
|
u16 R3;
|
|
};
|
|
|
|
struct SNoiseCal {
|
|
int cpOpt;
|
|
u16 cpNexpOfs;
|
|
u16 tdCal2k;
|
|
u16 tdCal8k;
|
|
};
|
|
|
|
enum app_env {
|
|
APPENV_STATIC = 0,
|
|
APPENV_PORTABLE = 1,
|
|
APPENV_MOBILE = 2
|
|
};
|
|
|
|
enum EIFFilter {
|
|
IFFILTER_SAW = 0,
|
|
IFFILTER_DISCRETE = 1
|
|
};
|
|
|
|
struct drxd_state {
|
|
struct dvb_frontend frontend;
|
|
struct dvb_frontend_ops ops;
|
|
struct dvb_frontend_parameters param;
|
|
|
|
const struct firmware *fw;
|
|
struct device *dev;
|
|
|
|
struct i2c_adapter *i2c;
|
|
void *priv;
|
|
struct drxd_config config;
|
|
|
|
int i2c_access;
|
|
int init_done;
|
|
struct semaphore mutex;
|
|
|
|
u8 chip_adr;
|
|
u16 hi_cfg_timing_div;
|
|
u16 hi_cfg_bridge_delay;
|
|
u16 hi_cfg_wakeup_key;
|
|
u16 hi_cfg_ctrl;
|
|
|
|
u16 intermediate_freq;
|
|
u16 osc_clock_freq;
|
|
|
|
enum CSCDState cscd_state;
|
|
enum CDrxdState drxd_state;
|
|
|
|
u16 sys_clock_freq;
|
|
s16 osc_clock_deviation;
|
|
u16 expected_sys_clock_freq;
|
|
|
|
u16 insert_rs_byte;
|
|
u16 enable_parallel;
|
|
|
|
int operation_mode;
|
|
|
|
struct SCfgAgc if_agc_cfg;
|
|
struct SCfgAgc rf_agc_cfg;
|
|
|
|
struct SNoiseCal noise_cal;
|
|
|
|
u32 fe_fs_add_incr;
|
|
u32 org_fe_fs_add_incr;
|
|
u16 current_fe_if_incr;
|
|
|
|
u16 m_FeAgRegAgPwd;
|
|
u16 m_FeAgRegAgAgcSio;
|
|
|
|
u16 m_EcOcRegOcModeLop;
|
|
u16 m_EcOcRegSncSncLvl;
|
|
u8 *m_InitAtomicRead;
|
|
u8 *m_HiI2cPatch;
|
|
|
|
u8 *m_ResetCEFR;
|
|
u8 *m_InitFE_1;
|
|
u8 *m_InitFE_2;
|
|
u8 *m_InitCP;
|
|
u8 *m_InitCE;
|
|
u8 *m_InitEQ;
|
|
u8 *m_InitSC;
|
|
u8 *m_InitEC;
|
|
u8 *m_ResetECRAM;
|
|
u8 *m_InitDiversityFront;
|
|
u8 *m_InitDiversityEnd;
|
|
u8 *m_DisableDiversity;
|
|
u8 *m_StartDiversityFront;
|
|
u8 *m_StartDiversityEnd;
|
|
|
|
u8 *m_DiversityDelay8MHZ;
|
|
u8 *m_DiversityDelay6MHZ;
|
|
|
|
u8 *microcode;
|
|
u32 microcode_length;
|
|
|
|
int type_A;
|
|
int PGA;
|
|
int diversity;
|
|
int tuner_mirrors;
|
|
|
|
enum app_env app_env_default;
|
|
enum app_env app_env_diversity;
|
|
|
|
};
|
|
|
|
|
|
/****************************************************************************/
|
|
/* I2C **********************************************************************/
|
|
/****************************************************************************/
|
|
|
|
static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
|
|
{
|
|
struct i2c_msg msg = { .addr=adr, .flags=0, .buf=data, .len=len };
|
|
|
|
if (i2c_transfer(adap, &msg, 1) != 1)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int i2c_read(struct i2c_adapter *adap,
|
|
u8 adr, u8 *msg, int len, u8 *answ, int alen)
|
|
{
|
|
struct i2c_msg msgs[2] = { { .addr=adr, .flags=0,
|
|
.buf=msg, .len=len },
|
|
{ .addr=adr, .flags=I2C_M_RD,
|
|
.buf=answ, .len=alen } };
|
|
if (i2c_transfer(adap, msgs, 2) != 2)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
inline u32 MulDiv32(u32 a, u32 b, u32 c)
|
|
{
|
|
u64 tmp64;
|
|
|
|
tmp64=(u64)a*(u64)b;
|
|
do_div(tmp64, c);
|
|
|
|
return (u32) tmp64;
|
|
}
|
|
|
|
static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
|
|
{
|
|
u8 adr=state->config.demod_address;
|
|
u8 mm1[4]={reg&0xff, (reg>>16)&0xff,
|
|
flags|((reg>>24)&0xff), (reg>>8)&0xff};
|
|
u8 mm2[2];
|
|
if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2)<0)
|
|
return -1;
|
|
if (data)
|
|
*data=mm2[0]|(mm2[1]<<8);
|
|
return mm2[0]|(mm2[1]<<8);
|
|
}
|
|
|
|
static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
|
|
{
|
|
u8 adr=state->config.demod_address;
|
|
u8 mm1[4]={reg&0xff, (reg>>16)&0xff,
|
|
flags|((reg>>24)&0xff), (reg>>8)&0xff};
|
|
u8 mm2[4];
|
|
|
|
if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4)<0)
|
|
return -1;
|
|
if (data)
|
|
*data=mm2[0]|(mm2[1]<<8)|(mm2[2]<<16)|(mm2[3]<<24);
|
|
return 0;
|
|
}
|
|
|
|
static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
|
|
{
|
|
u8 adr=state->config.demod_address;
|
|
u8 mm[6]={ reg&0xff, (reg>>16)&0xff,
|
|
flags|((reg>>24)&0xff), (reg>>8)&0xff,
|
|
data&0xff, (data>>8)&0xff };
|
|
|
|
if (i2c_write(state->i2c, adr, mm, 6)<0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
|
|
{
|
|
u8 adr=state->config.demod_address;
|
|
u8 mm[8]={ reg&0xff, (reg>>16)&0xff,
|
|
flags|((reg>>24)&0xff), (reg>>8)&0xff,
|
|
data&0xff, (data>>8)&0xff,
|
|
(data>>16)&0xff, (data>>24)&0xff };
|
|
|
|
if (i2c_write(state->i2c, adr, mm, 8)<0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int write_chunk(struct drxd_state *state,
|
|
u32 reg, u8 *data, u32 len, u8 flags)
|
|
{
|
|
u8 adr=state->config.demod_address;
|
|
u8 mm[CHUNK_SIZE+4]={ reg&0xff, (reg>>16)&0xff,
|
|
flags|((reg>>24)&0xff), (reg>>8)&0xff };
|
|
int i;
|
|
|
|
for (i=0; i<len; i++)
|
|
mm[4+i]=data[i];
|
|
if (i2c_write(state->i2c, adr, mm, 4+len)<0) {
|
|
printk("error in write_chunk\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int WriteBlock(struct drxd_state *state,
|
|
u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
|
|
{
|
|
while(BlockSize > 0) {
|
|
u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
|
|
|
|
if (write_chunk(state, Address, pBlock, Chunk, Flags)<0)
|
|
return -1;
|
|
pBlock += Chunk;
|
|
Address += (Chunk >> 1);
|
|
BlockSize -= Chunk;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int WriteTable(struct drxd_state *state, u8 *pTable)
|
|
{
|
|
int status = 0;
|
|
|
|
if( pTable == NULL )
|
|
return 0;
|
|
|
|
while(!status) {
|
|
u16 Length;
|
|
u32 Address = pTable[0]|(pTable[1]<<8)|
|
|
(pTable[2]<<16)|(pTable[3]<<24);
|
|
|
|
if (Address==0xFFFFFFFF)
|
|
break;
|
|
pTable += sizeof(u32);
|
|
|
|
Length = pTable[0]|(pTable[1]<<8);
|
|
pTable += sizeof(u16);
|
|
if (!Length)
|
|
break;
|
|
status = WriteBlock(state, Address, Length*2, pTable, 0);
|
|
pTable += (Length*2);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/****************************************************************************/
|
|
/****************************************************************************/
|
|
|
|
static int ResetCEFR(struct drxd_state *state)
|
|
{
|
|
return WriteTable(state, state->m_ResetCEFR);
|
|
}
|
|
|
|
static int InitCP(struct drxd_state *state)
|
|
{
|
|
return WriteTable(state, state->m_InitCP);
|
|
}
|
|
|
|
static int InitCE(struct drxd_state *state)
|
|
{
|
|
int status;
|
|
enum app_env AppEnv = state->app_env_default;
|
|
|
|
do {
|
|
CHK_ERROR(WriteTable(state, state->m_InitCE));
|
|
|
|
if (state->operation_mode == OM_DVBT_Diversity_Front ||
|
|
state->operation_mode == OM_DVBT_Diversity_End ) {
|
|
AppEnv = state->app_env_diversity;
|
|
}
|
|
if ( AppEnv == APPENV_STATIC ) {
|
|
CHK_ERROR(Write16(state,CE_REG_TAPSET__A, 0x0000,0));
|
|
} else if( AppEnv == APPENV_PORTABLE ) {
|
|
CHK_ERROR(Write16(state,CE_REG_TAPSET__A, 0x0001,0));
|
|
} else if( AppEnv == APPENV_MOBILE && state->type_A ) {
|
|
CHK_ERROR(Write16(state,CE_REG_TAPSET__A, 0x0002,0));
|
|
} else if( AppEnv == APPENV_MOBILE && !state->type_A ) {
|
|
CHK_ERROR(Write16(state,CE_REG_TAPSET__A, 0x0006,0));
|
|
}
|
|
|
|
/* start ce */
|
|
CHK_ERROR(Write16(state,B_CE_REG_COMM_EXEC__A,0x0001,0));
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int StopOC(struct drxd_state *state)
|
|
{
|
|
int status = 0;
|
|
u16 ocSyncLvl = 0;
|
|
u16 ocModeLop = state->m_EcOcRegOcModeLop;
|
|
u16 dtoIncLop = 0;
|
|
u16 dtoIncHip = 0;
|
|
|
|
do {
|
|
/* Store output configuration */
|
|
CHK_ERROR(Read16(state, EC_OC_REG_SNC_ISC_LVL__A,
|
|
&ocSyncLvl, 0));;
|
|
/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A,
|
|
&ocModeLop)); */
|
|
state->m_EcOcRegSncSncLvl = ocSyncLvl;
|
|
/* m_EcOcRegOcModeLop = ocModeLop; */
|
|
|
|
/* Flush FIFO (byte-boundary) at fixed rate */
|
|
CHK_ERROR(Read16(state, EC_OC_REG_RCN_MAP_LOP__A,
|
|
&dtoIncLop,0 ));
|
|
CHK_ERROR(Read16(state, EC_OC_REG_RCN_MAP_HIP__A,
|
|
&dtoIncHip,0 ));
|
|
CHK_ERROR(Write16(state, EC_OC_REG_DTO_INC_LOP__A,
|
|
dtoIncLop,0 ));
|
|
CHK_ERROR(Write16(state, EC_OC_REG_DTO_INC_HIP__A,
|
|
dtoIncHip,0 ));
|
|
ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
|
|
ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
|
|
CHK_ERROR(Write16(state, EC_OC_REG_OC_MODE_LOP__A,
|
|
ocModeLop,0 ));
|
|
CHK_ERROR(Write16(state, EC_OC_REG_COMM_EXEC__A,
|
|
EC_OC_REG_COMM_EXEC_CTL_HOLD,0 ));
|
|
|
|
msleep(1);
|
|
/* Output pins to '0' */
|
|
CHK_ERROR(Write16(state, EC_OC_REG_OCR_MPG_UOS__A,
|
|
EC_OC_REG_OCR_MPG_UOS__M,0 ));
|
|
|
|
/* Force the OC out of sync */
|
|
ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
|
|
CHK_ERROR(Write16(state, EC_OC_REG_SNC_ISC_LVL__A,
|
|
ocSyncLvl,0 ));
|
|
ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
|
|
ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
|
|
ocModeLop |= 0x2; /* Magically-out-of-sync */
|
|
CHK_ERROR(Write16(state, EC_OC_REG_OC_MODE_LOP__A,
|
|
ocModeLop,0 ));
|
|
CHK_ERROR(Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0,0 ));
|
|
CHK_ERROR(Write16(state, EC_OC_REG_COMM_EXEC__A,
