d60336e2f1
NO_IRQ may be defined as '(unsigned int) -1' in some architectures (arm, sh ...), and either may not be defined in some architectures which can enable SND_SOC_FSL_SSI (e.g. allmodconfig for arc). When irq_of_parse_and_map() fails, it will always return 0, so need check zero instead of NO_IRQ, or will cause compiling issue or run time bug in some architectures. Signed-off-by: Chen Gang <gang.chen@asianux.com> Signed-off-by: Mark Brown <broonie@linaro.org>
1162 lines
32 KiB
C
1162 lines
32 KiB
C
/*
|
|
* Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
|
|
*
|
|
* Author: Timur Tabi <timur@freescale.com>
|
|
*
|
|
* Copyright 2007-2010 Freescale Semiconductor, Inc.
|
|
*
|
|
* This file is licensed under the terms of the GNU General Public License
|
|
* version 2. This program is licensed "as is" without any warranty of any
|
|
* kind, whether express or implied.
|
|
*
|
|
*
|
|
* Some notes why imx-pcm-fiq is used instead of DMA on some boards:
|
|
*
|
|
* The i.MX SSI core has some nasty limitations in AC97 mode. While most
|
|
* sane processor vendors have a FIFO per AC97 slot, the i.MX has only
|
|
* one FIFO which combines all valid receive slots. We cannot even select
|
|
* which slots we want to receive. The WM9712 with which this driver
|
|
* was developed with always sends GPIO status data in slot 12 which
|
|
* we receive in our (PCM-) data stream. The only chance we have is to
|
|
* manually skip this data in the FIQ handler. With sampling rates different
|
|
* from 48000Hz not every frame has valid receive data, so the ratio
|
|
* between pcm data and GPIO status data changes. Our FIQ handler is not
|
|
* able to handle this, hence this driver only works with 48000Hz sampling
|
|
* rate.
|
|
* Reading and writing AC97 registers is another challenge. The core
|
|
* provides us status bits when the read register is updated with *another*
|
|
* value. When we read the same register two times (and the register still
|
|
* contains the same value) these status bits are not set. We work
|
|
* around this by not polling these bits but only wait a fixed delay.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/device.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_platform.h>
|
|
|
|
#include <sound/core.h>
|
|
#include <sound/pcm.h>
|
|
#include <sound/pcm_params.h>
|
|
#include <sound/initval.h>
|
|
#include <sound/soc.h>
|
|
#include <sound/dmaengine_pcm.h>
|
|
|
|
#include "fsl_ssi.h"
|
|
#include "imx-pcm.h"
|
|
|
|
#ifdef PPC
|
|
#define read_ssi(addr) in_be32(addr)
|
|
#define write_ssi(val, addr) out_be32(addr, val)
|
|
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
|
|
#else
|
|
#define read_ssi(addr) readl(addr)
|
|
#define write_ssi(val, addr) writel(val, addr)
|
|
/*
|
|
* FIXME: Proper locking should be added at write_ssi_mask caller level
|
|
* to ensure this register read/modify/write sequence is race free.
|
|
*/
|
|
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
|
|
{
|
|
u32 val = readl(addr);
|
|
val = (val & ~clear) | set;
|
|
writel(val, addr);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* FSLSSI_I2S_RATES: sample rates supported by the I2S
|
|
*
|
|
* This driver currently only supports the SSI running in I2S slave mode,
|
|
* which means the codec determines the sample rate. Therefore, we tell
|
|
* ALSA that we support all rates and let the codec driver decide what rates
|
|
* are really supported.
|
|
*/
|
|
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
|
|
SNDRV_PCM_RATE_CONTINUOUS)
|
|
|
|
/**
|
|
* FSLSSI_I2S_FORMATS: audio formats supported by the SSI
|
|
*
|
|
* This driver currently only supports the SSI running in I2S slave mode.
|
|
*
|
|
* The SSI has a limitation in that the samples must be in the same byte
|
|
* order as the host CPU. This is because when multiple bytes are written
|
|
* to the STX register, the bytes and bits must be written in the same
|
|
* order. The STX is a shift register, so all the bits need to be aligned
|
|
* (bit-endianness must match byte-endianness). Processors typically write
|
|
* the bits within a byte in the same order that the bytes of a word are
|
|
* written in. So if the host CPU is big-endian, then only big-endian
|
|
* samples will be written to STX properly.
