linux/arch/mips/mm/dma-default.c
Linus Torvalds ac1820fb28 This is a tree wide change and has been kept separate for that reason.
Bart Van Assche noted that the ib DMA mapping code was significantly
 similar enough to the core DMA mapping code that with a few changes
 it was possible to remove the IB DMA mapping code entirely and
 switch the RDMA stack to use the core DMA mapping code.  This resulted
 in a nice set of cleanups, but touched the entire tree.  This branch
 will be submitted separately to Linus at the end of the merge window
 as per normal practice for tree wide changes like this.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJYo06oAAoJELgmozMOVy/d9Z8QALedWHdu98St1L0u2c8sxnR9
 2zo/4sF5Vb9u7FpmdIX32L4SQ9s9KhPE8Qp8NtZLf9v10zlDebIRJDpXknXtKooV
 CAXxX4sxBXV27/UrhbZEfXiPrmm6ccJFyIfRnMU6NlMqh2AtAsRa5AC2/RMp8oUD
 Med97PFiF0o6TD22/UH1VFbRpX1zjaKyqm7a3as5sJfzNA+UGIZAQ7Euz8000DKZ
 xCgVLTEwS0FmOujtBkCst7xa9TjuqR1HLOB4DdGvAhP6BHdz2yamM7Qmh9NN+NEX
 0BtjsuXomtn6j6AszGC+bpipCZh3NUigcwoFAARXCYFHibBvo4DPdFeGsraFgXdy
 1+KyR8CCeQG3Aly5Vwr264RFPGkGpwMj8PsBlXgQVtrlg4rriaCzOJNmIIbfdADw
 ftqhxBOzReZw77aH2s+9p2ILRfcAmPqhynLvFGFo9LBvsik8LVso7YgZN0xGxwcI
 IjI/XGC8UskPVsIZBIYA6sl2bYzgOjtBIHiXjRrPlW3uhduIXLrvKFfLPP/5XLAG
 ehLXK+J0bfsyY9ClmlNS8oH/WdLhXAyy/KNmnj5bRRm9qg6BRJR3bsOBhZJODuoC
 XgEXFfF6/7roNESWxowff7pK0rTkRg/m/Pa4VQpeO+6NWHE7kgZhL6kyIp5nKcwS
 3e7mgpcwC+3XfA/6vU3F
 =e0Si
 -----END PGP SIGNATURE-----

Merge tag 'for-next-dma_ops' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma

Pull rdma DMA mapping updates from Doug Ledford:
 "Drop IB DMA mapping code and use core DMA code instead.

  Bart Van Assche noted that the ib DMA mapping code was significantly
  similar enough to the core DMA mapping code that with a few changes it
  was possible to remove the IB DMA mapping code entirely and switch the
  RDMA stack to use the core DMA mapping code.

  This resulted in a nice set of cleanups, but touched the entire tree
  and has been kept separate for that reason."

* tag 'for-next-dma_ops' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (37 commits)
  IB/rxe, IB/rdmavt: Use dma_virt_ops instead of duplicating it
  IB/core: Remove ib_device.dma_device
  nvme-rdma: Switch from dma_device to dev.parent
  RDS: net: Switch from dma_device to dev.parent
  IB/srpt: Modify a debug statement
  IB/srp: Switch from dma_device to dev.parent
  IB/iser: Switch from dma_device to dev.parent
  IB/IPoIB: Switch from dma_device to dev.parent
  IB/rxe: Switch from dma_device to dev.parent
  IB/vmw_pvrdma: Switch from dma_device to dev.parent
  IB/usnic: Switch from dma_device to dev.parent
  IB/qib: Switch from dma_device to dev.parent
  IB/qedr: Switch from dma_device to dev.parent
  IB/ocrdma: Switch from dma_device to dev.parent
  IB/nes: Remove a superfluous assignment statement
  IB/mthca: Switch from dma_device to dev.parent
  IB/mlx5: Switch from dma_device to dev.parent
  IB/mlx4: Switch from dma_device to dev.parent
  IB/i40iw: Remove a superfluous assignment statement
  IB/hns: Switch from dma_device to dev.parent
  ...
2017-02-25 13:45:43 -08:00

