linux/arch/um/kernel/irq.c
Johannes Berg 8eacd6fca4 um: Remove locking in deactivate_all_fds()
Not only does the locking contradict the comment, and as
the comment says is pointless and actually harmful (all
the actual OS threads have exited already), but it also
causes crashes when lockdep is enabled, because calling
into the spinlock calls into lockdep, which then tries
to determine the current task, which no longer exists.

Remove the locking to let UML shut down cleanly in case
lockdep is enabled.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
2019-07-02 23:27:05 +02:00

600 lines
14 KiB
C

/*
* Copyright (C) 2017 - Cambridge Greys Ltd
* Copyright (C) 2011 - 2014 Cisco Systems Inc
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
* Licensed under the GPL
* Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
* Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
*/
#include <linux/cpumask.h>
#include <linux/hardirq.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <as-layout.h>
#include <kern_util.h>
#include <os.h>
#include <irq_user.h>
extern void free_irqs(void);
/* When epoll triggers we do not know why it did so
* we can also have different IRQs for read and write.
* This is why we keep a small irq_fd array for each fd -
* one entry per IRQ type
*/
struct irq_entry {
struct irq_entry *next;
int fd;
struct irq_fd *irq_array[MAX_IRQ_TYPE + 1];
};
static struct irq_entry *active_fds;
static DEFINE_SPINLOCK(irq_lock);
static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs)
{
/*
* irq->active guards against reentry
* irq->pending accumulates pending requests
* if pending is raised the irq_handler is re-run
* until pending is cleared
*/
if (irq->active) {
irq->active = false;
do {
irq->pending = false;
do_IRQ(irq->irq, regs);
} while (irq->pending && (!irq->purge));
if (!irq->purge)
irq->active = true;
} else {
irq->pending = true;
}
}
void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
{
struct irq_entry *irq_entry;
struct irq_fd *irq;
int n, i, j;
while (1) {
/* This is now lockless - epoll keeps back-referencesto the irqs
* which have trigger it so there is no need to walk the irq
* list and lock it every time. We avoid locking by turning off
* IO for a specific fd by executing os_del_epoll_fd(fd) before
* we do any changes to the actual data structures
*/
n = os_waiting_for_events_epoll();
if (n <= 0) {
if (n == -EINTR)
continue;
else
break;
}
for (i = 0; i < n ; i++) {
/* Epoll back reference is the entry with 3 irq_fd
* leaves - one for each irq type.
*/
irq_entry = (struct irq_entry *)
os_epoll_get_data_pointer(i);
for (j = 0; j < MAX_IRQ_TYPE ; j++) {
irq = irq_entry->irq_array[j];
if (irq == NULL)
continue;
if (os_epoll_triggered(i, irq->events) > 0)
irq_io_loop(irq, regs);
if (irq->purge) {
irq_entry->irq_array[j] = NULL;
kfree(irq);
}
}
}
}
free_irqs();
}
static int assign_epoll_events_to_irq(struct irq_entry *irq_entry)
{
int i;
int events = 0;
struct irq_fd *irq;
for (i = 0; i < MAX_IRQ_TYPE ; i++) {
irq = irq_entry->irq_array[i];
if (irq != NULL)
events = irq->events | events;
}
if (events > 0) {
/* os_add_epoll will call os_mod_epoll if this already exists */
return os_add_epoll_fd(events, irq_entry->fd, irq_entry);
}
/* No events - delete */
return os_del_epoll_fd(irq_entry->fd);
}
static int activate_fd(int irq, int fd, int type, void *dev_id)
{
struct irq_fd *new_fd;
struct irq_entry *irq_entry;
int i, err, events;
unsigned long flags;
err = os_set_fd_async(fd);
if (err < 0)
goto out;
spin_lock_irqsave(&irq_lock, flags);
/* Check if we have an entry for this fd */
err = -EBUSY;
for (irq_entry = active_fds;
irq_entry != NULL; irq_entry = irq_entry->next) {
if (irq_entry->fd == fd)
break;
}
if (irq_entry == NULL) {
/* This needs to be atomic as it may be called from an
* IRQ context.
*/
irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC);
if (irq_entry == NULL) {
printk(KERN_ERR
"Failed to allocate new IRQ entry\n");
goto out_unlock;
}
irq_entry->fd = fd;
for (i = 0; i < MAX_IRQ_TYPE; i++)
irq_entry->irq_array[i] = NULL;
irq_entry->next = active_fds;
active_fds = irq_entry;
}
/* Check if we are trying to re-register an interrupt for a
* particular fd
*/
if (irq_entry->irq_array[type] != NULL) {
printk(KERN_ERR
"Trying to reregister IRQ %d FD %d TYPE %d ID %p\n",
irq, fd, type, dev_id
);
goto out_unlock;
} else {
/* New entry for this fd */
err = -ENOMEM;
new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC);
if (new_fd == NULL)
goto out_unlock;
events = os_event_mask(type);
*new_fd = ((struct irq_fd) {
.id = dev_id,
.irq = irq,
.type = type,
.events = events,
.active = true,
.pending = false,
.purge = false
});
/* Turn off any IO on this fd - allows us to
* avoid locking the IRQ loop
*/
os_del_epoll_fd(irq_entry->fd);
irq_entry->irq_array[type] = new_fd;
}
/* Turn back IO on with the correct (new) IO event mask */
assign_epoll_events_to_irq(irq_entry);
spin_unlock_irqrestore(&irq_lock, flags);
maybe_sigio_broken(fd, (type != IRQ_NONE));
return 0;
out_unlock:
spin_unlock_irqrestore(&irq_lock, flags);
out:
return err;
}
/*
* Walk the IRQ list and dispose of any unused entries.