|
|
*/
|
|
#ifdef __BIG_ENDIAN
|
|
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
|
|
SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
|
|
SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
|
|
#else
|
|
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
|
|
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
|
|
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
|
|
#endif
|
|
|
|
/* SIER bitflag of interrupts to enable */
|
|
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
|
|
CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
|
|
CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
|
|
CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
|
|
CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
|
|
|
|
/**
|
|
* fsl_ssi_private: per-SSI private data
|
|
*
|
|
* @ssi: pointer to the SSI's registers
|
|
* @ssi_phys: physical address of the SSI registers
|
|
* @irq: IRQ of this SSI
|
|
* @first_stream: pointer to the stream that was opened first
|
|
* @second_stream: pointer to second stream
|
|
* @playback: the number of playback streams opened
|
|
* @capture: the number of capture streams opened
|
|
* @cpu_dai: the CPU DAI for this device
|
|
* @dev_attr: the sysfs device attribute structure
|
|
* @stats: SSI statistics
|
|
* @name: name for this device
|
|
*/
|
|
struct fsl_ssi_private {
|
|
struct ccsr_ssi __iomem *ssi;
|
|
dma_addr_t ssi_phys;
|
|
unsigned int irq;
|
|
struct snd_pcm_substream *first_stream;
|
|
struct snd_pcm_substream *second_stream;
|
|
unsigned int fifo_depth;
|
|
struct snd_soc_dai_driver cpu_dai_drv;
|
|
struct device_attribute dev_attr;
|
|
struct platform_device *pdev;
|
|
|
|
bool new_binding;
|
|
bool ssi_on_imx;
|
|
bool imx_ac97;
|
|
bool use_dma;
|
|
struct clk *clk;
|
|
struct snd_dmaengine_dai_dma_data dma_params_tx;
|
|
struct snd_dmaengine_dai_dma_data dma_params_rx;
|
|
struct imx_dma_data filter_data_tx;
|
|
struct imx_dma_data filter_data_rx;
|
|
struct imx_pcm_fiq_params fiq_params;
|
|
|
|
struct {
|
|
unsigned int rfrc;
|
|
unsigned int tfrc;
|
|
unsigned int cmdau;
|
|
unsigned int cmddu;
|
|
unsigned int rxt;
|
|
unsigned int rdr1;
|
|
unsigned int rdr0;
|
|
unsigned int tde1;
|
|
unsigned int tde0;
|
|
unsigned int roe1;
|
|
unsigned int roe0;
|
|
unsigned int tue1;
|
|
unsigned int tue0;
|
|
unsigned int tfs;
|
|
unsigned int rfs;
|
|
unsigned int tls;
|
|
unsigned int rls;
|
|
unsigned int rff1;
|
|
unsigned int rff0;
|
|
unsigned int tfe1;
|
|
unsigned int tfe0;
|
|
} stats;
|
|
|
|
char name[1];
|
|
};
|
|
|
|
/**
|
|
* fsl_ssi_isr: SSI interrupt handler
|
|
*
|
|
* Although it's possible to use the interrupt handler to send and receive
|
|
* data to/from the SSI, we use the DMA instead. Programming is more
|
|
* complicated, but the performance is much better.
|
|
*
|
|
* This interrupt handler is used only to gather statistics.
|
|
*
|
|
* @irq: IRQ of the SSI device
|
|
* @dev_id: pointer to the ssi_private structure for this SSI device
|
|
*/
|
|
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = dev_id;
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
__be32 sisr;
|
|
__be32 sisr2 = 0;
|
|
|
|
/* We got an interrupt, so read the status register to see what we
|
|
were interrupted for. We mask it with the Interrupt Enable register
|
|
so that we only check for events that we're interested in.