448 lines
12 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
* Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
* swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
*/
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/scatterlist.h>
#include <linux/string.h>
#include <linux/gfp.h>
#include <linux/highmem.h>
#include <linux/dma-contiguous.h>
#include <asm/cache.h>
#include <asm/cpu-type.h>
#include <asm/io.h>
#include <dma-coherence.h>
#if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
/* User defined DMA coherency from command line. */
enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
EXPORT_SYMBOL_GPL(coherentio);
int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
static int __init setcoherentio(char *str)
{
coherentio = IO_COHERENCE_ENABLED;
pr_info("Hardware DMA cache coherency (command line)\n");
return 0;
}
early_param("coherentio", setcoherentio);
static int __init setnocoherentio(char *str)
{
coherentio = IO_COHERENCE_DISABLED;
pr_info("Software DMA cache coherency (command line)\n");
return 0;
}
early_param("nocoherentio", setnocoherentio);
#endif
static inline struct page *dma_addr_to_page(struct device *dev,
dma_addr_t dma_addr)
{
return pfn_to_page(
plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
}
/*
* The affected CPUs below in 'cpu_needs_post_dma_flush()' can
* speculatively fill random cachelines with stale data at any time,
* requiring an extra flush post-DMA.
*
* Warning on the terminology - Linux calls an uncached area coherent;
* MIPS terminology calls memory areas with hardware maintained coherency
* coherent.
*
* Note that the R14000 and R16000 should also be checked for in this
* condition. However this function is only called on non-I/O-coherent
* systems and only the R10000 and R12000 are used in such systems, the
* SGI IP28 Indigo² rsp. SGI IP32 aka O2.
*/
static inline int cpu_needs_post_dma_flush(struct device *dev)
{
return !plat_device_is_coherent(dev) &&
(boot_cpu_type() == CPU_R10000 ||
boot_cpu_type() == CPU_R12000 ||
boot_cpu_type() == CPU_BMIPS5000);
}
static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
{
gfp_t dma_flag;
/* ignore region specifiers */
gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
#ifdef CONFIG_ISA
if (dev == NULL)
dma_flag = __GFP_DMA;
else
#endif
#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32))
dma_flag = __GFP_DMA;
else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
dma_flag = __GFP_DMA32;
else
#endif
#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64))
dma_flag = __GFP_DMA32;
else
#endif
#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
if (dev == NULL ||
dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
dma_flag = __GFP_DMA;
else
#endif
dma_flag = 0;
/* Don't invoke OOM killer */
gfp |= __GFP_NORETRY;
return gfp | dma_flag;
}
static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
dma_addr_t * dma_handle, gfp_t gfp)
{
void *ret;
gfp = massage_gfp_flags(dev, gfp);
ret = (void *) __get_free_pages(gfp, get_order(size));
if (ret != NULL) {
memset(ret, 0, size);
*dma_handle = plat_map_dma_mem(dev, ret, size);
}
return ret;
}
static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
void *ret;
struct page *page = NULL;
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
/*
* XXX: seems like the coherent and non-coherent implementations could
* be consolidated.
*/
if (attrs & DMA_ATTR_NON_CONSISTENT)
return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
gfp = massage_gfp_flags(dev, gfp);
if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
page = dma_alloc_from_contiguous(dev, count, get_order(size),
gfp);
if (!page)
page = alloc_pages(gfp, get_order(size));
if (!page)
return NULL;
ret = page_address(page);
memset(ret, 0, size);
*dma_handle = plat_map_dma_mem(dev, ret, size);
if (!plat_device_is_coherent(dev)) {
dma_cache_wback_inv((unsigned long) ret, size);
ret = UNCAC_ADDR(ret);
}
return ret;
}
static void mips_dma_free_noncoherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
free_pages((unsigned long) vaddr, get_order(size));
}
static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs)
{
unsigned long addr = (unsigned long) vaddr;
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
struct page *page = NULL;
if (attrs & DMA_ATTR_NON_CONSISTENT) {
mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
return;
}
plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
if (!plat_device_is_coherent(dev))
addr = CAC_ADDR(addr);
page = virt_to_page((void *) addr);
if (!dma_release_from_contiguous(dev, page, count))
__free_pages(page, get_order(size));
}
static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long addr = (unsigned long)cpu_addr;
unsigned long off = vma->vm_pgoff;
unsigned long pfn;
int ret = -ENXIO;
if (!plat_device_is_coherent(dev))
addr = CAC_ADDR(addr);
pfn = page_to_pfn(virt_to_page((void *)addr));
if (attrs & DMA_ATTR_WRITE_COMBINE)
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
else