* Should be done under irq_lock.
*/
static void garbage_collect_irq_entries(void)
{
int i;
bool reap;
struct irq_entry *walk;
struct irq_entry *previous = NULL;
struct irq_entry *to_free;
if (active_fds == NULL)
return;
walk = active_fds;
while (walk != NULL) {
reap = true;
for (i = 0; i < MAX_IRQ_TYPE ; i++) {
if (walk->irq_array[i] != NULL) {
reap = false;
break;
}
}
if (reap) {
if (previous == NULL)
active_fds = walk->next;
else
previous->next = walk->next;
to_free = walk;
} else {
to_free = NULL;
}
walk = walk->next;
kfree(to_free);
}
}
/*
* Walk the IRQ list and get the descriptor for our FD
*/
static struct irq_entry *get_irq_entry_by_fd(int fd)
{
struct irq_entry *walk = active_fds;
while (walk != NULL) {
if (walk->fd == fd)
return walk;
walk = walk->next;
}
return NULL;
}
/*
* Walk the IRQ list and dispose of an entry for a specific
* device, fd and number. Note - if sharing an IRQ for read
* and writefor the same FD it will be disposed in either case.
* If this behaviour is undesirable use different IRQ ids.
*/
#define IGNORE_IRQ 1
#define IGNORE_DEV (1<<1)
static void do_free_by_irq_and_dev(
struct irq_entry *irq_entry,
unsigned int irq,
void *dev,
int flags
)
{
int i;
struct irq_fd *to_free;
for (i = 0; i < MAX_IRQ_TYPE ; i++) {
if (irq_entry->irq_array[i] != NULL) {
if (
((flags & IGNORE_IRQ) ||
(irq_entry->irq_array[i]->irq == irq)) &&
((flags & IGNORE_DEV) ||
(irq_entry->irq_array[i]->id == dev))
) {
/* Turn off any IO on this fd - allows us to
* avoid locking the IRQ loop
*/
os_del_epoll_fd(irq_entry->fd);
to_free = irq_entry->irq_array[i];
irq_entry->irq_array[i] = NULL;
assign_epoll_events_to_irq(irq_entry);
if (to_free->active)
to_free->purge = true;
else
kfree(to_free);
}
}
}
}
void free_irq_by_fd(int fd)
{
struct irq_entry *to_free;
unsigned long flags;
spin_lock_irqsave(&irq_lock, flags);
to_free = get_irq_entry_by_fd(fd);
if (to_free != NULL) {
do_free_by_irq_and_dev(
to_free,
-1,
NULL,
IGNORE_IRQ | IGNORE_DEV
);
}
garbage_collect_irq_entries();
spin_unlock_irqrestore(&irq_lock, flags);
}
EXPORT_SYMBOL(free_irq_by_fd);
static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
{
struct irq_entry *to_free;
unsigned long flags;
spin_lock_irqsave(&irq_lock, flags);
to_free = active_fds;
while (to_free != NULL) {
do_free_by_irq_and_dev(
to_free,
irq,
dev,
0
);
to_free = to_free->next;
}
garbage_collect_irq_entries();
spin_unlock_irqrestore(&irq_lock, flags);
}
void deactivate_fd(int fd, int irqnum)
{
struct irq_entry *to_free;
unsigned long flags;
os_del_epoll_fd(fd);
spin_lock_irqsave(&irq_lock, flags);
to_free = get_irq_entry_by_fd(fd);
if (to_free != NULL) {
do_free_by_irq_and_dev(
to_free,
irqnum,
NULL,
IGNORE_DEV
);
}
garbage_collect_irq_entries();
spin_unlock_irqrestore(&irq_lock, flags);
ignore_sigio_fd(fd);
}
EXPORT_SYMBOL(deactivate_fd);
/*
* Called just before shutdown in order to provide a clean exec
* environment in case the system is rebooting. No locking because
* that would cause a pointless shutdown hang if something hadn't
* released the lock.
*/
int deactivate_all_fds(void)
{
struct irq_entry *to_free;
/* Stop IO. The IRQ loop has no lock so this is our
* only way of making sure we are safe to dispose
* of all IRQ handlers
*/
os_set_ioignore();
to_free = active_fds;
while (to_free != NULL) {
do_free_by_irq_and_dev(
to_free,
-1,
NULL,
IGNORE_IRQ | IGNORE_DEV
);
to_free = to_free->next;
}
garbage_collect_irq_entries();
os_close_epoll_fd();
return 0;
}
/*
* do_IRQ handles all normal device IRQs (the special
* SMP cross-CPU interrupts have their own specific
* handlers).