|
|
EC_OC_REG_COMM_EXEC_CTL_ACTIVE,0 ));
|
|
} while(0);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int StartOC(struct drxd_state *state)
|
|
{
|
|
int status=0;
|
|
|
|
do {
|
|
/* Stop OC */
|
|
CHK_ERROR(Write16(state, EC_OC_REG_COMM_EXEC__A,
|
|
EC_OC_REG_COMM_EXEC_CTL_HOLD,0 ));
|
|
|
|
/* Restore output configuration */
|
|
CHK_ERROR(Write16(state, EC_OC_REG_SNC_ISC_LVL__A,
|
|
state->m_EcOcRegSncSncLvl,0 ));
|
|
CHK_ERROR(Write16(state, EC_OC_REG_OC_MODE_LOP__A,
|
|
state->m_EcOcRegOcModeLop,0 ));
|
|
|
|
/* Output pins active again */
|
|
CHK_ERROR(Write16(state, EC_OC_REG_OCR_MPG_UOS__A,
|
|
EC_OC_REG_OCR_MPG_UOS_INIT,0 ));
|
|
|
|
/* Start OC */
|
|
CHK_ERROR(Write16(state, EC_OC_REG_COMM_EXEC__A,
|
|
EC_OC_REG_COMM_EXEC_CTL_ACTIVE,0 ));
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int InitEQ(struct drxd_state *state)
|
|
{
|
|
return WriteTable(state, state->m_InitEQ);
|
|
}
|
|
|
|
static int InitEC(struct drxd_state *state)
|
|
{
|
|
return WriteTable(state, state->m_InitEC);
|
|
}
|
|
|
|
static int InitSC(struct drxd_state *state)
|
|
{
|
|
return WriteTable(state, state->m_InitSC);
|
|
}
|
|
|
|
static int InitAtomicRead(struct drxd_state *state)
|
|
{
|
|
return WriteTable(state, state->m_InitAtomicRead);
|
|
}
|
|
|
|
static int CorrectSysClockDeviation(struct drxd_state *state);
|
|
|
|
static int DRX_GetLockStatus(struct drxd_state *state, u32 *pLockStatus)
|
|
{
|
|
u16 ScRaRamLock = 0;
|
|
const u16 mpeg_lock_mask = ( SC_RA_RAM_LOCK_MPEG__M |
|
|
SC_RA_RAM_LOCK_FEC__M |
|
|
SC_RA_RAM_LOCK_DEMOD__M );
|
|
const u16 fec_lock_mask = ( SC_RA_RAM_LOCK_FEC__M |
|
|
SC_RA_RAM_LOCK_DEMOD__M );
|
|
const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M ;
|
|
|
|
int status;
|
|
|
|
*pLockStatus=0;
|
|
|
|
status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000 );
|
|
if(status<0) {
|
|
printk("Can't read SC_RA_RAM_LOCK__A status = %08x\n",
|
|
status);
|
|
return status;
|
|
}
|
|
|
|
if( state->drxd_state != DRXD_STARTED )
|
|
return 0;
|
|
|
|
if ( (ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask ) {
|
|
*pLockStatus|=DRX_LOCK_MPEG;
|
|
CorrectSysClockDeviation(state);
|
|
}
|
|
|
|
if ( (ScRaRamLock & fec_lock_mask) == fec_lock_mask )
|
|
*pLockStatus|=DRX_LOCK_FEC;
|
|
|
|
if ( (ScRaRamLock & demod_lock_mask) == demod_lock_mask )
|
|
*pLockStatus|=DRX_LOCK_DEMOD;
|
|
return 0;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
|
|
{
|
|
int status;
|
|
|
|
if( cfg->outputLevel > DRXD_FE_CTRL_MAX )
|
|
return -1;
|
|
|
|
if( cfg->ctrlMode == AGC_CTRL_USER ) {
|
|
do {
|
|
u16 FeAgRegPm1AgcWri;
|
|
u16 FeAgRegAgModeLop;
|
|
|
|
CHK_ERROR(Read16(state,FE_AG_REG_AG_MODE_LOP__A,
|
|
&FeAgRegAgModeLop,0));
|
|
FeAgRegAgModeLop &=
|
|
(~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
|
|
FeAgRegAgModeLop |=
|
|
FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
|
|
CHK_ERROR(Write16(state,FE_AG_REG_AG_MODE_LOP__A,
|
|
FeAgRegAgModeLop,0));
|
|
|
|
FeAgRegPm1AgcWri = (u16)(cfg->outputLevel &
|
|
FE_AG_REG_PM1_AGC_WRI__M);
|
|
CHK_ERROR(Write16(state,FE_AG_REG_PM1_AGC_WRI__A,
|
|
FeAgRegPm1AgcWri,0));
|
|
}
|
|
while(0);
|
|
} else if( cfg->ctrlMode == AGC_CTRL_AUTO ) {
|
|
if ( ( (cfg->maxOutputLevel) < (cfg->minOutputLevel) ) ||
|
|
( (cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX ) ||
|
|
( (cfg->speed) > DRXD_FE_CTRL_MAX ) ||
|
|
( (cfg->settleLevel) > DRXD_FE_CTRL_MAX )
|
|
)
|
|
return (-1);
|
|
do {
|
|
u16 FeAgRegAgModeLop;
|
|
u16 FeAgRegEgcSetLvl;
|
|
u16 slope, offset;
|
|
|
|
/* == Mode == */
|
|
|
|
CHK_ERROR(Read16(state,FE_AG_REG_AG_MODE_LOP__A,
|
|
&FeAgRegAgModeLop,0));
|
|
FeAgRegAgModeLop &=
|
|
(~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
|
|
FeAgRegAgModeLop |=
|
|
FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
|
|
CHK_ERROR(Write16(state,FE_AG_REG_AG_MODE_LOP__A,
|
|
FeAgRegAgModeLop,0));
|
|
|
|
/* == Settle level == */
|
|
|
|
FeAgRegEgcSetLvl = (u16)(( cfg->settleLevel >> 1 ) &
|
|
FE_AG_REG_EGC_SET_LVL__M );
|
|
CHK_ERROR(Write16(state,FE_AG_REG_EGC_SET_LVL__A,
|
|
FeAgRegEgcSetLvl,0));
|
|
|
|
/* == Min/Max == */
|
|
|
|
slope = (u16)(( cfg->maxOutputLevel -
|
|
cfg->minOutputLevel )/2);
|
|
offset = (u16)(( cfg->maxOutputLevel +
|
|
cfg->minOutputLevel )/2 - 511);
|
|
|
|
CHK_ERROR(Write16(state,FE_AG_REG_GC1_AGC_RIC__A,
|
|
slope,0));
|
|
CHK_ERROR(Write16(state,FE_AG_REG_GC1_AGC_OFF__A,
|
|
offset,0));
|
|
|
|
/* == Speed == */
|
|
{
|
|
const u16 maxRur = 8;
|
|
const u16 slowIncrDecLUT[]={ 3, 4, 4, 5, 6 };
|
|
const u16 fastIncrDecLUT[]={ 14, 15, 15, 16,
|
|
17, 18, 18, 19,
|
|
20, 21, 22, 23,
|
|
24, 26, 27, 28,
|
|
29, 31};
|
|
|
|
u16 fineSteps = (DRXD_FE_CTRL_MAX+1)/
|
|
(maxRur+1);
|
|
u16 fineSpeed = (u16)(cfg->speed -
|
|
((cfg->speed/
|
|
fineSteps)*
|
|
fineSteps));
|
|
u16 invRurCount= (u16)(cfg->speed /
|
|
fineSteps);
|
|
u16 rurCount;
|
|
if ( invRurCount > maxRur )
|
|
{
|
|
rurCount = 0;
|
|
fineSpeed += fineSteps;
|
|
} else {
|
|
rurCount = maxRur - invRurCount;
|
|
}
|
|
|
|
/*
|
|
fastInc = default *
|
|
(2^(fineSpeed/fineSteps))
|
|
=> range[default...2*default>
|
|
slowInc = default *
|
|
(2^(fineSpeed/fineSteps))
|
|
*/
|
|
{
|
|
u16 fastIncrDec =
|
|
fastIncrDecLUT[fineSpeed/
|
|
((fineSteps/
|
|
(14+1))+1) ];
|
|
u16 slowIncrDec = slowIncrDecLUT[
|
|
fineSpeed/(fineSteps/(3+1)) ];
|
|
|
|
CHK_ERROR(Write16(state,
|
|
FE_AG_REG_EGC_RUR_CNT__A,
|
|
rurCount, 0));
|
|
CHK_ERROR(Write16(state,
|
|
FE_AG_REG_EGC_FAS_INC__A,
|
|
fastIncrDec, 0));
|
|
CHK_ERROR(Write16(state,
|
|
FE_AG_REG_EGC_FAS_DEC__A,
|
|
fastIncrDec, 0));
|
|
CHK_ERROR(Write16(state,
|
|
FE_AG_REG_EGC_SLO_INC__A,
|
|
slowIncrDec, 0));
|
|
CHK_ERROR(Write16(state,
|
|
FE_AG_REG_EGC_SLO_DEC__A,
|
|
slowIncrDec, 0));
|
|
}
|
|
}
|
|
} while(0);
|
|
|
|
} else {
|
|
/* No OFF mode for IF control */
|
|
return (-1);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
|
|
static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
|
|
{
|
|
int status = 0;
|
|
|
|
if( cfg->outputLevel > DRXD_FE_CTRL_MAX )
|
|
return -1;
|
|
|
|
if( cfg->ctrlMode == AGC_CTRL_USER ) {
|
|
do {
|
|
u16 AgModeLop=0;
|
|
u16 level = ( cfg->outputLevel );
|
|
|
|
if (level == DRXD_FE_CTRL_MAX )
|
|
level++;
|
|
|
|
CHK_ERROR( Write16(state,FE_AG_REG_PM2_AGC_WRI__A,
|
|
level, 0x0000 ));
|
|
|
|
/*==== Mode ====*/
|
|
|
|
/* Powerdown PD2, WRI source */
|
|
state->m_FeAgRegAgPwd &=
|
|
~(FE_AG_REG_AG_PWD_PWD_PD2__M);
|
|
state->m_FeAgRegAgPwd |=
|
|
FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
|
|
CHK_ERROR( Write16(state,FE_AG_REG_AG_PWD__A,
|
|
state->m_FeAgRegAgPwd,0x0000 ));
|
|
|
|
CHK_ERROR( Read16(state,FE_AG_REG_AG_MODE_LOP__A,
|
|
&AgModeLop,0x0000 ));
|
|
AgModeLop &= (~( FE_AG_REG_AG_MODE_LOP_MODE_5__M |
|
|
FE_AG_REG_AG_MODE_LOP_MODE_E__M));
|
|
AgModeLop |= ( FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
|
|
FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC );
|
|
CHK_ERROR( Write16(state,FE_AG_REG_AG_MODE_LOP__A,
|
|
AgModeLop,0x0000 ));
|
|
|
|
|
|
/* enable AGC2 pin */
|
|
{
|
|
u16 FeAgRegAgAgcSio = 0;
|
|
CHK_ERROR( Read16(state,
|
|
FE_AG_REG_AG_AGC_SIO__A,
|
|
&FeAgRegAgAgcSio, 0x0000 ));
|
|
FeAgRegAgAgcSio &=
|
|
~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
|
|
FeAgRegAgAgcSio |=
|
|
FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
|
|
CHK_ERROR( Write16(state,
|
|
FE_AG_REG_AG_AGC_SIO__A,
|
|
FeAgRegAgAgcSio, 0x0000 ));
|
|
}
|
|
|
|
} while(0);
|
|
} else if( cfg->ctrlMode == AGC_CTRL_AUTO ) {
|
|
u16 AgModeLop=0;
|
|
|
|
do {
|
|
u16 level;
|
|
/* Automatic control */
|
|
/* Powerup PD2, AGC2 as output, TGC source */
|
|
(state->m_FeAgRegAgPwd) &=
|
|
~(FE_AG_REG_AG_PWD_PWD_PD2__M);
|
|
(state->m_FeAgRegAgPwd) |=
|
|
FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
|
|
CHK_ERROR(Write16(state,FE_AG_REG_AG_PWD__A,
|
|
(state->m_FeAgRegAgPwd),0x0000 ));
|
|
|
|
CHK_ERROR(Read16(state,FE_AG_REG_AG_MODE_LOP__A,
|
|
&AgModeLop,0x0000 ));
|
|
AgModeLop &= (~( FE_AG_REG_AG_MODE_LOP_MODE_5__M |
|
|
FE_AG_REG_AG_MODE_LOP_MODE_E__M));
|
|
AgModeLop |= ( FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
|
|
FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC );
|
|
CHK_ERROR(Write16(state,
|
|
FE_AG_REG_AG_MODE_LOP__A,
|
|
AgModeLop, 0x0000 ));
|
|
/* Settle level */
|
|
level = ( (( cfg->settleLevel )>>4) &
|
|
FE_AG_REG_TGC_SET_LVL__M );
|
|
CHK_ERROR(Write16(state,
|
|
FE_AG_REG_TGC_SET_LVL__A,
|
|
level,0x0000 ));
|
|
|
|
/* Min/max: don't care */
|
|
|
|
/* Speed: TODO */
|
|
|
|
/* enable AGC2 pin */
|
|
{
|
|
u16 FeAgRegAgAgcSio = 0;
|
|
CHK_ERROR( Read16(state,
|
|
FE_AG_REG_AG_AGC_SIO__A,
|
|
&FeAgRegAgAgcSio, 0x0000 ));
|
|
FeAgRegAgAgcSio &=
|
|
~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
|
|
FeAgRegAgAgcSio |=
|
|
FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
|
|
CHK_ERROR( Write16(state,
|
|