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (off < count && user_count <= (count - off)) {
ret = remap_pfn_range(vma, vma->vm_start,
pfn + off,
user_count << PAGE_SHIFT,
vma->vm_page_prot);
}
return ret;
}
static inline void __dma_sync_virtual(void *addr, size_t size,
enum dma_data_direction direction)
{
switch (direction) {
case DMA_TO_DEVICE:
dma_cache_wback((unsigned long)addr, size);
break;
case DMA_FROM_DEVICE:
dma_cache_inv((unsigned long)addr, size);
break;
case DMA_BIDIRECTIONAL:
dma_cache_wback_inv((unsigned long)addr, size);
break;
default:
BUG();
}
}
/*
* A single sg entry may refer to multiple physically contiguous
* pages. But we still need to process highmem pages individually.
* If highmem is not configured then the bulk of this loop gets
* optimized out.
*/
static inline void __dma_sync(struct page *page,
unsigned long offset, size_t size, enum dma_data_direction direction)
{
size_t left = size;
do {
size_t len = left;
if (PageHighMem(page)) {
void *addr;
if (offset + len > PAGE_SIZE) {
if (offset >= PAGE_SIZE) {
page += offset >> PAGE_SHIFT;
offset &= ~PAGE_MASK;
}
len = PAGE_SIZE - offset;
}
addr = kmap_atomic(page);
__dma_sync_virtual(addr + offset, len, direction);
kunmap_atomic(addr);
} else
__dma_sync_virtual(page_address(page) + offset,
size, direction);
offset = 0;
page++;
left -= len;
} while (left);
}
static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction direction, unsigned long attrs)
{
if (cpu_needs_post_dma_flush(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
__dma_sync(dma_addr_to_page(dev, dma_addr),
dma_addr & ~PAGE_MASK, size, direction);
plat_post_dma_flush(dev);
plat_unmap_dma_mem(dev, dma_addr, size, direction);
}
static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction direction, unsigned long attrs)
{
int i;
struct scatterlist *sg;
for_each_sg(sglist, sg, nents, i) {
if (!plat_device_is_coherent(dev) &&
!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
__dma_sync(sg_page(sg), sg->offset, sg->length,
direction);
#ifdef CONFIG_NEED_SG_DMA_LENGTH
sg->dma_length = sg->length;
#endif
sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
sg->offset;
}
return nents;
}
static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction direction,
unsigned long attrs)
{
if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
__dma_sync(page, offset, size, direction);
return plat_map_dma_mem_page(dev, page) + offset;
}
static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nhwentries, enum dma_data_direction direction,
unsigned long attrs)
{
int i;
struct scatterlist *sg;
for_each_sg(sglist, sg, nhwentries, i) {
if (!plat_device_is_coherent(dev) &&
!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
direction != DMA_TO_DEVICE)
__dma_sync(sg_page(sg), sg->offset, sg->length,
direction);
plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
}
}
static void mips_dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
{
if (cpu_needs_post_dma_flush(dev))
__dma_sync(dma_addr_to_page(dev, dma_handle),
dma_handle & ~PAGE_MASK, size, direction);
plat_post_dma_flush(dev);
}
static void mips_dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
{
if (!plat_device_is_coherent(dev))
__dma_sync(dma_addr_to_page(dev, dma_handle),
dma_handle & ~PAGE_MASK, size, direction);
}
static void mips_dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
int i;
struct scatterlist *sg;
if (cpu_needs_post_dma_flush(dev)) {
for_each_sg(sglist, sg, nelems, i) {
__dma_sync(sg_page(sg), sg->offset, sg->length,
direction);
}
}
plat_post_dma_flush(dev);
}
static void mips_dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
int i;
struct scatterlist *sg;
if (!plat_device_is_coherent(dev)) {
for_each_sg(sglist, sg, nelems, i) {
__dma_sync(sg_page(sg), sg->offset, sg->length,
direction);
}
}
}
int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return 0;
}
int mips_dma_supported(struct device *dev, u64 mask)
{
return plat_dma_supported(dev, mask);
}
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
if (!plat_device_is_coherent(dev))
__dma_sync_virtual(vaddr, size, direction);
}
EXPORT_SYMBOL(dma_cache_sync);
static const struct dma_map_ops mips_default_dma_map_ops = {
.alloc = mips_dma_alloc_coherent,
.free = mips_dma_free_coherent,
.mmap = mips_dma_mmap,
.map_page = mips_dma_map_page,
.unmap_page = mips_dma_unmap_page,
.map_sg = mips_dma_map_sg,
.unmap_sg = mips_dma_unmap_sg,
.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
.sync_single_for_device = mips_dma_sync_single_for_device,
.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
.sync_sg_for_device = mips_dma_sync_sg_for_device,
.mapping_error = mips_dma_mapping_error,
.dma_supported = mips_dma_supported
};
const struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
EXPORT_SYMBOL(mips_dma_map_ops);
#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
static int __init mips_dma_init(void)
{
dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
return 0;
}
fs_initcall(mips_dma_init);