|
|
*/
|
|
sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFRC) {
|
|
ssi_private->stats.rfrc++;
|
|
sisr2 |= CCSR_SSI_SISR_RFRC;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFRC) {
|
|
ssi_private->stats.tfrc++;
|
|
sisr2 |= CCSR_SSI_SISR_TFRC;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_CMDAU) {
|
|
ssi_private->stats.cmdau++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_CMDDU) {
|
|
ssi_private->stats.cmddu++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RXT) {
|
|
ssi_private->stats.rxt++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RDR1) {
|
|
ssi_private->stats.rdr1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RDR0) {
|
|
ssi_private->stats.rdr0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TDE1) {
|
|
ssi_private->stats.tde1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TDE0) {
|
|
ssi_private->stats.tde0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_ROE1) {
|
|
ssi_private->stats.roe1++;
|
|
sisr2 |= CCSR_SSI_SISR_ROE1;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_ROE0) {
|
|
ssi_private->stats.roe0++;
|
|
sisr2 |= CCSR_SSI_SISR_ROE0;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TUE1) {
|
|
ssi_private->stats.tue1++;
|
|
sisr2 |= CCSR_SSI_SISR_TUE1;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TUE0) {
|
|
ssi_private->stats.tue0++;
|
|
sisr2 |= CCSR_SSI_SISR_TUE0;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFS) {
|
|
ssi_private->stats.tfs++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFS) {
|
|
ssi_private->stats.rfs++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TLS) {
|
|
ssi_private->stats.tls++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RLS) {
|
|
ssi_private->stats.rls++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFF1) {
|
|
ssi_private->stats.rff1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFF0) {
|
|
ssi_private->stats.rff0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFE1) {
|
|
ssi_private->stats.tfe1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFE0) {
|
|
ssi_private->stats.tfe0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
/* Clear the bits that we set */
|
|
if (sisr2)
|
|
write_ssi(sisr2, &ssi->sisr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fsl_ssi_setup(struct fsl_ssi_private *ssi_private)
|
|
{
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
u8 i2s_mode;
|
|
u8 wm;
|
|
int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
|
|
|
|
if (ssi_private->imx_ac97)
|
|
i2s_mode = CCSR_SSI_SCR_I2S_MODE_NORMAL | CCSR_SSI_SCR_NET;
|
|
else
|
|
i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;
|
|
|
|
/*
|
|
* Section 16.5 of the MPC8610 reference manual says that the SSI needs
|
|
* to be disabled before updating the registers we set here.
|
|
*/
|
|
write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
|
|
|
|
/*
|
|
* Program the SSI into I2S Slave Non-Network Synchronous mode. Also
|
|
* enable the transmit and receive FIFO.
|
|
*
|
|
* FIXME: Little-endian samples require a different shift dir
|
|
*/
|
|
write_ssi_mask(&ssi->scr,
|
|
CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
|
|
CCSR_SSI_SCR_TFR_CLK_DIS |
|
|
i2s_mode |
|
|
(synchronous ? CCSR_SSI_SCR_SYN : 0));
|
|
|
|
write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
|
|
CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
|
|
CCSR_SSI_STCR_TSCKP, &ssi->stcr);
|
|
|
|
write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
|
|
CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
|
|
CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
|
|
/*
|
|
* The DC and PM bits are only used if the SSI is the clock master.
|
|
*/
|
|
|
|
/*
|
|
* Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
|
|
* use FIFO 1. We program the transmit water to signal a DMA transfer
|
|
* if there are only two (or fewer) elements left in the FIFO. Two
|
|
* elements equals one frame (left channel, right channel). This value,
|
|
* however, depends on the depth of the transmit buffer.
|
|
*
|
|
* We set the watermark on the same level as the DMA burstsize. For
|
|
* fiq it is probably better to use the biggest possible watermark
|
|
* size.
|
|
*/
|
|
if (ssi_private->use_dma)
|
|
wm = ssi_private->fifo_depth - 2;
|
|
else
|
|
wm = ssi_private->fifo_depth;
|
|
|
|
write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
|
|
CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
|
|
&ssi->sfcsr);
|
|
|
|
/*
|
|
* For ac97 interrupts are enabled with the startup of the substream
|
|
* because it is also running without an active substream. Normally SSI
|
|
* is only enabled when there is a substream.
|
|
*/
|
|
if (ssi_private->imx_ac97) {
|
|
/*
|
|
* Setup the clock control register
|
|
*/
|
|
write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
|
|
&ssi->stccr);
|
|
write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
|
|
&ssi->srccr);
|
|
|
|
/*
|
|
* Enable AC97 mode and startup the SSI
|
|
*/
|
|
write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
|
|
&ssi->sacnt);
|
|
write_ssi(0xff, &ssi->saccdis);
|
|
write_ssi(0x300, &ssi->saccen);
|
|
|
|
/*
|
|
* Enable SSI, Transmit and Receive
|
|
*/
|
|
write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
|
|
CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
|
|
|
|
write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* fsl_ssi_startup: create a new substream
|
|
*
|
|
* This is the first function called when a stream is opened.
|
|
*
|
|
* If this is the first stream open, then grab the IRQ and program most of
|
|
* the SSI registers.
|
|
*/
|
|
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private =
|
|
snd_soc_dai_get_drvdata(rtd->cpu_dai);
|
|
int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
|
|
|
|
/*
|
|
* If this is the first stream opened, then request the IRQ
|
|
* and initialize the SSI registers.
|
|
*/
|
|
if (!ssi_private->first_stream) {
|
|
ssi_private->first_stream = substream;
|
|
|
|
/*
|
|
* fsl_ssi_setup was already called by ac97_init earlier if
|
|
* the driver is in ac97 mode.
