forked from Minki/linux
67a3acaab7
As we start peeking into requests for longer and longer, e.g. incorporating use of spinlocks when only protected by an rcu_read_lock(), we need to be careful in how we reset the request when recycling and need to preserve any barriers that may still be in use as the request is reset for reuse. Quoting Linus Torvalds: > If there is refcounting going on then why use SLAB_TYPESAFE_BY_RCU? .. because the object can be accessed (by RCU) after the refcount has gone down to zero, and the thing has been released. That's the whole and only point of SLAB_TYPESAFE_BY_RCU. That flag basically says: "I may end up accessing this object *after* it has been free'd, because there may be RCU lookups in flight" This has nothing to do with constructors. It's ok if the object gets reused as an object of the same type and does *not* get re-initialized, because we're perfectly fine seeing old stale data. What it guarantees is that the slab isn't shared with any other kind of object, _and_ that the underlying pages are free'd after an RCU quiescent period (so the pages aren't shared with another kind of object either during an RCU walk). And it doesn't necessarily have to have a constructor, because the thing that a RCU walk will care about is (a) guaranteed to be an object that *has* been on some RCU list (so it's not a "new" object) (b) the RCU walk needs to have logic to verify that it's still the *same* object and hasn't been re-used as something else. In contrast, a SLAB_TYPESAFE_BY_RCU memory gets free'd and re-used immediately, but because it gets reused as the same kind of object, the RCU walker can "know" what parts have meaning for re-use, in a way it couidn't if the re-use was random. That said, it *is* subtle, and people should be careful. > So the re-use might initialize the fields lazily, not necessarily using a ctor. If you have a well-defined refcount, and use "atomic_inc_not_zero()" to guard the speculative RCU access section, and use "atomic_dec_and_test()" in the freeing section, then you should be safe wrt new allocations. If you have a completely new allocation that has "random stale content", you know that it cannot be on the RCU list, so there is no speculative access that can ever see that random content. So the only case you need to worry about is a re-use allocation, and you know that the refcount will start out as zero even if you don't have a constructor. So you can think of the refcount itself as always having a zero constructor, *BUT* you need to be careful with ordering. In particular, whoever does the allocation needs to then set the refcount to a non-zero value *after* it has initialized all the other fields. And in particular, it needs to make sure that it uses the proper memory ordering to do so. NOTE! One thing to be very worried about is that re-initializing whatever RCU lists means that now the RCU walker may be walking on the wrong list so the walker may do the right thing for this particular entry, but it may miss walking *other* entries. So then you can get spurious lookup failures, because the RCU walker never walked all the way to the end of the right list. That ends up being a much more subtle bug. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20191122094924.629690-1-chris@chris-wilson.co.uk
546 lines
14 KiB
C
546 lines
14 KiB
C
/*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Copyright © 2018 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_globals.h"
|
|
#include "i915_request.h"
|
|
#include "i915_scheduler.h"
|
|
|
|
static struct i915_global_scheduler {
|
|
struct i915_global base;
|
|
struct kmem_cache *slab_dependencies;
|
|
struct kmem_cache *slab_priorities;
|
|
} global;
|
|
|
|
static DEFINE_SPINLOCK(schedule_lock);
|
|
|
|
static const struct i915_request *
|
|
node_to_request(const struct i915_sched_node *node)
|
|
{
|
|
return container_of(node, const struct i915_request, sched);
|
|
}
|
|
|
|
static inline bool node_started(const struct i915_sched_node *node)