FE_AG_REG_AG_AGC_SIO__A,
|
|
FeAgRegAgAgcSio, 0x0000 ));
|
|
}
|
|
|
|
} while(0);
|
|
} else {
|
|
u16 AgModeLop=0;
|
|
|
|
do {
|
|
/* No RF AGC control */
|
|
/* Powerdown PD2, AGC2 as output, WRI source */
|
|
(state->m_FeAgRegAgPwd) &=
|
|
~(FE_AG_REG_AG_PWD_PWD_PD2__M);
|
|
(state->m_FeAgRegAgPwd) |=
|
|
FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
|
|
CHK_ERROR(Write16(state,
|
|
FE_AG_REG_AG_PWD__A,
|
|
(state->m_FeAgRegAgPwd),0x0000 ));
|
|
|
|
CHK_ERROR(Read16(state,
|
|
FE_AG_REG_AG_MODE_LOP__A,
|
|
&AgModeLop,0x0000 ));
|
|
AgModeLop &= (~( FE_AG_REG_AG_MODE_LOP_MODE_5__M |
|
|
FE_AG_REG_AG_MODE_LOP_MODE_E__M));
|
|
AgModeLop |= ( FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
|
|
FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC );
|
|
CHK_ERROR(Write16(state,
|
|
FE_AG_REG_AG_MODE_LOP__A,
|
|
AgModeLop,0x0000 ));
|
|
|
|
/* set FeAgRegAgAgcSio AGC2 (RF) as input */
|
|
{
|
|
u16 FeAgRegAgAgcSio = 0;
|
|
CHK_ERROR( Read16(state,
|
|
FE_AG_REG_AG_AGC_SIO__A,
|
|
&FeAgRegAgAgcSio, 0x0000 ));
|
|
FeAgRegAgAgcSio &=
|
|
~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
|
|
FeAgRegAgAgcSio |=
|
|
FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
|
|
CHK_ERROR( Write16(state,
|
|
FE_AG_REG_AG_AGC_SIO__A,
|
|
FeAgRegAgAgcSio, 0x0000 ));
|
|
}
|
|
} while(0);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int ReadIFAgc(struct drxd_state *state, u32 *pValue)
|
|
{
|
|
int status = 0;
|
|
|
|
*pValue = 0;
|
|
if( state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF ) {
|
|
u16 Value;
|
|
status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A,&Value,0);
|
|
Value &= FE_AG_REG_GC1_AGC_DAT__M;
|
|
if(status>=0) {
|
|
/* 3.3V
|
|
|
|
|
R1
|
|
|
|
|
Vin - R3 - * -- Vout
|
|
|
|
|
R2
|
|
|
|
|
GND
|
|
*/
|
|
u32 R1 = state->if_agc_cfg.R1;
|
|
u32 R2 = state->if_agc_cfg.R2;
|
|
u32 R3 = state->if_agc_cfg.R3;
|
|
|
|
u32 Vmax = (3300 * R2) / ( R1 + R2 );
|
|
u32 Rpar = ( R2 * R3 ) / ( R3 + R2 );
|
|
u32 Vmin = (3300 * Rpar ) / ( R1 + Rpar );
|
|
u32 Vout = Vmin + (( Vmax - Vmin ) * Value) / 1024;
|
|
|
|
*pValue = Vout;
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int load_firmware(struct drxd_state *state, const char *fw_name)
|
|
{
|
|
const struct firmware *fw;
|
|
|
|
if (request_firmware(&fw, fw_name, state->dev) < 0) {
|
|
printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
|
|
return -EIO;
|
|
}
|
|
|
|
state->microcode = kzalloc(fw->size, GFP_KERNEL);
|
|
if (state->microcode == NULL) {
|
|
printk(KERN_ERR "drxd: firmware load failure: nomemory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(state->microcode, fw->data, fw->size);
|
|
state->microcode_length = fw->size;
|
|
return 0;
|
|
}
|
|
|
|
static int DownloadMicrocode(struct drxd_state *state,
|
|
const u8 *pMCImage, u32 Length)
|
|
{
|
|
u8 *pSrc;
|
|
u16 Flags;
|
|
u32 Address;
|
|
u16 nBlocks;
|
|
u16 BlockSize;
|
|
u16 BlockCRC;
|
|
u32 offset=0;
|
|
int i, status=0;
|
|
|
|
pSrc=(u8 *) pMCImage;
|
|
Flags = (pSrc[0] << 8) | pSrc[1];
|
|
pSrc += sizeof(u16); offset += sizeof(u16);
|
|
nBlocks = (pSrc[0] << 8) | pSrc[1];
|
|
pSrc += sizeof(u16); offset += sizeof(u16);
|
|
|
|
for(i=0; i<nBlocks; i++ ) {
|
|
Address=(pSrc[0] << 24) | (pSrc[1] << 16) |
|
|
(pSrc[2] << 8) | pSrc[3];
|
|
pSrc += sizeof(u32); offset += sizeof(u32);
|
|
|
|
BlockSize = ( (pSrc[0] << 8) | pSrc[1] ) * sizeof(u16);
|
|
pSrc += sizeof(u16); offset += sizeof(u16);
|
|
|
|
Flags = (pSrc[0] << 8) | pSrc[1];
|
|
pSrc += sizeof(u16); offset += sizeof(u16);
|
|
|
|
BlockCRC = (pSrc[0] << 8) | pSrc[1];
|
|
pSrc += sizeof(u16); offset += sizeof(u16);
|
|
|
|
status = WriteBlock(state,Address,BlockSize,
|
|
pSrc,DRX_I2C_CLEARCRC);
|
|
if (status<0)
|
|
break;
|
|
pSrc += BlockSize;
|
|
offset += BlockSize;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int HI_Command(struct drxd_state *state, u16 cmd, u16 *pResult)
|
|
{
|
|
u32 nrRetries = 0;
|
|
u16 waitCmd;
|
|
int status;
|
|
|
|
if ((status=Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0))<0)
|
|
return status;
|
|
|
|
do {
|
|
nrRetries+=1;
|
|
if (nrRetries>DRXD_MAX_RETRIES) {
|
|
status=-1;
|
|
break;
|
|
};
|
|
status=Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
|
|
} while (waitCmd!=0);
|
|
|
|
if (status>=0)
|
|
status=Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
|
|
return status;
|
|
}
|
|
|
|
static int HI_CfgCommand(struct drxd_state *state)
|
|
{
|
|
int status=0;
|
|
|
|
down(&state->mutex);
|
|
Write16(state, HI_RA_RAM_SRV_CFG_KEY__A,
|
|
HI_RA_RAM_SRV_RST_KEY_ACT, 0);
|
|
Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
|
|
Write16(state, HI_RA_RAM_SRV_CFG_BDL__A,
|
|
state->hi_cfg_bridge_delay, 0);
|
|
Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
|
|
Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
|
|
|
|
Write16(state, HI_RA_RAM_SRV_CFG_KEY__A,
|
|
HI_RA_RAM_SRV_RST_KEY_ACT, 0);
|
|
|
|
if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)==
|
|
HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
|
|
status=Write16(state, HI_RA_RAM_SRV_CMD__A,
|
|
HI_RA_RAM_SRV_CMD_CONFIG, 0);
|
|
else
|
|
status=HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, 0);
|
|
up(&state->mutex);
|
|
return status;
|
|
}
|
|
|
|
static int InitHI(struct drxd_state *state)
|
|
{
|
|
state->hi_cfg_wakeup_key = (state->chip_adr);
|
|
/* port/bridge/power down ctrl */
|
|
state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
|
|
return HI_CfgCommand(state);
|
|
}
|
|
|
|
static int HI_ResetCommand(struct drxd_state *state)
|
|
{
|
|
int status;
|
|
|
|
down(&state->mutex);
|
|
status=Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
|
|
HI_RA_RAM_SRV_RST_KEY_ACT, 0);
|
|
if (status==0)
|
|
status=HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, 0);
|
|
up(&state->mutex);
|
|
msleep(1);
|
|
return status;
|
|
}
|
|
|
|
static int DRX_ConfigureI2CBridge(struct drxd_state *state,
|
|
int bEnableBridge)
|
|
{
|
|
state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
|
|
if ( bEnableBridge )
|
|
state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
|
|
else
|
|
state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
|
|
|
|
return HI_CfgCommand(state);
|
|
}
|
|
|
|
#define HI_TR_WRITE 0x9
|
|
#define HI_TR_READ 0xA
|
|
#define HI_TR_READ_WRITE 0xB
|
|
#define HI_TR_BROADCAST 0x4
|
|
|
|
#if 0
|
|
static int AtomicReadBlock(struct drxd_state *state,
|
|
u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
|
|
{
|
|
int status;
|
|
int i=0;
|
|
|
|
/* Parameter check */
|
|
if ( (!pData) || ( (DataSize & 1)!=0 ) )
|
|
return -1;
|
|
|
|
down(&state->mutex);
|
|
|
|
do {
|
|
/* Instruct HI to read n bytes */
|
|
/* TODO use proper names forthese egisters */
|
|
CHK_ERROR( Write16(state,HI_RA_RAM_SRV_CFG_KEY__A,
|
|
(HI_TR_FUNC_ADDR & 0xFFFF), 0));
|
|
CHK_ERROR( Write16(state,HI_RA_RAM_SRV_CFG_DIV__A,
|
|
(u16)(Addr >> 16), 0));
|
|
CHK_ERROR( Write16(state,HI_RA_RAM_SRV_CFG_BDL__A,
|
|
(u16)(Addr & 0xFFFF), 0));
|
|
CHK_ERROR( Write16(state,HI_RA_RAM_SRV_CFG_WUP__A,
|
|
(u16)((DataSize/2) - 1), 0));
|
|
CHK_ERROR( Write16(state,HI_RA_RAM_SRV_CFG_ACT__A,
|
|
HI_TR_READ, 0));
|
|
|
|
CHK_ERROR( HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE,0));
|
|
|
|
} while(0);
|
|
|
|
if (status>=0) {
|
|
for (i = 0; i < (DataSize/2); i += 1) {
|
|
u16 word;
|
|
|
|
status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
|
|
&word, 0);
|
|
if( status<0)
|
|
break;
|
|
pData[2*i] = (u8) (word & 0xFF);
|
|
pData[(2*i) + 1] = (u8) (word >> 8 );
|
|
}
|
|
}
|
|
up(&state->mutex);
|
|
return status;
|
|
}
|
|
|
|
static int AtomicReadReg32(struct drxd_state *state,
|
|
u32 Addr, u32 *pData, u8 Flags)
|
|
{
|
|
u8 buf[sizeof (u32)];
|
|
int status;
|
|
|
|
if (!pData)
|
|
return -1;
|
|
status=AtomicReadBlock(state, Addr, sizeof (u32), buf, Flags);
|
|
*pData = (((u32) buf[0]) << 0) +
|
|
(((u32) buf[1]) << 8) +
|
|
(((u32) buf[2]) << 16) +
|
|
(((u32) buf[3]) << 24);
|
|
return status;
|
|
}
|
|
#endif
|
|
|
|
static int StopAllProcessors(struct drxd_state *state)
|
|
{
|
|
return Write16(state, HI_COMM_EXEC__A,
|
|
SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
|
|
}
|
|
|
|
static int EnableAndResetMB(struct drxd_state *state)
|
|
{
|
|
if (state->type_A) {
|
|
/* disable? monitor bus observe @ EC_OC */
|
|
Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
|
|
}
|
|
|
|
/* do inverse broadcast, followed by explicit write to HI */
|
|
Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
|
|
Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
|
|
return 0;
|
|
}
|
|
|
|
static int InitCC(struct drxd_state *state)
|
|
{
|
|
if (state->osc_clock_freq == 0 ||
|
|
state->osc_clock_freq > 20000 ||
|
|
(state->osc_clock_freq % 4000 ) != 0 ) {
|
|
printk("invalid osc frequency %d\n", state->osc_clock_freq);
|
|
return -1;
|
|
}
|
|
|
|
Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
|
|
Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
|
|
CC_REG_PLL_MODE_PUMP_CUR_12, 0);
|
|
Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq/4000, 0);
|
|
Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
|
|
Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ResetECOD(struct drxd_state *state)
|
|
{
|
|
int status = 0;
|
|
|
|
if(state->type_A )
|
|
status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
|
|
else
|
|
status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
|
|
|
|
if (!(status<0))
|
|
status = WriteTable(state, state->m_ResetECRAM);
|
|
if (!(status<0))
|
|
status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
|
|
return status;
|
|
}
|
|
|
|
|
|
/* Configure PGA switch */
|
|
|
|
static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
|
|
{
|
|
int status;
|
|
u16 AgModeLop = 0;
|
|
u16 AgModeHip = 0;
|
|
do {
|
|
if ( pgaSwitch ) {
|
|
/* PGA on */
|
|
/* fine gain */
|
|
CHK_ERROR(Read16(state, B_FE_AG_REG_AG_MODE_LOP__A,
|
|
&AgModeLop, 0x0000));
|
|
AgModeLop&=(~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
|
|
AgModeLop|= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
|
|
CHK_ERROR(Write16(state, B_FE_AG_REG_AG_MODE_LOP__A,
|
|
AgModeLop, 0x0000));
|
|
|
|
/* coarse gain */
|
|
CHK_ERROR(Read16(state, B_FE_AG_REG_AG_MODE_HIP__A,
|
|
&AgModeHip, 0x0000));
|
|
AgModeHip&=(~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
|
|
AgModeHip|= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC ;
|
|
CHK_ERROR(Write16(state, B_FE_AG_REG_AG_MODE_HIP__A,
|
|
AgModeHip, 0x0000));
|
|
|
|
/* enable fine and coarse gain, enable AAF,
|
|
no ext resistor */
|
|
CHK_ERROR(Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
|
|
B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN,
|
|
0x0000));
|
|
} else {
|
|
/* PGA off, bypass */
|
|
|
|
/* fine gain */
|
|
CHK_ERROR(Read16(state, B_FE_AG_REG_AG_MODE_LOP__A,
|
|
&AgModeLop, 0x0000));
|
|
AgModeLop&=(~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
|
|
AgModeLop|= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC ;
|
|
CHK_ERROR(Write16(state, B_FE_AG_REG_AG_MODE_LOP__A,
|
|
AgModeLop, 0x0000));
|
|
|
|
/* coarse gain */
|
|
CHK_ERROR(Read16(state, B_FE_AG_REG_AG_MODE_HIP__A,
|
|
&AgModeHip, 0x0000));
|
|
AgModeHip&=(~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
|
|
AgModeHip|= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC ;
|
|
CHK_ERROR(Write16(state, B_FE_AG_REG_AG_MODE_HIP__A,
|
|
AgModeHip, 0x0000));
|
|
|
|
/* disable fine and coarse gain, enable AAF,
|
|
no ext resistor */
|
|
CHK_ERROR(Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
|
|
B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
|
|
0x0000));
|
|
}
|
|
}
|
|
while(0);
|
|
return status;
|
|
}
|
|
|
|
static int InitFE(struct drxd_state *state)
|
|
{
|
|
int status;
|
|
|
|
do
|
|
{
|
|
CHK_ERROR( WriteTable(state, state->m_InitFE_1));
|
|
|
|
if( state->type_A ) {
|
|
status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
|
|
FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0);
|
|
} else {
|
|
if (state->PGA)
|
|
status = SetCfgPga(state, 0);
|
|
else
|
|
status =
|
|
Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
|
|
B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0);
|
|
}
|
|
|
|
if (status<0) break;
|
|
CHK_ERROR( Write16( state, FE_AG_REG_AG_AGC_SIO__A,
|
|
state->m_FeAgRegAgAgcSio, 0x0000));
|
|
CHK_ERROR( Write16( state, FE_AG_REG_AG_PWD__A,state->m_FeAgRegAgPwd,
|
|
0x0000));
|
|
|
|
CHK_ERROR( WriteTable(state, state->m_InitFE_2));
|
|
|
|
|
|
} while(0);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int InitFT(struct drxd_state *state)
|
|
{
|
|
/*
|
|
norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk
|
|
SC stuff
|
|
*/
|
|
return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000 );
|
|
}
|
|
|
|
static int SC_WaitForReady(struct drxd_state *state)
|
|
{
|
|
u16 curCmd;
|
|
int i;
|
|
|
|
for(i = 0; i < DRXD_MAX_RETRIES; i += 1 )
|
|
{
|
|
int status = Read16(state, SC_RA_RAM_CMD__A,&curCmd,0);
|
|
if (status==0 || curCmd == 0 )
|
|
return status;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int SC_SendCommand(struct drxd_state *state, u16 cmd)
|
|
{
|
|
int status=0;
|
|
u16 errCode;
|
|
|
|
Write16(state, SC_RA_RAM_CMD__A,cmd,0);
|
|
SC_WaitForReady(state);
|
|
|
|
Read16(state, SC_RA_RAM_CMD_ADDR__A,&errCode,0);
|
|
|
|
if( errCode == 0xFFFF )
|
|
{
|
|
printk("Command Error\n");
|
|
status = -1;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int SC_ProcStartCommand(struct drxd_state *state,
|
|
u16 subCmd,u16 param0,u16 param1)
|
|
{
|
|
int status=0;
|
|
u16 scExec;
|
|
|
|
down(&state->mutex);
|
|
do {
|
|
Read16(state, SC_COMM_EXEC__A, &scExec, 0);
|
|
if (scExec != 1) {
|
|
status=-1;
|
|
break;
|
|
}
|
|
SC_WaitForReady(state);
|
|
Write16(state, SC_RA_RAM_CMD_ADDR__A,subCmd,0);
|
|
Write16(state, SC_RA_RAM_PARAM1__A,param1,0);
|
|
Write16(state, SC_RA_RAM_PARAM0__A,param0,0);
|
|
|
|
SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
|
|
} while(0);
|
|
up(&state->mutex);
|
|
return status;
|
|
}
|
|
|
|
|
|
static int SC_SetPrefParamCommand(struct drxd_state *state,
|
|
u16 subCmd,u16 param0,u16 param1)
|
|
{
|
|
int status;
|
|
|
|
down(&state->mutex);
|
|
do {
|
|
CHK_ERROR( SC_WaitForReady(state) );
|
|
CHK_ERROR( Write16(state,SC_RA_RAM_CMD_ADDR__A,subCmd,0) );
|
|
CHK_ERROR( Write16(state,SC_RA_RAM_PARAM1__A,param1,0) );
|
|
CHK_ERROR( Write16(state,SC_RA_RAM_PARAM0__A,param0,0) );
|
|
|
|
CHK_ERROR( SC_SendCommand(state,
|
|
SC_RA_RAM_CMD_SET_PREF_PARAM) );
|
|
} while(0);
|
|
up(&state->mutex);
|
|
return status;
|
|
}
|
|
|
|
#if 0
|
|
static int SC_GetOpParamCommand(struct drxd_state *state, u16 *result)
|
|
{
|
|
int status=0;
|
|
|
|
down(&state->mutex);
|
|
do {
|
|
CHK_ERROR( SC_WaitForReady(state) );
|
|
CHK_ERROR( SC_SendCommand(state,
|
|
SC_RA_RAM_CMD_GET_OP_PARAM) );
|
|
CHK_ERROR( Read16(state, SC_RA_RAM_PARAM0__A,result, 0 ) );
|
|
} while(0);
|
|
up(&state->mutex);
|
|
return status;
|
|
}
|
|
#endif
|
|
|
|
static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
|
|
{
|
|
int status;
|
|
|
|
do {
|
|
u16 EcOcRegIprInvMpg = 0;
|
|
u16 EcOcRegOcModeLop = 0;
|
|
u16 EcOcRegOcModeHip = 0;
|
|
u16 EcOcRegOcMpgSio = 0;
|
|
|
|
/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A,
|
|
&EcOcRegOcModeLop, 0));*/
|
|
|
|
if( state->operation_mode == OM_DVBT_Diversity_Front )
|
|
{
|
|
if ( bEnableOutput )
|
|
{
|
|
EcOcRegOcModeHip |=
|
|
B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
|
|
}
|
|
else
|
|
EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
|
|
EcOcRegOcModeLop |=
|
|
EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
|
|
}
|
|
else
|
|
{
|
|
EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
|
|
|
|
if (bEnableOutput)
|
|
EcOcRegOcMpgSio &=
|
|
(~(EC_OC_REG_OC_MPG_SIO__M));
|
|
else
|
|
EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
|
|
|
|
/* Don't Insert RS Byte */
|
|
if( state->insert_rs_byte )
|
|
{
|
|
EcOcRegOcModeLop &=
|
|
(~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
|
|
EcOcRegOcModeHip &=
|
|
(~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
|
|
EcOcRegOcModeHip |=
|
|
EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
|
|
} else {
|
|
EcOcRegOcModeLop |=
|
|
EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
|
|
EcOcRegOcModeHip &=
|
|
(~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
|
|
EcOcRegOcModeHip |=
|
|
EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
|
|
}
|
|
|
|
/* Mode = Parallel */
|
|
if( state->enable_parallel )
|
|
EcOcRegOcModeLop &=
|
|
(~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
|
|
else
|
|
EcOcRegOcModeLop |=
|
|
EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
|
|
}
|
|
/* Invert Data */
|
|
/* EcOcRegIprInvMpg |= 0x00FF; */
|
|
EcOcRegIprInvMpg &= (~(0x00FF));
|
|
|
|
/* Invert Error ( we don't use the pin ) */
|
|
/* EcOcRegIprInvMpg |= 0x0100; */
|
|
EcOcRegIprInvMpg &= (~(0x0100));
|
|
|
|
/* Invert Start ( we don't use the pin ) */
|
|
/* EcOcRegIprInvMpg |= 0x0200; */
|
|
EcOcRegIprInvMpg &= (~(0x0200));
|
|
|
|
/* Invert Valid ( we don't use the pin ) */
|
|
/* EcOcRegIprInvMpg |= 0x0400; */
|
|
EcOcRegIprInvMpg &= (~(0x0400));
|
|
|
|
/* Invert Clock */
|
|
/* EcOcRegIprInvMpg |= 0x0800; */
|
|
EcOcRegIprInvMpg &= (~(0x0800));
|
|
|
|
/* EcOcRegOcModeLop =0x05; */
|
|
CHK_ERROR( Write16(state, EC_OC_REG_IPR_INV_MPG__A,
|
|
EcOcRegIprInvMpg, 0));
|
|
CHK_ERROR( Write16(state, EC_OC_REG_OC_MODE_LOP__A,
|
|
EcOcRegOcModeLop, 0) );
|
|
CHK_ERROR( Write16(state, EC_OC_REG_OC_MODE_HIP__A,
|
|
EcOcRegOcModeHip, 0x0000 ) );
|
|
CHK_ERROR( Write16(state, EC_OC_REG_OC_MPG_SIO__A,
|
|
EcOcRegOcMpgSio, 0) );
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int SetDeviceTypeId(struct drxd_state *state)
|
|
{