|
|
*/
|
|
if (!ssi_private->imx_ac97)
|
|
fsl_ssi_setup(ssi_private);
|
|
} else {
|
|
if (synchronous) {
|
|
struct snd_pcm_runtime *first_runtime =
|
|
ssi_private->first_stream->runtime;
|
|
/*
|
|
* This is the second stream open, and we're in
|
|
* synchronous mode, so we need to impose sample
|
|
* sample size constraints. This is because STCCR is
|
|
* used for playback and capture in synchronous mode,
|
|
* so there's no way to specify different word
|
|
* lengths.
|
|
*
|
|
* Note that this can cause a race condition if the
|
|
* second stream is opened before the first stream is
|
|
* fully initialized. We provide some protection by
|
|
* checking to make sure the first stream is
|
|
* initialized, but it's not perfect. ALSA sometimes
|
|
* re-initializes the driver with a different sample
|
|
* rate or size. If the second stream is opened
|
|
* before the first stream has received its final
|
|
* parameters, then the second stream may be
|
|
* constrained to the wrong sample rate or size.
|
|
*/
|
|
if (first_runtime->sample_bits) {
|
|
snd_pcm_hw_constraint_minmax(substream->runtime,
|
|
SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
|
|
first_runtime->sample_bits,
|
|
first_runtime->sample_bits);
|
|
}
|
|
}
|
|
|
|
ssi_private->second_stream = substream;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_hw_params - program the sample size
|
|
*
|
|
* Most of the SSI registers have been programmed in the startup function,
|
|
* but the word length must be programmed here. Unfortunately, programming
|
|
* the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
|
|
* cause a problem with supporting simultaneous playback and capture. If
|
|
* the SSI is already playing a stream, then that stream may be temporarily
|
|
* stopped when you start capture.
|
|
*
|
|
* Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
|
|
* clock master.
|
|
*/
|
|
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
unsigned int sample_size =
|
|
snd_pcm_format_width(params_format(hw_params));
|
|
u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
|
|
int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
|
|
|
|
/*
|
|
* If we're in synchronous mode, and the SSI is already enabled,
|
|
* then STCCR is already set properly.
|
|
*/
|
|
if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
|
|
return 0;
|
|
|
|
/*
|
|
* FIXME: The documentation says that SxCCR[WL] should not be
|
|
* modified while the SSI is enabled. The only time this can
|
|
* happen is if we're trying to do simultaneous playback and
|
|
* capture in asynchronous mode. Unfortunately, I have been enable
|
|
* to get that to work at all on the P1022DS. Therefore, we don't
|
|
* bother to disable/enable the SSI when setting SxCCR[WL], because
|
|
* the SSI will stop anyway. Maybe one day, this will get fixed.
|
|
*/
|
|
|
|
/* In synchronous mode, the SSI uses STCCR for capture */
|
|
if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
|
|
ssi_private->cpu_dai_drv.symmetric_rates)
|
|
write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
|
|
else
|
|
write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_trigger: start and stop the DMA transfer.
|
|
*
|
|
* This function is called by ALSA to start, stop, pause, and resume the DMA
|
|
* transfer of data.
|
|
*
|
|
* The DMA channel is in external master start and pause mode, which
|
|
* means the SSI completely controls the flow of data.
|
|
*/
|
|
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
unsigned int sier_bits;
|
|
|
|
/*
|
|
* Enable only the interrupts and DMA requests
|
|
* that are needed for the channel. As the fiq
|
|
* is polling for this bits, we have to ensure
|
|
* that this are aligned with the preallocated
|
|
* buffers
|
|
*/
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
|
|
if (ssi_private->use_dma)
|
|
sier_bits = SIER_FLAGS;
|
|
else
|
|
sier_bits = CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TFE0_EN;
|
|
} else {
|
|
if (ssi_private->use_dma)
|
|
sier_bits = SIER_FLAGS;
|
|
else
|
|
sier_bits = CCSR_SSI_SIER_RIE | CCSR_SSI_SIER_RFF0_EN;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case SNDRV_PCM_TRIGGER_START:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
write_ssi_mask(&ssi->scr, 0,
|
|
CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
|
|
else
|
|
write_ssi_mask(&ssi->scr, 0,
|
|
CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
|
|
break;
|
|
|
|
case SNDRV_PCM_TRIGGER_STOP:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
|
|
else
|
|
write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
|
|
|
|
if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
|
|
(CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0)
|
|
write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
write_ssi(sier_bits, &ssi->sier);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_shutdown: shutdown the SSI
|
|
*
|
|
* Shutdown the SSI if there are no other substreams open.