|
|
{
|
|
return i915_request_started(node_to_request(node));
|
|
}
|
|
|
|
static inline bool node_signaled(const struct i915_sched_node *node)
|
|
{
|
|
return i915_request_completed(node_to_request(node));
|
|
}
|
|
|
|
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
|
|
{
|
|
return rb_entry(rb, struct i915_priolist, node);
|
|
}
|
|
|
|
static void assert_priolists(struct intel_engine_execlists * const execlists)
|
|
{
|
|
struct rb_node *rb;
|
|
long last_prio, i;
|
|
|
|
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
|
|
return;
|
|
|
|
GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
|
|
rb_first(&execlists->queue.rb_root));
|
|
|
|
last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1;
|
|
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
|
|
const struct i915_priolist *p = to_priolist(rb);
|
|
|
|
GEM_BUG_ON(p->priority >= last_prio);
|
|
last_prio = p->priority;
|
|
|
|
GEM_BUG_ON(!p->used);
|
|
for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
|
|
if (list_empty(&p->requests[i]))
|
|
continue;
|
|
|
|
GEM_BUG_ON(!(p->used & BIT(i)));
|
|
}
|
|
}
|
|
}
|
|
|
|
struct list_head *
|
|
i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
|
|
{
|
|
struct intel_engine_execlists * const execlists = &engine->execlists;
|
|
struct i915_priolist *p;
|
|
struct rb_node **parent, *rb;
|
|
bool first = true;
|
|
int idx, i;
|
|
|
|
lockdep_assert_held(&engine->active.lock);
|
|
assert_priolists(execlists);
|
|
|
|
/* buckets sorted from highest [in slot 0] to lowest priority */
|
|
idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
|
|
prio >>= I915_USER_PRIORITY_SHIFT;
|
|
if (unlikely(execlists->no_priolist))
|
|
prio = I915_PRIORITY_NORMAL;
|
|
|
|
find_priolist:
|
|
/* most positive priority is scheduled first, equal priorities fifo */
|
|
rb = NULL;
|
|
parent = &execlists->queue.rb_root.rb_node;
|
|
while (*parent) {
|
|
rb = *parent;
|
|
p = to_priolist(rb);
|
|
if (prio > p->priority) {
|
|
parent = &rb->rb_left;
|
|
} else if (prio < p->priority) {
|
|
parent = &rb->rb_right;
|
|
first = false;
|
|
} else {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (prio == I915_PRIORITY_NORMAL) {
|
|
p = &execlists->default_priolist;
|
|
} else {
|
|
p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
|
|
/* Convert an allocation failure to a priority bump */
|
|
if (unlikely(!p)) {
|
|
prio = I915_PRIORITY_NORMAL; /* recurses just once */
|
|
|
|
/* To maintain ordering with all rendering, after an
|
|
* allocation failure we have to disable all scheduling.
|
|
* Requests will then be executed in fifo, and schedule
|
|
* will ensure that dependencies are emitted in fifo.
|
|
* There will be still some reordering with existing
|
|
* requests, so if userspace lied about their
|
|
* dependencies that reordering may be visible.
|
|
*/
|
|
execlists->no_priolist = true;
|
|
goto find_priolist;
|
|
}
|
|
}
|
|
|
|
p->priority = prio;
|
|
for (i = 0; i < ARRAY_SIZE(p->requests); i++)
|
|
INIT_LIST_HEAD(&p->requests[i]);
|
|
rb_link_node(&p->node, rb, parent);
|
|
rb_insert_color_cached(&p->node, &execlists->queue, first);
|
|
p->used = 0;
|
|
|
|
out:
|
|
p->used |= BIT(idx);
|
|
return &p->requests[idx];
|
|
}
|
|
|
|
void __i915_priolist_free(struct i915_priolist *p)
|
|
{
|
|
kmem_cache_free(global.slab_priorities, p);
|
|
}
|
|
|
|
struct sched_cache {
|
|
struct list_head *priolist;
|
|
};
|
|
|
|
static struct intel_engine_cs *
|
|
sched_lock_engine(const struct i915_sched_node *node,
|
|
struct intel_engine_cs *locked,
|
|
struct sched_cache *cache)
|
|
{
|
|
const struct i915_request *rq = node_to_request(node);
|
|
struct intel_engine_cs *engine;
|
|
|
|
GEM_BUG_ON(!locked);
|
|
|
|
/*
|
|
* Virtual engines complicate acquiring the engine timeline lock,
|
|
* as their rq->engine pointer is not stable until under that
|
|
* engine lock. The simple ploy we use is to take the lock then
|
|
* check that the rq still belongs to the newly locked engine.