|
|
int status = 0;
|
|
u16 deviceId = 0 ;
|
|
|
|
do {
|
|
CHK_ERROR(Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0));
|
|
/* TODO: why twice? */
|
|
CHK_ERROR(Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0));
|
|
printk( "drxd: deviceId = %04x\n",deviceId);
|
|
|
|
state->type_A = 0;
|
|
state->PGA = 0;
|
|
state->diversity = 0;
|
|
if (deviceId == 0) { /* on A2 only 3975 available */
|
|
state->type_A = 1;
|
|
printk("DRX3975D-A2\n");
|
|
} else {
|
|
deviceId >>= 12;
|
|
printk("DRX397%dD-B1\n",deviceId);
|
|
switch(deviceId) {
|
|
case 4:
|
|
state->diversity = 1;
|
|
case 3:
|
|
case 7:
|
|
state->PGA = 1;
|
|
break;
|
|
case 6:
|
|
state->diversity = 1;
|
|
case 5:
|
|
case 8:
|
|
break;
|
|
default:
|
|
status = -1;
|
|
break;
|
|
}
|
|
}
|
|
} while(0);
|
|
|
|
if (status<0)
|
|
return status;
|
|
|
|
/* Init Table selection */
|
|
state->m_InitAtomicRead = DRXD_InitAtomicRead;
|
|
state->m_InitSC = DRXD_InitSC;
|
|
state->m_ResetECRAM = DRXD_ResetECRAM;
|
|
if (state->type_A) {
|
|
state->m_ResetCEFR = DRXD_ResetCEFR;
|
|
state->m_InitFE_1 = DRXD_InitFEA2_1;
|
|
state->m_InitFE_2 = DRXD_InitFEA2_2;
|
|
state->m_InitCP = DRXD_InitCPA2;
|
|
state->m_InitCE = DRXD_InitCEA2;
|
|
state->m_InitEQ = DRXD_InitEQA2;
|
|
state->m_InitEC = DRXD_InitECA2;
|
|
if (load_firmware(state, DRX_FW_FILENAME_A2))
|
|
return -EIO;
|
|
} else {
|
|
state->m_ResetCEFR = NULL;
|
|
state->m_InitFE_1 = DRXD_InitFEB1_1;
|
|
state->m_InitFE_2 = DRXD_InitFEB1_2;
|
|
state->m_InitCP = DRXD_InitCPB1;
|
|
state->m_InitCE = DRXD_InitCEB1;
|
|
state->m_InitEQ = DRXD_InitEQB1;
|
|
state->m_InitEC = DRXD_InitECB1;
|
|
if (load_firmware(state, DRX_FW_FILENAME_B1))
|
|
return -EIO;
|
|
}
|
|
if (state->diversity) {
|
|
state->m_InitDiversityFront = DRXD_InitDiversityFront;
|
|
state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
|
|
state->m_DisableDiversity = DRXD_DisableDiversity;
|
|
state->m_StartDiversityFront = DRXD_StartDiversityFront;
|
|
state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
|
|
state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
|
|
state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
|
|
} else {
|
|
state->m_InitDiversityFront = NULL;
|
|
state->m_InitDiversityEnd = NULL;
|
|
state->m_DisableDiversity = NULL;
|
|
state->m_StartDiversityFront = NULL;
|
|
state->m_StartDiversityEnd = NULL;
|
|
state->m_DiversityDelay8MHZ = NULL;
|
|
state->m_DiversityDelay6MHZ = NULL;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int CorrectSysClockDeviation(struct drxd_state *state)
|
|
{
|
|
int status;
|
|
s32 incr = 0;
|
|
s32 nomincr = 0;
|
|
u32 bandwidth=0;
|
|
u32 sysClockInHz=0;
|
|
u32 sysClockFreq=0; /* in kHz */
|
|
s16 oscClockDeviation;
|
|
s16 Diff;
|
|
|
|
do {
|
|
/* Retrieve bandwidth and incr, sanity check */
|
|
|
|
/* These accesses should be AtomicReadReg32, but that
|
|
causes trouble (at least for diversity */
|
|
CHK_ERROR( Read32(state, LC_RA_RAM_IFINCR_NOM_L__A,
|
|
((u32 *)&nomincr),0 ));
|
|
CHK_ERROR( Read32(state, FE_IF_REG_INCR0__A,
|
|
(u32 *) &incr,0 ));
|
|
|
|
if( state->type_A ) {
|
|
if( (nomincr - incr < -500) ||
|
|
(nomincr - incr > 500 ) )
|
|
break;
|
|
} else {
|
|
if( (nomincr - incr < -2000 ) ||
|
|
(nomincr - incr > 2000 ) )
|
|
break;
|
|
}
|
|
|
|
switch( state->param.u.ofdm.bandwidth )
|
|
{
|
|
case BANDWIDTH_8_MHZ :
|
|
bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
|
|
break;
|
|
case BANDWIDTH_7_MHZ :
|
|
bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
|
|
break;
|
|
case BANDWIDTH_6_MHZ :
|
|
bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
|
|
break;
|
|
default :
|
|
return -1;
|
|
break;
|
|
}
|
|
|
|
/* Compute new sysclock value
|
|
sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
|
|
incr += (1<<23);
|
|
sysClockInHz = MulDiv32(incr,bandwidth,1<<21);
|
|
sysClockFreq= (u32)(sysClockInHz/1000);
|
|
/* rounding */
|
|
if ( ( sysClockInHz%1000 ) > 500 )
|
|
{
|
|
sysClockFreq++;
|
|
}
|
|
|
|
/* Compute clock deviation in ppm */
|
|
oscClockDeviation = (u16) (
|
|
(((s32)(sysClockFreq) -
|
|
(s32)(state->expected_sys_clock_freq))*
|
|
1000000L)/(s32)(state->expected_sys_clock_freq) );
|
|
|
|
Diff = oscClockDeviation - state->osc_clock_deviation;
|
|
/*printk("sysclockdiff=%d\n", Diff);*/
|
|
if( Diff >= -200 && Diff <= 200 ) {
|
|
state->sys_clock_freq = (u16) sysClockFreq;
|
|
if( oscClockDeviation !=
|
|
state->osc_clock_deviation ) {
|
|
if (state->config.osc_deviation) {
|
|
state->config.osc_deviation(
|
|
state->priv,
|
|
oscClockDeviation, 1);
|
|
state->osc_clock_deviation=
|
|
oscClockDeviation;
|
|
}
|
|
}
|
|
/* switch OFF SRMM scan in SC */
|
|
CHK_ERROR( Write16( state,
|
|
SC_RA_RAM_SAMPLE_RATE_COUNT__A,
|
|
DRXD_OSCDEV_DONT_SCAN,0));
|
|
/* overrule FE_IF internal value for
|
|
proper re-locking */
|
|
CHK_ERROR( Write16( state, SC_RA_RAM_IF_SAVE__AX,
|
|
state->current_fe_if_incr, 0));
|
|
state->cscd_state = CSCD_SAVED;
|
|
}
|
|
} while(0);
|
|
|
|
return (status);
|
|
}
|
|
|
|
static int DRX_Stop(struct drxd_state *state)
|
|
{
|
|
int status;
|
|
|
|
if( state->drxd_state != DRXD_STARTED )
|
|
return 0;
|
|
|
|
do {
|
|
if (state->cscd_state != CSCD_SAVED ) {
|
|
u32 lock;
|
|
CHK_ERROR( DRX_GetLockStatus(state, &lock));
|
|
}
|
|
|
|
CHK_ERROR(StopOC(state));
|
|
|
|
state->drxd_state = DRXD_STOPPED;
|
|
|
|
CHK_ERROR( ConfigureMPEGOutput(state, 0) );
|
|
|
|
if(state->type_A ) {
|
|
/* Stop relevant processors off the device */
|
|
CHK_ERROR( Write16(state, EC_OD_REG_COMM_EXEC__A,
|
|
0x0000, 0x0000));
|
|
|
|
CHK_ERROR( Write16(state, SC_COMM_EXEC__A,
|
|
SC_COMM_EXEC_CTL_STOP, 0 ));
|
|
CHK_ERROR( Write16(state, LC_COMM_EXEC__A,
|
|
SC_COMM_EXEC_CTL_STOP, 0 ));
|
|
} else {
|
|
/* Stop all processors except HI & CC & FE */
|
|
CHK_ERROR(Write16(state,
|
|
B_SC_COMM_EXEC__A,
|
|
SC_COMM_EXEC_CTL_STOP, 0 ));
|
|
CHK_ERROR(Write16(state,
|
|
B_LC_COMM_EXEC__A,
|
|
SC_COMM_EXEC_CTL_STOP, 0 ));
|
|
CHK_ERROR(Write16(state,
|
|
B_FT_COMM_EXEC__A,
|
|
SC_COMM_EXEC_CTL_STOP, 0 ));
|
|
CHK_ERROR(Write16(state,
|
|
B_CP_COMM_EXEC__A,
|
|
SC_COMM_EXEC_CTL_STOP, 0 ));
|
|
CHK_ERROR(Write16(state,
|
|
B_CE_COMM_EXEC__A,
|
|
SC_COMM_EXEC_CTL_STOP, 0 ));
|
|
CHK_ERROR(Write16(state,
|
|
B_EQ_COMM_EXEC__A,
|
|
SC_COMM_EXEC_CTL_STOP, 0 ));
|
|
CHK_ERROR(Write16(state,
|
|
EC_OD_REG_COMM_EXEC__A,
|
|
0x0000, 0 ));
|
|
}
|
|
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
|
|
int SetOperationMode(struct drxd_state *state, int oMode)
|
|
{
|
|
int status;
|
|
|
|
do {
|
|
if (state->drxd_state != DRXD_STOPPED) {
|
|
status = -1;
|
|
break;
|
|
}
|
|
|
|
if (oMode == state->operation_mode) {
|
|
status = 0;
|
|
break;
|
|
}
|
|
|
|
if (oMode != OM_Default && !state->diversity) {
|
|
status = -1;
|
|
break;
|
|
}
|
|
|
|
switch(oMode)
|
|
{
|
|
case OM_DVBT_Diversity_Front:
|
|
status = WriteTable(state,
|
|
state->m_InitDiversityFront);
|
|
break;
|
|
case OM_DVBT_Diversity_End:
|
|
status = WriteTable(state,
|
|
state->m_InitDiversityEnd);
|
|
break;
|
|
case OM_Default:
|
|
/* We need to check how to
|
|
get DRXD out of diversity */
|
|
default:
|
|
status = WriteTable(state, state->m_DisableDiversity);
|
|
break;
|
|
}
|
|
} while(0);
|
|
|
|
if (!status)
|
|
state->operation_mode = oMode;
|
|
return status;
|
|
}
|
|
|
|
|
|
|
|
static int StartDiversity(struct drxd_state *state)
|
|
{
|
|
int status=0;
|
|
u16 rcControl;
|
|
|
|
do {
|
|
if (state->operation_mode == OM_DVBT_Diversity_Front) {
|
|
CHK_ERROR(WriteTable(state,
|
|
state->m_StartDiversityFront));
|
|
} else if( state->operation_mode == OM_DVBT_Diversity_End ) {
|
|
CHK_ERROR(WriteTable(state,
|
|
state->m_StartDiversityEnd));
|
|
if( state->param.u.ofdm.bandwidth ==
|
|
BANDWIDTH_8_MHZ ) {
|
|
CHK_ERROR(
|
|
WriteTable(state,
|
|
state->
|
|
m_DiversityDelay8MHZ));
|
|
} else {
|
|
CHK_ERROR(
|
|
WriteTable(state,
|
|
state->
|
|
m_DiversityDelay6MHZ));
|
|
}
|
|
|
|
CHK_ERROR(Read16(state,
|
|
B_EQ_REG_RC_SEL_CAR__A,
|
|
&rcControl,0));
|
|
rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
|
|
rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
|
|
/* combining enabled */
|
|
B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
|
|
B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
|
|
B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
|
|
CHK_ERROR(Write16(state,
|
|
B_EQ_REG_RC_SEL_CAR__A,
|
|
rcControl,0));
|
|
}
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
|
|
static int SetFrequencyShift(struct drxd_state *state,
|
|
u32 offsetFreq, int channelMirrored)
|
|
{
|
|
int negativeShift = (state->tuner_mirrors == channelMirrored);
|
|
|
|
/* Handle all mirroring
|
|
*
|
|
* Note: ADC mirroring (aliasing) is implictly handled by limiting
|
|
* feFsRegAddInc to 28 bits below
|
|
* (if the result before masking is more than 28 bits, this means
|
|
* that the ADC is mirroring.