|
|
*/
|
|
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
|
|
|
|
if (ssi_private->first_stream == substream)
|
|
ssi_private->first_stream = ssi_private->second_stream;
|
|
|
|
ssi_private->second_stream = NULL;
|
|
}
|
|
|
|
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
|
|
|
|
if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
|
|
dai->playback_dma_data = &ssi_private->dma_params_tx;
|
|
dai->capture_dma_data = &ssi_private->dma_params_rx;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
|
|
.startup = fsl_ssi_startup,
|
|
.hw_params = fsl_ssi_hw_params,
|
|
.shutdown = fsl_ssi_shutdown,
|
|
.trigger = fsl_ssi_trigger,
|
|
};
|
|
|
|
/* Template for the CPU dai driver structure */
|
|
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
|
|
.probe = fsl_ssi_dai_probe,
|
|
.playback = {
|
|
/* The SSI does not support monaural audio. */
|
|
.channels_min = 2,
|
|
.channels_max = 2,
|
|
.rates = FSLSSI_I2S_RATES,
|
|
.formats = FSLSSI_I2S_FORMATS,
|
|
},
|
|
.capture = {
|
|
.channels_min = 2,
|
|
.channels_max = 2,
|
|
.rates = FSLSSI_I2S_RATES,
|
|
.formats = FSLSSI_I2S_FORMATS,
|
|
},
|
|
.ops = &fsl_ssi_dai_ops,
|
|
};
|
|
|
|
static const struct snd_soc_component_driver fsl_ssi_component = {
|
|
.name = "fsl-ssi",
|
|
};
|
|
|
|
/**
|
|
* fsl_ssi_ac97_trigger: start and stop the AC97 receive/transmit.
|
|
*
|
|
* This function is called by ALSA to start, stop, pause, and resume the
|
|
* transfer of data.
|
|
*/
|
|
static int fsl_ssi_ac97_trigger(struct snd_pcm_substream *substream, int cmd,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(
|
|
rtd->cpu_dai);
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
|
|
switch (cmd) {
|
|
case SNDRV_PCM_TRIGGER_START:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_TIE |
|
|
CCSR_SSI_SIER_TFE0_EN);
|
|
else
|
|
write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_RIE |
|
|
CCSR_SSI_SIER_RFF0_EN);
|
|
break;
|
|
|
|
case SNDRV_PCM_TRIGGER_STOP:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_TIE |
|
|
CCSR_SSI_SIER_TFE0_EN, 0);
|
|
else
|
|
write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_RIE |
|
|
CCSR_SSI_SIER_RFF0_EN, 0);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
|
|
else
|
|
write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct snd_soc_dai_ops fsl_ssi_ac97_dai_ops = {
|
|
.startup = fsl_ssi_startup,
|
|
.shutdown = fsl_ssi_shutdown,
|
|
.trigger = fsl_ssi_ac97_trigger,
|
|
};
|
|
|
|
static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
|
|
.ac97_control = 1,
|
|
.playback = {
|
|
.stream_name = "AC97 Playback",
|
|
.channels_min = 2,
|
|
.channels_max = 2,
|
|
.rates = SNDRV_PCM_RATE_8000_48000,
|
|
.formats = SNDRV_PCM_FMTBIT_S16_LE,
|
|
},
|
|
.capture = {
|
|
.stream_name = "AC97 Capture",
|
|
.channels_min = 2,
|
|
.channels_max = 2,
|
|
.rates = SNDRV_PCM_RATE_48000,
|
|
.formats = SNDRV_PCM_FMTBIT_S16_LE,
|
|
},
|
|
.ops = &fsl_ssi_ac97_dai_ops,
|
|
};
|
|
|
|
|
|
static struct fsl_ssi_private *fsl_ac97_data;
|
|
|
|
static void fsl_ssi_ac97_init(void)
|
|
{
|
|
fsl_ssi_setup(fsl_ac97_data);
|
|
}
|
|
|
|
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
|
|
unsigned short val)
|
|
{
|
|
struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
|
|
unsigned int lreg;
|
|
unsigned int lval;
|
|
|
|
if (reg > 0x7f)
|
|
return;
|
|
|
|
|
|
lreg = reg << 12;
|
|
write_ssi(lreg, &ssi->sacadd);
|
|
|
|
lval = val << 4;
|
|
write_ssi(lval , &ssi->sacdat);
|
|
|
|
write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
|
|
CCSR_SSI_SACNT_WR);
|
|
udelay(100);
|
|
}
|
|
|
|
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
|
|
unsigned short reg)
|
|
{
|
|
struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
|
|
|
|
unsigned short val = -1;
|
|
unsigned int lreg;
|
|
|
|
lreg = (reg & 0x7f) << 12;
|
|
write_ssi(lreg, &ssi->sacadd);
|
|
write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
|
|
CCSR_SSI_SACNT_RD);
|
|
|
|
udelay(100);
|
|
|
|
val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;
|
|
|
|
return val;
|
|
}
|
|
|
|
static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
|
|
.read = fsl_ssi_ac97_read,
|
|
.write = fsl_ssi_ac97_write,
|
|
};
|
|
|
|
/* Show the statistics of a flag only if its interrupt is enabled. The
|
|
* compiler will optimze this code to a no-op if the interrupt is not
|
|
* enabled.