|
|
*/
|
|
while (locked != (engine = READ_ONCE(rq->engine))) {
|
|
spin_unlock(&locked->active.lock);
|
|
memset(cache, 0, sizeof(*cache));
|
|
spin_lock(&engine->active.lock);
|
|
locked = engine;
|
|
}
|
|
|
|
GEM_BUG_ON(locked != engine);
|
|
return locked;
|
|
}
|
|
|
|
static inline int rq_prio(const struct i915_request *rq)
|
|
{
|
|
return rq->sched.attr.priority | __NO_PREEMPTION;
|
|
}
|
|
|
|
static inline bool need_preempt(int prio, int active)
|
|
{
|
|
/*
|
|
* Allow preemption of low -> normal -> high, but we do
|
|
* not allow low priority tasks to preempt other low priority
|
|
* tasks under the impression that latency for low priority
|
|
* tasks does not matter (as much as background throughput),
|
|
* so kiss.
|
|
*/
|
|
return prio >= max(I915_PRIORITY_NORMAL, active);
|
|
}
|
|
|
|
static void kick_submission(struct intel_engine_cs *engine,
|
|
const struct i915_request *rq,
|
|
int prio)
|
|
{
|
|
const struct i915_request *inflight;
|
|
|
|
/*
|
|
* We only need to kick the tasklet once for the high priority
|
|
* new context we add into the queue.
|
|
*/
|
|
if (prio <= engine->execlists.queue_priority_hint)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
|
|
/* Nothing currently active? We're overdue for a submission! */
|
|
inflight = execlists_active(&engine->execlists);
|
|
if (!inflight)
|
|
goto unlock;
|
|
|
|
/*
|
|
* If we are already the currently executing context, don't
|
|
* bother evaluating if we should preempt ourselves.
|
|
*/
|
|
if (inflight->hw_context == rq->hw_context)
|
|
goto unlock;
|
|
|
|
engine->execlists.queue_priority_hint = prio;
|
|
if (need_preempt(prio, rq_prio(inflight)))
|
|
tasklet_hi_schedule(&engine->execlists.tasklet);
|
|
|
|
unlock:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void __i915_schedule(struct i915_sched_node *node,
|
|
const struct i915_sched_attr *attr)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
struct i915_dependency *dep, *p;
|
|
struct i915_dependency stack;
|
|
const int prio = attr->priority;
|
|
struct sched_cache cache;
|
|
LIST_HEAD(dfs);
|
|
|
|
/* Needed in order to use the temporary link inside i915_dependency */
|
|
lockdep_assert_held(&schedule_lock);
|
|
GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
|
|
|
|
if (prio <= READ_ONCE(node->attr.priority))
|
|
return;
|
|
|
|
if (node_signaled(node))
|
|
return;
|
|
|
|
stack.signaler = node;
|
|
list_add(&stack.dfs_link, &dfs);
|
|
|
|
/*
|
|
* Recursively bump all dependent priorities to match the new request.
|
|
*
|
|
* A naive approach would be to use recursion:
|
|
* static void update_priorities(struct i915_sched_node *node, prio) {
|
|
* list_for_each_entry(dep, &node->signalers_list, signal_link)
|
|
* update_priorities(dep->signal, prio)
|
|
* queue_request(node);
|
|
* }
|
|
* but that may have unlimited recursion depth and so runs a very
|
|
* real risk of overunning the kernel stack. Instead, we build
|
|
* a flat list of all dependencies starting with the current request.
|
|
* As we walk the list of dependencies, we add all of its dependencies
|
|
* to the end of the list (this may include an already visited
|
|
* request) and continue to walk onwards onto the new dependencies. The
|
|
* end result is a topological list of requests in reverse order, the
|
|
* last element in the list is the request we must execute first.
|
|
*/
|
|
list_for_each_entry(dep, &dfs, dfs_link) {
|
|
struct i915_sched_node *node = dep->signaler;
|
|
|
|
/* If we are already flying, we know we have no signalers */
|
|
if (node_started(node))
|
|
continue;
|
|
|
|
/*
|
|
* Within an engine, there can be no cycle, but we may
|
|
* refer to the same dependency chain multiple times
|
|
* (redundant dependencies are not eliminated) and across
|
|
* engines.