|
|
* The masking is in fact the aliasing of the ADC)
|
|
*
|
|
*/
|
|
|
|
/* Compute register value, unsigned computation */
|
|
state->fe_fs_add_incr = MulDiv32( state->intermediate_freq +
|
|
offsetFreq,
|
|
1<<28, state->sys_clock_freq);
|
|
/* Remove integer part */
|
|
state->fe_fs_add_incr &= 0x0FFFFFFFL;
|
|
if (negativeShift)
|
|
{
|
|
state->fe_fs_add_incr = ((1<<28) - state->fe_fs_add_incr);
|
|
}
|
|
|
|
/* Save the frequency shift without tunerOffset compensation
|
|
for CtrlGetChannel. */
|
|
state->org_fe_fs_add_incr = MulDiv32( state->intermediate_freq,
|
|
1<<28, state->sys_clock_freq);
|
|
/* Remove integer part */
|
|
state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
|
|
if (negativeShift)
|
|
state->org_fe_fs_add_incr = ((1L<<28) -
|
|
state->org_fe_fs_add_incr);
|
|
|
|
return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
|
|
state->fe_fs_add_incr, 0);
|
|
}
|
|
|
|
static int SetCfgNoiseCalibration (struct drxd_state *state,
|
|
struct SNoiseCal* noiseCal )
|
|
{
|
|
u16 beOptEna;
|
|
int status=0;
|
|
|
|
do {
|
|
CHK_ERROR(Read16(state, SC_RA_RAM_BE_OPT_ENA__A,
|
|
&beOptEna, 0));
|
|
if (noiseCal->cpOpt)
|
|
{
|
|
beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
|
|
} else {
|
|
beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
|
|
CHK_ERROR(Write16(state, CP_REG_AC_NEXP_OFFS__A,
|
|
noiseCal->cpNexpOfs, 0));
|
|
}
|
|
CHK_ERROR(Write16(state, SC_RA_RAM_BE_OPT_ENA__A,
|
|
beOptEna, 0));
|
|
|
|
if( !state->type_A )
|
|
{
|
|
CHK_ERROR(Write16( state,
|
|
B_SC_RA_RAM_CO_TD_CAL_2K__A,
|
|
noiseCal->tdCal2k,0));
|
|
CHK_ERROR(Write16( state,
|
|
B_SC_RA_RAM_CO_TD_CAL_8K__A,
|
|
noiseCal->tdCal8k,0));
|
|
}
|
|
} while(0);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int DRX_Start(struct drxd_state *state, s32 off)
|
|
{
|
|
struct dvb_ofdm_parameters *p = &state->param.u.ofdm;
|
|
int status;
|
|
|
|
u16 transmissionParams = 0;
|
|
u16 operationMode = 0;
|
|
u16 qpskTdTpsPwr = 0;
|
|
u16 qam16TdTpsPwr = 0;
|
|
u16 qam64TdTpsPwr = 0;
|
|
u32 feIfIncr = 0;
|
|
u32 bandwidth = 0;
|
|
int mirrorFreqSpect;
|
|
|
|
u16 qpskSnCeGain = 0;
|
|
u16 qam16SnCeGain = 0;
|
|
u16 qam64SnCeGain = 0;
|
|
u16 qpskIsGainMan = 0;
|
|
u16 qam16IsGainMan = 0;
|
|
u16 qam64IsGainMan = 0;
|
|
u16 qpskIsGainExp = 0;
|
|
u16 qam16IsGainExp = 0;
|
|
u16 qam64IsGainExp = 0;
|
|
u16 bandwidthParam = 0;
|
|
|
|
if (off<0)
|
|
off=(off-500)/1000;
|
|
else
|
|
off=(off+500)/1000;
|
|
|
|
do {
|
|
if (state->drxd_state != DRXD_STOPPED)
|
|
return -1;
|
|
CHK_ERROR( ResetECOD(state) );
|
|
if (state->type_A) {
|
|
CHK_ERROR( InitSC(state) );
|
|
} else {
|
|
CHK_ERROR( InitFT(state) );
|
|
CHK_ERROR( InitCP(state) );
|
|
CHK_ERROR( InitCE(state) );
|
|
CHK_ERROR( InitEQ(state) );
|
|
CHK_ERROR( InitSC(state) );
|
|
}
|
|
|
|
/* Restore current IF & RF AGC settings */
|
|
|
|
CHK_ERROR(SetCfgIfAgc(state, &state->if_agc_cfg ));
|
|
CHK_ERROR(SetCfgRfAgc(state, &state->rf_agc_cfg ));
|
|
|
|
mirrorFreqSpect=( state->param.inversion==INVERSION_ON);
|
|
|
|
switch (p->transmission_mode) {
|
|
default: /* Not set, detect it automatically */
|
|
operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
|
|
/* fall through , try first guess DRX_FFTMODE_8K */
|
|
case TRANSMISSION_MODE_8K :
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
|
|
if (state->type_A) {
|
|
CHK_ERROR( Write16(state,
|
|
EC_SB_REG_TR_MODE__A,
|
|
EC_SB_REG_TR_MODE_8K,
|
|
0x0000 ));
|
|
qpskSnCeGain = 99;
|
|
qam16SnCeGain = 83;
|
|
qam64SnCeGain = 67;
|
|
}
|
|
break;
|
|
case TRANSMISSION_MODE_2K :
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
|
|
if (state->type_A) {
|
|
CHK_ERROR( Write16(state,
|
|
EC_SB_REG_TR_MODE__A,
|
|
EC_SB_REG_TR_MODE_2K,
|
|
0x0000 ));
|
|
qpskSnCeGain = 97;
|
|
qam16SnCeGain = 71;
|
|
qam64SnCeGain = 65;
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch( p->guard_interval )
|
|
{
|
|
case GUARD_INTERVAL_1_4:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
|
|
break;
|
|
case GUARD_INTERVAL_1_8:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
|
|
break;
|
|
case GUARD_INTERVAL_1_16:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
|
|
break;
|
|
case GUARD_INTERVAL_1_32:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
|
|
break;
|
|
default: /* Not set, detect it automatically */
|
|
operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
|
|
/* try first guess 1/4 */
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
|
|
break;
|
|
}
|
|
|
|
switch( p->hierarchy_information )
|
|
{
|
|
case HIERARCHY_1:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
|
|
if (state->type_A) {
|
|
CHK_ERROR( Write16(state, EQ_REG_OT_ALPHA__A,
|
|
0x0001, 0x0000 ) );
|
|
CHK_ERROR( Write16(state, EC_SB_REG_ALPHA__A,
|
|
0x0001, 0x0000 ) );
|
|
|
|
qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
|
|
qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
|
|
qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
|
|
|
|
qpskIsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
|
|
qam16IsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
|
|
qam64IsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
|
|
|
|
qpskIsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
|
|
qam16IsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
|
|
qam64IsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
|
|
}
|
|
break;
|
|
|
|
case HIERARCHY_2:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
|
|
if (state->type_A) {
|
|
CHK_ERROR( Write16(state, EQ_REG_OT_ALPHA__A,
|
|
0x0002, 0x0000 ) );
|
|
CHK_ERROR( Write16(state, EC_SB_REG_ALPHA__A,
|
|
0x0002, 0x0000 ) );
|
|
|
|
qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
|
|
qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
|
|
qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
|
|
|
|
qpskIsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
|
|
qam16IsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
|
|
qam64IsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
|
|
|
|
qpskIsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
|
|
qam16IsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
|
|
qam64IsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
|
|
}
|
|
break;
|
|
case HIERARCHY_4:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
|
|
if (state->type_A) {
|
|
CHK_ERROR( Write16(state, EQ_REG_OT_ALPHA__A,
|
|
0x0003, 0x0000 ));
|
|
CHK_ERROR( Write16(state, EC_SB_REG_ALPHA__A,
|
|
0x0003, 0x0000 ) );
|
|
|
|
qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
|
|
qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
|
|
qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
|
|
|
|
qpskIsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
|
|
qam16IsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
|
|
qam64IsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
|
|
|
|
qpskIsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
|
|
qam16IsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
|
|
qam64IsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
|
|
}
|
|
break;
|
|
case HIERARCHY_AUTO:
|
|
default:
|
|
/* Not set, detect it automatically, start with none */
|
|
operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
|
|
if (state->type_A) {
|
|
CHK_ERROR( Write16(state, EQ_REG_OT_ALPHA__A,
|
|
0x0000, 0x0000 ) );
|
|
CHK_ERROR( Write16(state, EC_SB_REG_ALPHA__A,
|
|
0x0000, 0x0000 ) );
|
|
|
|
qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
|
|
qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
|
|
qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
|
|
|
|
qpskIsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
|
|
qam16IsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
|
|
qam64IsGainMan =
|
|
SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
|
|
|
|
qpskIsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
|
|
qam16IsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
|
|
qam64IsGainExp =
|
|
SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
|
|
}
|
|
break;
|
|
}
|
|
CHK_ERROR( status );
|
|
|
|
switch( p->constellation ) {
|
|
default:
|
|
operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
|
|
/* fall through , try first guess
|
|
DRX_CONSTELLATION_QAM64 */
|
|
case QAM_64:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
|
|
if (state->type_A) {
|
|
CHK_ERROR(Write16(state, EQ_REG_OT_CONST__A,
|
|
0x0002, 0x0000 ) );
|
|
CHK_ERROR(Write16(state, EC_SB_REG_CONST__A,
|
|
EC_SB_REG_CONST_64QAM,
|
|
0x0000) );
|
|
CHK_ERROR(Write16(state,
|
|
EC_SB_REG_SCALE_MSB__A,
|
|
0x0020, 0x0000 ) );
|
|
CHK_ERROR(Write16(state,
|
|
EC_SB_REG_SCALE_BIT2__A,
|
|
0x0008, 0x0000 ) );
|
|
CHK_ERROR(Write16(state,
|
|
EC_SB_REG_SCALE_LSB__A,
|
|
0x0002, 0x0000 ) );
|
|
|
|
CHK_ERROR(Write16(state,
|
|
EQ_REG_TD_TPS_PWR_OFS__A,
|
|
qam64TdTpsPwr, 0x0000 ) );
|
|
CHK_ERROR( Write16(state,EQ_REG_SN_CEGAIN__A,
|
|
qam64SnCeGain, 0x0000 ));
|
|
CHK_ERROR( Write16(state,EQ_REG_IS_GAIN_MAN__A,
|
|
qam64IsGainMan, 0x0000 ));
|
|
CHK_ERROR( Write16(state,EQ_REG_IS_GAIN_EXP__A,
|
|
qam64IsGainExp, 0x0000 ));
|
|
}
|
|
break;
|
|
case QPSK :
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
|
|
if (state->type_A) {
|
|
CHK_ERROR(Write16(state, EQ_REG_OT_CONST__A,
|
|
0x0000, 0x0000 ) );
|
|
CHK_ERROR(Write16(state, EC_SB_REG_CONST__A,
|
|
EC_SB_REG_CONST_QPSK,
|
|
0x0000) );
|
|
CHK_ERROR(Write16(state,
|
|
EC_SB_REG_SCALE_MSB__A,
|
|
0x0010, 0x0000 ) );
|
|
CHK_ERROR(Write16(state,
|
|
EC_SB_REG_SCALE_BIT2__A,
|
|
0x0000, 0x0000 ) );
|
|
CHK_ERROR(Write16(state,
|
|
EC_SB_REG_SCALE_LSB__A,
|
|
0x0000, 0x0000 ) );
|
|
|
|
CHK_ERROR(Write16(state,
|
|
EQ_REG_TD_TPS_PWR_OFS__A,
|
|
qpskTdTpsPwr, 0x0000 ) );
|
|
CHK_ERROR( Write16(state, EQ_REG_SN_CEGAIN__A,
|
|
qpskSnCeGain, 0x0000 ));
|
|
CHK_ERROR( Write16(state,
|
|
EQ_REG_IS_GAIN_MAN__A,
|
|
qpskIsGainMan, 0x0000 ));
|
|
CHK_ERROR( Write16(state,
|
|
EQ_REG_IS_GAIN_EXP__A,
|
|
qpskIsGainExp, 0x0000 ));
|
|
}
|
|
break;
|
|
|
|
case QAM_16:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
|
|
if (state->type_A) {
|
|
CHK_ERROR(Write16(state, EQ_REG_OT_CONST__A,
|
|
0x0001, 0x0000 ) );
|
|
CHK_ERROR(Write16(state, EC_SB_REG_CONST__A,
|
|
EC_SB_REG_CONST_16QAM,
|
|
0x0000) );
|
|
CHK_ERROR(Write16(state,
|
|
EC_SB_REG_SCALE_MSB__A,
|
|
0x0010, 0x0000 ) );
|
|
CHK_ERROR(Write16(state,
|
|
EC_SB_REG_SCALE_BIT2__A,
|
|
0x0004, 0x0000 ) );
|
|
CHK_ERROR(Write16(state,