|
|
*/
|
|
#define SIER_SHOW(flag, name) \
|
|
do { \
|
|
if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
|
|
length += sprintf(buf + length, #name "=%u\n", \
|
|
ssi_private->stats.name); \
|
|
} while (0)
|
|
|
|
|
|
/**
|
|
* fsl_sysfs_ssi_show: display SSI statistics
|
|
*
|
|
* Display the statistics for the current SSI device. To avoid confusion,
|
|
* we only show those counts that are enabled.
|
|
*/
|
|
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fsl_ssi_private *ssi_private =
|
|
container_of(attr, struct fsl_ssi_private, dev_attr);
|
|
ssize_t length = 0;
|
|
|
|
SIER_SHOW(RFRC_EN, rfrc);
|
|
SIER_SHOW(TFRC_EN, tfrc);
|
|
SIER_SHOW(CMDAU_EN, cmdau);
|
|
SIER_SHOW(CMDDU_EN, cmddu);
|
|
SIER_SHOW(RXT_EN, rxt);
|
|
SIER_SHOW(RDR1_EN, rdr1);
|
|
SIER_SHOW(RDR0_EN, rdr0);
|
|
SIER_SHOW(TDE1_EN, tde1);
|
|
SIER_SHOW(TDE0_EN, tde0);
|
|
SIER_SHOW(ROE1_EN, roe1);
|
|
SIER_SHOW(ROE0_EN, roe0);
|
|
SIER_SHOW(TUE1_EN, tue1);
|
|
SIER_SHOW(TUE0_EN, tue0);
|
|
SIER_SHOW(TFS_EN, tfs);
|
|
SIER_SHOW(RFS_EN, rfs);
|
|
SIER_SHOW(TLS_EN, tls);
|
|
SIER_SHOW(RLS_EN, rls);
|
|
SIER_SHOW(RFF1_EN, rff1);
|
|
SIER_SHOW(RFF0_EN, rff0);
|
|
SIER_SHOW(TFE1_EN, tfe1);
|
|
SIER_SHOW(TFE0_EN, tfe0);
|
|
|
|
return length;
|
|
}
|
|
|
|
/**
|
|
* Make every character in a string lower-case
|
|
*/
|
|
static void make_lowercase(char *s)
|
|
{
|
|
char *p = s;
|
|
char c;
|
|
|
|
while ((c = *p)) {
|
|
if ((c >= 'A') && (c <= 'Z'))
|
|
*p = c + ('a' - 'A');
|
|
p++;
|
|
}
|
|
}
|
|
|
|
static int fsl_ssi_probe(struct platform_device *pdev)
|
|
{
|
|
struct fsl_ssi_private *ssi_private;
|
|
int ret = 0;
|
|
struct device_attribute *dev_attr = NULL;
|
|
struct device_node *np = pdev->dev.of_node;
|
|
const char *p, *sprop;
|
|
const uint32_t *iprop;
|
|
struct resource res;
|
|
char name[64];
|
|
bool shared;
|
|
bool ac97 = false;
|
|
|
|
/* SSIs that are not connected on the board should have a
|
|
* status = "disabled"
|
|
* property in their device tree nodes.