|
|
*/
|
|
list_for_each_entry(p, &node->signalers_list, signal_link) {
|
|
GEM_BUG_ON(p == dep); /* no cycles! */
|
|
|
|
if (node_signaled(p->signaler))
|
|
continue;
|
|
|
|
if (prio > READ_ONCE(p->signaler->attr.priority))
|
|
list_move_tail(&p->dfs_link, &dfs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we didn't need to bump any existing priorities, and we haven't
|
|
* yet submitted this request (i.e. there is no potential race with
|
|
* execlists_submit_request()), we can set our own priority and skip
|
|
* acquiring the engine locks.
|
|
*/
|
|
if (node->attr.priority == I915_PRIORITY_INVALID) {
|
|
GEM_BUG_ON(!list_empty(&node->link));
|
|
node->attr = *attr;
|
|
|
|
if (stack.dfs_link.next == stack.dfs_link.prev)
|
|
return;
|
|
|
|
__list_del_entry(&stack.dfs_link);
|
|
}
|
|
|
|
memset(&cache, 0, sizeof(cache));
|
|
engine = node_to_request(node)->engine;
|
|
spin_lock(&engine->active.lock);
|
|
|
|
/* Fifo and depth-first replacement ensure our deps execute before us */
|
|
engine = sched_lock_engine(node, engine, &cache);
|
|
list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
|
|
INIT_LIST_HEAD(&dep->dfs_link);
|
|
|
|
node = dep->signaler;
|
|
engine = sched_lock_engine(node, engine, &cache);
|
|
lockdep_assert_held(&engine->active.lock);
|
|
|
|
/* Recheck after acquiring the engine->timeline.lock */
|
|
if (prio <= node->attr.priority || node_signaled(node))
|
|
continue;
|
|
|
|
GEM_BUG_ON(node_to_request(node)->engine != engine);
|
|
|
|
node->attr.priority = prio;
|
|
|
|
if (list_empty(&node->link)) {
|
|
/*
|
|
* If the request is not in the priolist queue because
|
|
* it is not yet runnable, then it doesn't contribute
|
|
* to our preemption decisions. On the other hand,
|
|
* if the request is on the HW, it too is not in the
|
|
* queue; but in that case we may still need to reorder
|
|
* the inflight requests.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
if (!intel_engine_is_virtual(engine) &&
|
|
!i915_request_is_active(node_to_request(node))) {
|
|
if (!cache.priolist)
|
|
cache.priolist =
|
|
i915_sched_lookup_priolist(engine,
|
|
prio);
|
|
list_move_tail(&node->link, cache.priolist);
|
|
}
|
|
|
|
/* Defer (tasklet) submission until after all of our updates. */
|
|
kick_submission(engine, node_to_request(node), prio);
|
|
}
|
|
|
|
spin_unlock(&engine->active.lock);
|
|
}
|
|
|
|
void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
|
|
{
|
|
spin_lock_irq(&schedule_lock);
|
|
__i915_schedule(&rq->sched, attr);
|
|
spin_unlock_irq(&schedule_lock);
|
|
}
|
|
|
|
static void __bump_priority(struct i915_sched_node *node, unsigned int bump)
|
|
{
|
|
struct i915_sched_attr attr = node->attr;
|
|
|
|
attr.priority |= bump;
|
|
__i915_schedule(node, &attr);
|
|
}
|
|
|
|
void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
|
|
{
|
|
unsigned long flags;
|
|
|
|
GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
|
|
if (READ_ONCE(rq->sched.attr.priority) & bump)
|
|
return;
|
|
|
|
spin_lock_irqsave(&schedule_lock, flags);
|
|
__bump_priority(&rq->sched, bump);
|
|
spin_unlock_irqrestore(&schedule_lock, flags);
|
|
}
|
|
|
|
void i915_sched_node_init(struct i915_sched_node *node)
|
|
{
|
|
INIT_LIST_HEAD(&node->signalers_list);
|
|
INIT_LIST_HEAD(&node->waiters_list);
|
|
INIT_LIST_HEAD(&node->link);
|
|
|
|
i915_sched_node_reinit(node);
|
|
}
|
|
|
|
void i915_sched_node_reinit(struct i915_sched_node *node)
|
|
{
|
|
node->attr.priority = I915_PRIORITY_INVALID;
|
|