|
|
EC_SB_REG_SCALE_LSB__A,
|
|
0x0000, 0x0000 ) );
|
|
|
|
CHK_ERROR(Write16(state,
|
|
EQ_REG_TD_TPS_PWR_OFS__A,
|
|
qam16TdTpsPwr, 0x0000 ) );
|
|
CHK_ERROR( Write16(state, EQ_REG_SN_CEGAIN__A,
|
|
qam16SnCeGain, 0x0000 ));
|
|
CHK_ERROR( Write16(state,
|
|
EQ_REG_IS_GAIN_MAN__A,
|
|
qam16IsGainMan, 0x0000 ));
|
|
CHK_ERROR( Write16(state,
|
|
EQ_REG_IS_GAIN_EXP__A,
|
|
qam16IsGainExp, 0x0000 ));
|
|
}
|
|
break;
|
|
|
|
}
|
|
CHK_ERROR( status );
|
|
|
|
switch (DRX_CHANNEL_HIGH) {
|
|
default:
|
|
case DRX_CHANNEL_AUTO:
|
|
case DRX_CHANNEL_LOW:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
|
|
CHK_ERROR( Write16(state, EC_SB_REG_PRIOR__A,
|
|
EC_SB_REG_PRIOR_LO, 0x0000 ));
|
|
break;
|
|
case DRX_CHANNEL_HIGH:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
|
|
CHK_ERROR( Write16(state, EC_SB_REG_PRIOR__A,
|
|
EC_SB_REG_PRIOR_HI, 0x0000 ));
|
|
break;
|
|
|
|
}
|
|
|
|
switch( p->code_rate_HP )
|
|
{
|
|
case FEC_1_2:
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
|
|
if (state->type_A) {
|
|
CHK_ERROR( Write16(state,
|
|
EC_VD_REG_SET_CODERATE__A,
|
|
EC_VD_REG_SET_CODERATE_C1_2,
|
|
0x0000 ) );
|
|
}
|
|
break;
|
|
default:
|
|
operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
|
|
case FEC_2_3 :
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
|
|
if (state->type_A) {
|
|
CHK_ERROR( Write16(state,
|
|
EC_VD_REG_SET_CODERATE__A,
|
|
EC_VD_REG_SET_CODERATE_C2_3,
|
|
0x0000 ) );
|
|
}
|
|
break;
|
|
case FEC_3_4 :
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
|
|
if (state->type_A) {
|
|
CHK_ERROR( Write16(state,
|
|
EC_VD_REG_SET_CODERATE__A,
|
|
EC_VD_REG_SET_CODERATE_C3_4,
|
|
0x0000 ) );
|
|
}
|
|
break;
|
|
case FEC_5_6 :
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
|
|
if (state->type_A) {
|
|
CHK_ERROR( Write16(state,
|
|
EC_VD_REG_SET_CODERATE__A,
|
|
EC_VD_REG_SET_CODERATE_C5_6,
|
|
0x0000 ) );
|
|
}
|
|
break;
|
|
case FEC_7_8 :
|
|
transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
|
|
if (state->type_A) {
|
|
CHK_ERROR( Write16(state,
|
|
EC_VD_REG_SET_CODERATE__A,
|
|
EC_VD_REG_SET_CODERATE_C7_8,
|
|
0x0000 ) );
|
|
}
|
|
break;
|
|
}
|
|
CHK_ERROR( status );
|
|
|
|
/* First determine real bandwidth (Hz) */
|
|
/* Also set delay for impulse noise cruncher (only A2) */
|
|
/* Also set parameters for EC_OC fix, note
|
|
EC_OC_REG_TMD_HIL_MAR is changed
|
|
by SC for fix for some 8K,1/8 guard but is restored by
|
|
InitEC and ResetEC
|
|
functions */
|
|
switch( p->bandwidth )
|
|
{
|
|
case BANDWIDTH_AUTO:
|
|
case BANDWIDTH_8_MHZ:
|
|
/* (64/7)*(8/8)*1000000 */
|
|
bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
|
|
|
|
bandwidthParam = 0;
|
|
status = Write16(state,
|
|
FE_AG_REG_IND_DEL__A , 50 , 0x0000 );
|
|
break;
|
|
case BANDWIDTH_7_MHZ:
|
|
/* (64/7)*(7/8)*1000000 */
|
|
bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
|
|
bandwidthParam =0x4807; /*binary:0100 1000 0000 0111 */
|
|
status = Write16(state,
|
|
FE_AG_REG_IND_DEL__A , 59 , 0x0000 );
|
|
break;
|
|
case BANDWIDTH_6_MHZ:
|
|
/* (64/7)*(6/8)*1000000 */
|
|
bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
|
|
bandwidthParam =0x0F07; /*binary: 0000 1111 0000 0111*/
|
|
status = Write16(state,
|
|
FE_AG_REG_IND_DEL__A , 71 , 0x0000 );
|
|
break;
|
|
}
|
|
CHK_ERROR( status );
|
|
|
|
CHK_ERROR( Write16(state,
|
|
SC_RA_RAM_BAND__A, bandwidthParam, 0x0000));
|
|
|
|
{
|
|
u16 sc_config;
|
|
CHK_ERROR(Read16(state,
|
|
SC_RA_RAM_CONFIG__A, &sc_config, 0));
|
|
|
|
/* enable SLAVE mode in 2k 1/32 to
|
|
prevent timing change glitches */
|
|
if ( (p->transmission_mode==TRANSMISSION_MODE_2K) &&
|
|
(p->guard_interval==GUARD_INTERVAL_1_32) ) {
|
|
/* enable slave */
|
|
sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
|
|
} else {
|
|
/* disable slave */
|
|
sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
|
|
}
|
|
CHK_ERROR( Write16(state,
|
|
SC_RA_RAM_CONFIG__A, sc_config,0 ));
|
|
}
|
|
|
|
CHK_ERROR( SetCfgNoiseCalibration(state, &state->noise_cal));
|
|
|
|
if (state->cscd_state == CSCD_INIT )
|
|
{
|
|
/* switch on SRMM scan in SC */
|
|
CHK_ERROR( Write16(state,
|
|
SC_RA_RAM_SAMPLE_RATE_COUNT__A,
|
|
DRXD_OSCDEV_DO_SCAN, 0x0000 ));
|
|
/* CHK_ERROR( Write16( SC_RA_RAM_SAMPLE_RATE_STEP__A,
|
|
DRXD_OSCDEV_STEP , 0x0000 ));*/
|
|
state->cscd_state = CSCD_SET;
|
|
}
|
|
|
|
|
|
/* Now compute FE_IF_REG_INCR */
|
|
/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
|
|
((SysFreq / BandWidth) * (2^21) ) - (2^23)*/
|
|
feIfIncr = MulDiv32(state->sys_clock_freq*1000,
|
|
( 1ULL<< 21 ), bandwidth) - (1<<23) ;
|
|
CHK_ERROR( Write16(state,
|
|
FE_IF_REG_INCR0__A,
|
|
(u16)(feIfIncr & FE_IF_REG_INCR0__M ),
|
|
0x0000) );
|
|
CHK_ERROR( Write16(state,
|
|
FE_IF_REG_INCR1__A,
|
|
(u16)((feIfIncr >> FE_IF_REG_INCR0__W) &
|
|
FE_IF_REG_INCR1__M ), 0x0000) );
|
|
/* Bandwidth setting done */
|
|
|
|
/* Mirror & frequency offset */
|
|
SetFrequencyShift(state, off, mirrorFreqSpect);
|
|
|
|
/* Start SC, write channel settings to SC */
|
|
|
|
/* Enable SC after setting all other parameters */
|
|
CHK_ERROR( Write16(state, SC_COMM_STATE__A, 0, 0x0000));
|
|
CHK_ERROR( Write16(state, SC_COMM_EXEC__A, 1, 0x0000));
|
|
|
|
/* Write SC parameter registers, operation mode */
|
|
#if 1
|
|
operationMode =( SC_RA_RAM_OP_AUTO_MODE__M |
|
|
SC_RA_RAM_OP_AUTO_GUARD__M |
|
|
SC_RA_RAM_OP_AUTO_CONST__M |
|
|
SC_RA_RAM_OP_AUTO_HIER__M |
|
|
SC_RA_RAM_OP_AUTO_RATE__M );
|
|
#endif
|
|
CHK_ERROR( SC_SetPrefParamCommand(state, 0x0000,
|
|
transmissionParams,
|
|
operationMode) );
|
|
|
|
/* Start correct processes to get in lock */
|
|
CHK_ERROR( SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK,
|
|
SC_RA_RAM_SW_EVENT_RUN_NMASK__M,
|
|
SC_RA_RAM_LOCKTRACK_MIN) );
|
|
|
|
CHK_ERROR( StartOC(state) );
|
|
|
|
if( state->operation_mode != OM_Default ) {
|
|
CHK_ERROR(StartDiversity(state));
|
|
}
|
|
|
|
state->drxd_state = DRXD_STARTED;
|
|
} while(0);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
|
|
{
|
|
u32 ulRfAgcOutputLevel = 0xffffffff;
|
|
u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */
|
|
u32 ulRfAgcMinLevel = 0; /* Currently unused */
|
|
u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
|
|
u32 ulRfAgcSpeed = 0; /* Currently unused */
|
|
u32 ulRfAgcMode = 0;/*2; Off */
|
|
u32 ulRfAgcR1 = 820;
|
|
u32 ulRfAgcR2 = 2200;
|
|
u32 ulRfAgcR3 = 150;
|
|
u32 ulIfAgcMode = 0; /* Auto */
|
|
u32 ulIfAgcOutputLevel = 0xffffffff;
|
|
u32 ulIfAgcSettleLevel = 0xffffffff;
|
|
u32 ulIfAgcMinLevel = 0xffffffff;
|
|
u32 ulIfAgcMaxLevel = 0xffffffff;
|
|
u32 ulIfAgcSpeed = 0xffffffff;
|
|
u32 ulIfAgcR1 = 820;
|
|
u32 ulIfAgcR2 = 2200;
|
|
u32 ulIfAgcR3 = 150;
|
|
u32 ulClock = state->config.clock;
|
|
u32 ulSerialMode = 0;
|
|
u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */
|
|
u32 ulHiI2cDelay = HI_I2C_DELAY;
|
|
u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
|
|
u32 ulHiI2cPatch = 0;
|
|
u32 ulEnvironment = APPENV_PORTABLE;
|
|
u32 ulEnvironmentDiversity = APPENV_MOBILE;
|
|
u32 ulIFFilter = IFFILTER_SAW;
|
|
|
|
state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
|
|
state->if_agc_cfg.outputLevel = 0;
|
|
state->if_agc_cfg.settleLevel = 140;
|
|
state->if_agc_cfg.minOutputLevel = 0;
|
|
state->if_agc_cfg.maxOutputLevel = 1023;
|
|
state->if_agc_cfg.speed = 904;
|
|
|
|
if( ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX )
|
|
{
|
|
state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
|
|
state->if_agc_cfg.outputLevel = (u16)(ulIfAgcOutputLevel);
|
|
}
|
|
|
|
if( ulIfAgcMode == 0 &&
|
|
ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
|
|
ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
|
|
ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
|
|
ulIfAgcSpeed <= DRXD_FE_CTRL_MAX
|
|
)
|
|
{
|
|
state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
|
|
state->if_agc_cfg.settleLevel = (u16)(ulIfAgcSettleLevel);
|
|
state->if_agc_cfg.minOutputLevel = (u16)(ulIfAgcMinLevel);
|
|
state->if_agc_cfg.maxOutputLevel = (u16)(ulIfAgcMaxLevel);
|
|
state->if_agc_cfg.speed = (u16)(ulIfAgcSpeed);
|
|
}
|
|
|
|
state->if_agc_cfg.R1 = (u16)(ulIfAgcR1);
|
|
state->if_agc_cfg.R2 = (u16)(ulIfAgcR2);
|
|
state->if_agc_cfg.R3 = (u16)(ulIfAgcR3);
|
|
|
|
state->rf_agc_cfg.R1 = (u16)(ulRfAgcR1);
|
|
state->rf_agc_cfg.R2 = (u16)(ulRfAgcR2);
|
|
state->rf_agc_cfg.R3 = (u16)(ulRfAgcR3);
|
|
|
|
state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
|
|
/* rest of the RFAgcCfg structure currently unused */
|
|
if (ulRfAgcMode==1 && ulRfAgcOutputLevel<=DRXD_FE_CTRL_MAX) {
|
|
state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
|
|
state->rf_agc_cfg.outputLevel = (u16)(ulRfAgcOutputLevel);
|
|
}
|
|
|
|
if( ulRfAgcMode == 0 &&
|
|
ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
|
|
ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
|
|
ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
|
|
ulRfAgcSpeed <= DRXD_FE_CTRL_MAX
|
|
)
|
|
{
|
|
state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
|
|
state->rf_agc_cfg.settleLevel = (u16)(ulRfAgcSettleLevel);
|
|
state->rf_agc_cfg.minOutputLevel = (u16)(ulRfAgcMinLevel);
|
|
state->rf_agc_cfg.maxOutputLevel = (u16)(ulRfAgcMaxLevel);
|
|
state->rf_agc_cfg.speed = (u16)(ulRfAgcSpeed);
|
|
}
|
|
|
|
if( ulRfAgcMode == 2 )
|
|
{
|
|
state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
|
|
}
|
|
|
|
if (ulEnvironment <= 2)
|
|
state->app_env_default = (enum app_env)
|
|
(ulEnvironment);
|
|
if (ulEnvironmentDiversity <= 2)
|
|
state->app_env_diversity = (enum app_env)
|
|
(ulEnvironmentDiversity);
|
|
|
|
if( ulIFFilter == IFFILTER_DISCRETE )
|
|
{
|
|
/* discrete filter */
|
|
state->noise_cal.cpOpt = 0;
|
|
state->noise_cal.cpNexpOfs = 40;
|
|
state->noise_cal.tdCal2k = -40;
|
|
state->noise_cal.tdCal8k = -24;
|
|
} else {
|
|
/* SAW filter */
|
|
state->noise_cal.cpOpt = 1;
|
|
state->noise_cal.cpNexpOfs = 0;
|
|
state->noise_cal.tdCal2k = -21;
|
|
state->noise_cal.tdCal8k = -24;
|
|
}
|
|
state->m_EcOcRegOcModeLop = (u16)(ulEcOcRegOcModeLop);
|
|
|
|
state->chip_adr = (state->config.demod_address<<1)|1;
|
|
switch( ulHiI2cPatch )
|
|
{
|
|
case 1 : state->m_HiI2cPatch = DRXD_HiI2cPatch_1; break;
|
|
case 3 : state->m_HiI2cPatch = DRXD_HiI2cPatch_3; break;
|
|
default:
|
|
state->m_HiI2cPatch = NULL;
|
|
}
|
|
|
|
/* modify tuner and clock attributes */
|
|
state->intermediate_freq = (u16)(IntermediateFrequency/1000);
|
|