|
|
*/
|
|
if (!of_device_is_available(np))
|
|
return -ENODEV;
|
|
|
|
/* We only support the SSI in "I2S Slave" mode */
|
|
sprop = of_get_property(np, "fsl,mode", NULL);
|
|
if (!sprop) {
|
|
dev_err(&pdev->dev, "fsl,mode property is necessary\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!strcmp(sprop, "ac97-slave")) {
|
|
ac97 = true;
|
|
} else if (strcmp(sprop, "i2s-slave")) {
|
|
dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* The DAI name is the last part of the full name of the node. */
|
|
p = strrchr(np->full_name, '/') + 1;
|
|
ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
|
|
GFP_KERNEL);
|
|
if (!ssi_private) {
|
|
dev_err(&pdev->dev, "could not allocate DAI object\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
strcpy(ssi_private->name, p);
|
|
|
|
ssi_private->use_dma = !of_property_read_bool(np,
|
|
"fsl,fiq-stream-filter");
|
|
|
|
if (ac97) {
|
|
memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
|
|
sizeof(fsl_ssi_ac97_dai));
|
|
|
|
fsl_ac97_data = ssi_private;
|
|
ssi_private->imx_ac97 = true;
|
|
|
|
snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
|
|
} else {
|
|
/* Initialize this copy of the CPU DAI driver structure */
|
|
memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
|
|
sizeof(fsl_ssi_dai_template));
|
|
}
|
|
ssi_private->cpu_dai_drv.name = ssi_private->name;
|
|
|
|
/* Get the addresses and IRQ */
|
|
ret = of_address_to_resource(np, 0, &res);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "could not determine device resources\n");
|
|
return ret;
|
|
}
|
|
ssi_private->ssi = of_iomap(np, 0);
|
|
if (!ssi_private->ssi) {
|
|
dev_err(&pdev->dev, "could not map device resources\n");
|
|
return -ENOMEM;
|
|
}
|
|
ssi_private->ssi_phys = res.start;
|
|
|
|
ssi_private->irq = irq_of_parse_and_map(np, 0);
|
|
if (!ssi_private->irq) {
|
|
dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Are the RX and the TX clocks locked? */
|
|
if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
|
|
ssi_private->cpu_dai_drv.symmetric_rates = 1;
|
|
|
|
/* Determine the FIFO depth. */
|
|
iprop = of_get_property(np, "fsl,fifo-depth", NULL);
|
|
if (iprop)
|
|
ssi_private->fifo_depth = be32_to_cpup(iprop);
|
|
else
|
|
/* Older 8610 DTs didn't have the fifo-depth property */
|
|
ssi_private->fifo_depth = 8;
|
|
|
|
if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
|
|
u32 dma_events[2];
|
|
ssi_private->ssi_on_imx = true;
|
|
|
|
ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(ssi_private->clk)) {
|
|
ret = PTR_ERR(ssi_private->clk);
|
|
dev_err(&pdev->dev, "could not get clock: %d\n", ret);
|
|
goto error_irqmap;
|
|
}
|
|
ret = clk_prepare_enable(ssi_private->clk);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
|
|
ret);
|
|
goto error_irqmap;
|
|
}
|
|
|
|
/*
|
|
* We have burstsize be "fifo_depth - 2" to match the SSI
|
|
* watermark setting in fsl_ssi_startup().
|
|
*/
|
|
ssi_private->dma_params_tx.maxburst =
|
|
ssi_private->fifo_depth - 2;
|
|
ssi_private->dma_params_rx.maxburst =
|
|
ssi_private->fifo_depth - 2;
|
|
ssi_private->dma_params_tx.addr =
|
|
ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
|
|
ssi_private->dma_params_rx.addr =
|
|
ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
|
|
ssi_private->dma_params_tx.filter_data =
|
|
&ssi_private->filter_data_tx;
|
|
ssi_private->dma_params_rx.filter_data =
|
|
&ssi_private->filter_data_rx;
|
|
if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
|
|
ssi_private->use_dma) {
|
|
/*
|
|
* FIXME: This is a temporary solution until all
|
|
* necessary dma drivers support the generic dma
|
|
* bindings.
|
|
*/
|
|
ret = of_property_read_u32_array(pdev->dev.of_node,
|
|
"fsl,ssi-dma-events", dma_events, 2);
|
|
if (ret && ssi_private->use_dma) {
|
|
dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
|
|
goto error_clk;
|
|
}
|
|
}
|
|
|
|
shared = of_device_is_compatible(of_get_parent(np),
|
|
"fsl,spba-bus");
|
|
|
|
imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
|
|
dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
|
|
imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
|
|
dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
|
|
} else if (ssi_private->use_dma) {
|
|
/* The 'name' should not have any slashes in it. */
|
|
ret = devm_request_irq(&pdev->dev, ssi_private->irq,
|
|
fsl_ssi_isr, 0, ssi_private->name,
|
|
ssi_private);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "could not claim irq %u\n",
|
|
ssi_private->irq);
|
|
goto error_irqmap;
|
|
}
|
|
}
|
|
|
|
/* Initialize the the device_attribute structure */
|
|
dev_attr = &ssi_private->dev_attr;
|
|
sysfs_attr_init(&dev_attr->attr);
|
|
dev_attr->attr.name = "statistics";
|
|
dev_attr->attr.mode = S_IRUGO;
|
|
dev_attr->show = fsl_sysfs_ssi_show;
|
|
|
|
ret = device_create_file(&pdev->dev, dev_attr);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "could not create sysfs %s file\n",
|
|
ssi_private->dev_attr.attr.name);
|
|
goto error_clk;
|
|
}
|
|
|
|
/* Register with ASoC */
|
|
dev_set_drvdata(&pdev->dev, ssi_private);
|
|
|
|
ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
|
|
&ssi_private->cpu_dai_drv, 1);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
|
|
goto error_dev;
|
|
}
|
|
|
|
if (ssi_private->ssi_on_imx) {
|
|
if (!ssi_private->use_dma) {
|
|
|
|
/*
|
|
* Some boards use an incompatible codec. To get it
|
|
* working, we are using imx-fiq-pcm-audio, that
|
|
* can handle those codecs. DMA is not possible in this
|
|
* situation.