*/
unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
irq_enter();
generic_handle_irq(irq);
irq_exit();
set_irq_regs(old_regs);
return 1;
}
void um_free_irq(unsigned int irq, void *dev)
{
free_irq_by_irq_and_dev(irq, dev);
free_irq(irq, dev);
}
EXPORT_SYMBOL(um_free_irq);
int um_request_irq(unsigned int irq, int fd, int type,
irq_handler_t handler,
unsigned long irqflags, const char * devname,
void *dev_id)
{
int err;
if (fd != -1) {
err = activate_fd(irq, fd, type, dev_id);
if (err)
return err;
}
return request_irq(irq, handler, irqflags, devname, dev_id);
}
EXPORT_SYMBOL(um_request_irq);
/*
* irq_chip must define at least enable/disable and ack when
* the edge handler is used.
*/
static void dummy(struct irq_data *d)
{
}
/* This is used for everything else than the timer. */
static struct irq_chip normal_irq_type = {
.name = "SIGIO",
.irq_disable = dummy,
.irq_enable = dummy,
.irq_ack = dummy,
.irq_mask = dummy,
.irq_unmask = dummy,
};
static struct irq_chip SIGVTALRM_irq_type = {
.name = "SIGVTALRM",
.irq_disable = dummy,
.irq_enable = dummy,
.irq_ack = dummy,
.irq_mask = dummy,
.irq_unmask = dummy,
};
void __init init_IRQ(void)
{
int i;
irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
for (i = 1; i < LAST_IRQ; i++)
irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
/* Initialize EPOLL Loop */
os_setup_epoll();
}
/*
* IRQ stack entry and exit:
*
* Unlike i386, UML doesn't receive IRQs on the normal kernel stack
* and switch over to the IRQ stack after some preparation. We use
* sigaltstack to receive signals on a separate stack from the start.
* These two functions make sure the rest of the kernel won't be too
* upset by being on a different stack. The IRQ stack has a
* thread_info structure at the bottom so that current et al continue
* to work.
*
* to_irq_stack copies the current task's thread_info to the IRQ stack
* thread_info and sets the tasks's stack to point to the IRQ stack.
*
* from_irq_stack copies the thread_info struct back (flags may have
* been modified) and resets the task's stack pointer.
*
* Tricky bits -
*
* What happens when two signals race each other? UML doesn't block
* signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
* could arrive while a previous one is still setting up the
* thread_info.
*
* There are three cases -
* The first interrupt on the stack - sets up the thread_info and
* handles the interrupt
* A nested interrupt interrupting the copying of the thread_info -
* can't handle the interrupt, as the stack is in an unknown state
* A nested interrupt not interrupting the copying of the
* thread_info - doesn't do any setup, just handles the interrupt
*
* The first job is to figure out whether we interrupted stack setup.
* This is done by xchging the signal mask with thread_info->pending.
* If the value that comes back is zero, then there is no setup in
* progress, and the interrupt can be handled. If the value is
* non-zero, then there is stack setup in progress. In order to have
* the interrupt handled, we leave our signal in the mask, and it will
* be handled by the upper handler after it has set up the stack.
*
* Next is to figure out whether we are the outer handler or a nested
* one. As part of setting up the stack, thread_info->real_thread is
* set to non-NULL (and is reset to NULL on exit). This is the
* nesting indicator. If it is non-NULL, then the stack is already
* set up and the handler can run.
*/
static unsigned long pending_mask;
unsigned long to_irq_stack(unsigned long *mask_out)
{
struct thread_info *ti;
unsigned long mask, old;
int nested;
mask = xchg(&pending_mask, *mask_out);
if (mask != 0) {
/*
* If any interrupts come in at this point, we want to
* make sure that their bits aren't lost by our
* putting our bit in. So, this loop accumulates bits
* until xchg returns the same value that we put in.
* When that happens, there were no new interrupts,
* and pending_mask contains a bit for each interrupt
* that came in.
*/
old = *mask_out;
do {
old |= mask;
mask = xchg(&pending_mask, old);
} while (mask != old);
return 1;
}
ti = current_thread_info();
nested = (ti->real_thread != NULL);
if (!nested) {
struct task_struct *task;
struct thread_info *tti;
task = cpu_tasks[ti->cpu].task;
tti = task_thread_info(task);
*ti = *tti;
ti->real_thread = tti;
task->stack = ti;
}
mask = xchg(&pending_mask, 0);
*mask_out |= mask | nested;
return 0;
}
unsigned long from_irq_stack(int nested)
{
struct thread_info *ti, *to;
unsigned long mask;
ti = current_thread_info();
pending_mask = 1;
to = ti->real_thread;
current->stack = to;
ti->real_thread = NULL;
*to = *ti;
mask = xchg(&pending_mask, 0);
return mask & ~1;
}