/* expected system clock frequency in kHz */
|
|
state->expected_sys_clock_freq = 48000;
|
|
/* real system clock frequency in kHz */
|
|
state->sys_clock_freq = 48000;
|
|
state->osc_clock_freq = (u16) ulClock;
|
|
state->osc_clock_deviation = 0;
|
|
state->cscd_state = CSCD_INIT;
|
|
state->drxd_state = DRXD_UNINITIALIZED;
|
|
|
|
state->PGA=0;
|
|
state->type_A=0;
|
|
state->tuner_mirrors=0;
|
|
|
|
/* modify MPEG output attributes */
|
|
state->insert_rs_byte = state->config.insert_rs_byte;
|
|
state->enable_parallel = (ulSerialMode != 1);
|
|
|
|
/* Timing div, 250ns/Psys */
|
|
/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
|
|
|
|
state->hi_cfg_timing_div = (u16)((state->sys_clock_freq/1000)*
|
|
ulHiI2cDelay)/1000 ;
|
|
/* Bridge delay, uses oscilator clock */
|
|
/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
|
|
state->hi_cfg_bridge_delay = (u16)((state->osc_clock_freq/1000) *
|
|
ulHiI2cBridgeDelay)/1000 ;
|
|
|
|
state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
|
|
/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
|
|
state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
|
|
return 0;
|
|
}
|
|
|
|
int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
|
|
{
|
|
int status=0;
|
|
u32 driverVersion;
|
|
|
|
if (state->init_done)
|
|
return 0;
|
|
|
|
CDRXD(state, state->config.IF ? state->config.IF : 36000000);
|
|
|
|
do {
|
|
state->operation_mode = OM_Default;
|
|
|
|
CHK_ERROR( SetDeviceTypeId(state) );
|
|
|
|
/* Apply I2c address patch to B1 */
|
|
if( !state->type_A && state->m_HiI2cPatch != NULL )
|
|
CHK_ERROR(WriteTable(state, state->m_HiI2cPatch));
|
|
|
|
if (state->type_A) {
|
|
/* HI firmware patch for UIO readout,
|
|
avoid clearing of result register */
|
|
CHK_ERROR(Write16(state, 0x43012D, 0x047f, 0));
|
|
}
|
|
|
|
CHK_ERROR( HI_ResetCommand(state));
|
|
|
|
CHK_ERROR(StopAllProcessors(state));
|
|
CHK_ERROR(InitCC(state));
|
|
|
|
state->osc_clock_deviation = 0;
|
|
|
|
if (state->config.osc_deviation)
|
|
state->osc_clock_deviation =
|
|
state->config.osc_deviation(state->priv,
|
|
0, 0);
|
|
{
|
|
/* Handle clock deviation */
|
|
s32 devB;
|
|
s32 devA = (s32)(state->osc_clock_deviation) *
|
|
(s32)(state->expected_sys_clock_freq);
|
|
/* deviation in kHz */
|
|
s32 deviation = ( devA /(1000000L));
|
|
/* rounding, signed */
|
|
if ( devA > 0 )
|
|
devB=(2);
|
|
else
|
|
devB=(-2);
|
|
if ( (devB*(devA%1000000L)>1000000L ) )
|
|
{
|
|
/* add +1 or -1 */
|
|
deviation += (devB/2);
|
|
}
|
|
|
|
state->sys_clock_freq=(u16)((state->
|
|
expected_sys_clock_freq)+
|
|
deviation);
|
|
}
|
|
CHK_ERROR(InitHI(state));
|
|
CHK_ERROR(InitAtomicRead(state));
|
|
|
|
CHK_ERROR(EnableAndResetMB(state));
|
|
if (state->type_A)
|
|
CHK_ERROR(ResetCEFR(state));
|
|
|
|
if (fw) {
|
|
CHK_ERROR(DownloadMicrocode(state, fw, fw_size));
|
|
} else {
|
|
CHK_ERROR(DownloadMicrocode(state, state->microcode,
|
|
state->microcode_length));
|
|
}
|
|
|
|
if (state->PGA) {
|
|
state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
|
|
SetCfgPga(state, 0); /* PGA = 0 dB */
|
|
} else {
|
|
state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
|
|
}
|
|
|
|
state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
|
|
|
|
CHK_ERROR(InitFE(state));
|
|
CHK_ERROR(InitFT(state));
|
|
CHK_ERROR(InitCP(state));
|
|
CHK_ERROR(InitCE(state));
|
|
CHK_ERROR(InitEQ(state));
|
|
CHK_ERROR(InitEC(state));
|
|
CHK_ERROR(InitSC(state));
|
|
|
|
CHK_ERROR(SetCfgIfAgc(state, &state->if_agc_cfg));
|
|
CHK_ERROR(SetCfgRfAgc(state, &state->rf_agc_cfg));
|
|
|
|
state->cscd_state = CSCD_INIT;
|
|
CHK_ERROR(Write16(state, SC_COMM_EXEC__A,
|
|
SC_COMM_EXEC_CTL_STOP, 0));
|
|
CHK_ERROR(Write16(state, LC_COMM_EXEC__A,
|
|
SC_COMM_EXEC_CTL_STOP, 0 ));
|
|
|
|
|
|
driverVersion = (((VERSION_MAJOR/10) << 4) +
|
|
(VERSION_MAJOR%10)) << 24;
|
|
driverVersion += (((VERSION_MINOR/10) << 4) +
|
|
(VERSION_MINOR%10)) << 16;
|
|
driverVersion += ((VERSION_PATCH/1000)<<12) +
|
|
((VERSION_PATCH/100)<<8) +
|
|
((VERSION_PATCH/10 )<< 4) +
|
|
(VERSION_PATCH%10 );
|
|
|
|
CHK_ERROR(Write32(state, SC_RA_RAM_DRIVER_VERSION__AX,
|
|
driverVersion,0 ));
|
|
|
|
CHK_ERROR( StopOC(state) );
|
|
|
|
state->drxd_state = DRXD_STOPPED;
|
|
state->init_done=1;
|
|
status=0;
|
|
} while (0);
|
|
return status;
|
|
}
|
|
|
|
int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
|
|
{
|
|
DRX_GetLockStatus(state, pLockStatus);
|
|
|
|
/*if (*pLockStatus&DRX_LOCK_MPEG)*/
|
|
if (*pLockStatus&DRX_LOCK_FEC) {
|
|
ConfigureMPEGOutput(state, 1);
|
|
/* Get status again, in case we have MPEG lock now */
|
|
/*DRX_GetLockStatus(state, pLockStatus);*/
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/****************************************************************************/
|
|
/****************************************************************************/
|
|
|
|
static int drxd_read_signal_strength(struct dvb_frontend *fe,
|
|
u16 *strength)
|
|
{
|
|
struct drxd_state *state = fe->demodulator_priv;
|
|
u32 value;
|
|
int res;
|
|
|
|
res=ReadIFAgc(state, &value);
|
|
if (res<0)
|
|
*strength=0;
|
|
else
|
|
*strength=0xffff-(value<<4);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int drxd_read_status(struct dvb_frontend *fe, fe_status_t *status)
|
|
{
|
|
struct drxd_state *state = fe->demodulator_priv;
|
|
u32 lock;
|
|
|
|
DRXD_status(state, &lock);
|
|
*status=0;
|
|
/* No MPEG lock in V255 firmware, bug ? */
|
|
#if 1
|
|
if (lock&DRX_LOCK_MPEG)
|
|
*status|=FE_HAS_LOCK;
|
|
#else
|
|
if (lock&DRX_LOCK_FEC)
|
|
*status|=FE_HAS_LOCK;
|
|
#endif
|
|
if (lock&DRX_LOCK_FEC)
|
|
*status|=FE_HAS_VITERBI|FE_HAS_SYNC;
|
|
if (lock&DRX_LOCK_DEMOD)
|
|
*status|=FE_HAS_CARRIER|FE_HAS_SIGNAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int drxd_init(struct dvb_frontend *fe)
|
|
{
|
|
struct drxd_state *state=fe->demodulator_priv;
|
|
int err=0;
|
|
|
|
/* if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
|
|
return DRXD_init(state, 0, 0);
|
|
|
|
err=DRXD_init(state, state->fw->data, state->fw->size);
|
|
release_firmware(state->fw);
|
|
return err;
|
|
}
|
|
|
|
int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
|
|
{
|
|
struct drxd_state *state=fe->demodulator_priv;
|
|
|
|
if (state->config.disable_i2c_gate_ctrl == 1)
|
|
return 0;
|
|
|
|
return DRX_ConfigureI2CBridge(state, onoff);
|
|
}
|
|
|
|
static int drxd_get_tune_settings(struct dvb_frontend *fe,
|
|
struct dvb_frontend_tune_settings *sets)
|
|
{
|
|
sets->min_delay_ms=10000;
|
|
sets->max_drift=0;
|
|
sets->step_size=0;
|
|
return 0;
|
|
}
|
|
|
|
static int drxd_read_ber(struct dvb_frontend *fe, u32 *ber)
|
|
{
|
|
*ber = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int drxd_read_snr(struct dvb_frontend *fe, u16 *snr)
|
|
{
|
|
*snr=0;
|
|
return 0;
|
|
}
|
|
|
|
static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
|
|
{
|
|
*ucblocks=0;
|
|
return 0;
|
|
}
|
|
|
|
static int drxd_sleep(struct dvb_frontend* fe)
|
|
{
|
|
struct drxd_state *state=fe->demodulator_priv;
|
|
|
|
ConfigureMPEGOutput(state, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int drxd_get_frontend(struct dvb_frontend *fe,
|
|
struct dvb_frontend_parameters *param)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int drxd_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
|
|
{
|
|
return drxd_config_i2c(fe, enable);
|
|
}
|
|
|
|
static int drxd_set_frontend(struct dvb_frontend *fe,
|
|
struct dvb_frontend_parameters *param)
|
|
{
|
|
struct drxd_state *state=fe->demodulator_priv;
|
|
s32 off=0;
|
|
|
|
state->param=*param;
|
|
DRX_Stop(state);
|
|
|
|
if (fe->ops.tuner_ops.set_params) {
|
|
fe->ops.tuner_ops.set_params(fe, param);
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
}
|
|
|
|
/* FIXME: move PLL drivers */
|
|
if (state->config.pll_set &&
|
|
state->config.pll_set(state->priv, param,
|
|
state->config.pll_address,
|
|
state->config.demoda_address,
|
|
&off)<0) {
|
|
printk("Error in pll_set\n");
|
|
return -1;
|
|
}
|
|
|
|
msleep(200);
|
|
|
|
return DRX_Start(state, off);
|
|
}
|
|
|
|
|
|
static void drxd_release(struct dvb_frontend *fe)
|
|
{
|
|
struct drxd_state *state = fe->demodulator_priv;
|
|
|
|
kfree(state);
|
|
}
|
|
|
|
static struct dvb_frontend_ops drxd_ops = {
|
|
|
|
.info = {
|
|
.name = "Micronas DRXD DVB-T",
|
|
.type = FE_OFDM,
|
|
.frequency_min = 47125000,
|
|
.frequency_max = 855250000,
|
|
.frequency_stepsize = 166667,
|
|
.frequency_tolerance = 0,
|
|
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
|
|
FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
|
|
FE_CAN_FEC_AUTO |
|
|
FE_CAN_QAM_16 | FE_CAN_QAM_64 |
|
|
FE_CAN_QAM_AUTO |
|
|
FE_CAN_TRANSMISSION_MODE_AUTO |
|
|
FE_CAN_GUARD_INTERVAL_AUTO |
|
|
FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER |
|
|
FE_CAN_MUTE_TS
|
|
},
|
|
|
|
.release = drxd_release,
|
|
.init = drxd_init,
|
|
.sleep = drxd_sleep,
|
|
.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
|
|
|
|
.set_frontend = drxd_set_frontend,
|
|
.get_frontend = drxd_get_frontend,
|
|
.get_tune_settings = drxd_get_tune_settings,
|
|
|
|
.read_status = drxd_read_status,
|
|
.read_ber = drxd_read_ber,
|
|
.read_signal_strength = drxd_read_signal_strength,
|
|
.read_snr = drxd_read_snr,
|
|
.read_ucblocks = drxd_read_ucblocks,
|
|
};
|
|
|
|
struct dvb_frontend *drxd_attach(const struct drxd_config *config,
|
|
void *priv, struct i2c_adapter *i2c,
|
|
struct device *dev)
|
|
{
|
|
struct drxd_state *state = NULL;
|
|
|
|
state=kmalloc(sizeof(struct drxd_state), GFP_KERNEL);
|
|
if (!state)
|
|
return NULL;
|
|
memset(state, 0, sizeof(*state));
|
|
|
|
memcpy(&state->ops, &drxd_ops, sizeof(struct dvb_frontend_ops));
|
|
state->dev=dev;
|
|
state->config=*config;
|
|
state->i2c=i2c;
|
|
state->priv=priv;
|
|
|
|
sema_init(&state->mutex, 1);
|
|
|
|
if (Read16(state, 0, 0, 0)<0)
|
|
goto error;
|
|
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18)
|
|
state->frontend.ops=&state->ops;
|
|
#else
|
|
memcpy(&state->frontend.ops, &drxd_ops,
|
|
sizeof(struct dvb_frontend_ops));
|
|
#endif
|
|
state->frontend.demodulator_priv=state;
|
|
ConfigureMPEGOutput(state, 0);
|
|
return &state->frontend;
|
|
|
|
error:
|
|
printk("drxd: not found\n");
|
|
kfree(state);
|
|
return NULL;
|
|
}
|
|
|
|
MODULE_DESCRIPTION("DRXD driver");
|
|
MODULE_AUTHOR("Micronas");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
EXPORT_SYMBOL(drxd_attach);
|
|
EXPORT_SYMBOL(drxd_config_i2c);
|