|
|
*/
|
|
|
|
ssi_private->fiq_params.irq = ssi_private->irq;
|
|
ssi_private->fiq_params.base = ssi_private->ssi;
|
|
ssi_private->fiq_params.dma_params_rx =
|
|
&ssi_private->dma_params_rx;
|
|
ssi_private->fiq_params.dma_params_tx =
|
|
&ssi_private->dma_params_tx;
|
|
|
|
ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
|
|
if (ret)
|
|
goto error_dev;
|
|
} else {
|
|
ret = imx_pcm_dma_init(pdev);
|
|
if (ret)
|
|
goto error_dev;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If codec-handle property is missing from SSI node, we assume
|
|
* that the machine driver uses new binding which does not require
|
|
* SSI driver to trigger machine driver's probe.
|
|
*/
|
|
if (!of_get_property(np, "codec-handle", NULL)) {
|
|
ssi_private->new_binding = true;
|
|
goto done;
|
|
}
|
|
|
|
/* Trigger the machine driver's probe function. The platform driver
|
|
* name of the machine driver is taken from /compatible property of the
|
|
* device tree. We also pass the address of the CPU DAI driver
|
|
* structure.
|
|
*/
|
|
sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
|
|
/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
|
|
p = strrchr(sprop, ',');
|
|
if (p)
|
|
sprop = p + 1;
|
|
snprintf(name, sizeof(name), "snd-soc-%s", sprop);
|
|
make_lowercase(name);
|
|
|
|
ssi_private->pdev =
|
|
platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
|
|
if (IS_ERR(ssi_private->pdev)) {
|
|
ret = PTR_ERR(ssi_private->pdev);
|
|
dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
|
|
goto error_dai;
|
|
}
|
|
|
|
done:
|
|
if (ssi_private->imx_ac97)
|
|
fsl_ssi_ac97_init();
|
|
|
|
return 0;
|
|
|
|
error_dai:
|
|
if (ssi_private->ssi_on_imx)
|
|
imx_pcm_dma_exit(pdev);
|
|
snd_soc_unregister_component(&pdev->dev);
|
|
|
|
error_dev:
|
|
device_remove_file(&pdev->dev, dev_attr);
|
|
|
|
error_clk:
|
|
if (ssi_private->ssi_on_imx)
|
|
clk_disable_unprepare(ssi_private->clk);
|
|
|
|
error_irqmap:
|
|
irq_dispose_mapping(ssi_private->irq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fsl_ssi_remove(struct platform_device *pdev)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
|
|
|
|
if (!ssi_private->new_binding)
|
|
platform_device_unregister(ssi_private->pdev);
|
|
if (ssi_private->ssi_on_imx)
|
|
imx_pcm_dma_exit(pdev);
|
|
snd_soc_unregister_component(&pdev->dev);
|
|
device_remove_file(&pdev->dev, &ssi_private->dev_attr);
|
|
if (ssi_private->ssi_on_imx)
|
|
clk_disable_unprepare(ssi_private->clk);
|
|
irq_dispose_mapping(ssi_private->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id fsl_ssi_ids[] = {
|
|
{ .compatible = "fsl,mpc8610-ssi", },
|
|
{ .compatible = "fsl,imx21-ssi", },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
|
|
|
|
static struct platform_driver fsl_ssi_driver = {
|
|
.driver = {
|
|
.name = "fsl-ssi-dai",
|
|
.owner = THIS_MODULE,
|
|
.of_match_table = fsl_ssi_ids,
|
|
},
|
|
.probe = fsl_ssi_probe,
|
|
.remove = fsl_ssi_remove,
|
|
};
|
|
|
|
module_platform_driver(fsl_ssi_driver);
|
|
|
|
MODULE_ALIAS("platform:fsl-ssi-dai");
|
|
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
|
|
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
|
|
MODULE_LICENSE("GPL v2");
|