node->semaphores = 0;
|
|
node->flags = 0;
|
|
|
|
GEM_BUG_ON(!list_empty(&node->signalers_list));
|
|
GEM_BUG_ON(!list_empty(&node->waiters_list));
|
|
GEM_BUG_ON(!list_empty(&node->link));
|
|
}
|
|
|
|
static struct i915_dependency *
|
|
i915_dependency_alloc(void)
|
|
{
|
|
return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
|
|
}
|
|
|
|
static void
|
|
i915_dependency_free(struct i915_dependency *dep)
|
|
{
|
|
kmem_cache_free(global.slab_dependencies, dep);
|
|
}
|
|
|
|
bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
|
|
struct i915_sched_node *signal,
|
|
struct i915_dependency *dep,
|
|
unsigned long flags)
|
|
{
|
|
bool ret = false;
|
|
|
|
spin_lock_irq(&schedule_lock);
|
|
|
|
if (!node_signaled(signal)) {
|
|
INIT_LIST_HEAD(&dep->dfs_link);
|
|
list_add(&dep->wait_link, &signal->waiters_list);
|
|
list_add(&dep->signal_link, &node->signalers_list);
|
|
dep->signaler = signal;
|
|
dep->waiter = node;
|
|
dep->flags = flags;
|
|
|
|
/* Keep track of whether anyone on this chain has a semaphore */
|
|
if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN &&
|
|
!node_started(signal))
|
|
node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
|
|
|
|
/*
|
|
* As we do not allow WAIT to preempt inflight requests,
|
|
* once we have executed a request, along with triggering
|
|
* any execution callbacks, we must preserve its ordering
|
|
* within the non-preemptible FIFO.
|
|
*/
|
|
BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK);
|
|
if (flags & I915_DEPENDENCY_EXTERNAL)
|
|
__bump_priority(signal, __NO_PREEMPTION);
|
|
|
|
ret = true;
|
|
}
|
|
|
|
spin_unlock_irq(&schedule_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int i915_sched_node_add_dependency(struct i915_sched_node *node,
|
|
struct i915_sched_node *signal)
|
|
{
|
|
struct i915_dependency *dep;
|
|
|
|
dep = i915_dependency_alloc();
|
|
if (!dep)
|
|
return -ENOMEM;
|
|
|
|
if (!__i915_sched_node_add_dependency(node, signal, dep,
|
|
I915_DEPENDENCY_EXTERNAL |
|
|
I915_DEPENDENCY_ALLOC))
|
|
i915_dependency_free(dep);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_sched_node_fini(struct i915_sched_node *node)
|
|
{
|
|
struct i915_dependency *dep, *tmp;
|
|
|
|
spin_lock_irq(&schedule_lock);
|
|
|
|
/*
|
|
* Everyone we depended upon (the fences we wait to be signaled)
|
|
* should retire before us and remove themselves from our list.
|
|
* However, retirement is run independently on each timeline and
|
|
* so we may be called out-of-order.
|
|
*/
|
|
list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
|
|
GEM_BUG_ON(!node_signaled(dep->signaler));
|
|
GEM_BUG_ON(!list_empty(&dep->dfs_link));
|
|
|
|
list_del(&dep->wait_link);
|
|
if (dep->flags & I915_DEPENDENCY_ALLOC)
|
|
i915_dependency_free(dep);
|
|
}
|
|
INIT_LIST_HEAD(&node->signalers_list);
|
|
|
|
/* Remove ourselves from everyone who depends upon us */
|
|
list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
|
|
GEM_BUG_ON(dep->signaler != node);
|
|
GEM_BUG_ON(!list_empty(&dep->dfs_link));
|
|
|
|
list_del(&dep->signal_link);
|
|
if (dep->flags & I915_DEPENDENCY_ALLOC)
|
|
i915_dependency_free(dep);
|
|
}
|
|
INIT_LIST_HEAD(&node->waiters_list);
|
|
|
|
spin_unlock_irq(&schedule_lock);
|
|
}
|
|
|
|
static void i915_global_scheduler_shrink(void)
|
|
{
|
|
kmem_cache_shrink(global.slab_dependencies);
|
|
kmem_cache_shrink(global.slab_priorities);
|
|
}
|
|
|
|
static void i915_global_scheduler_exit(void)
|
|
{
|
|
kmem_cache_destroy(global.slab_dependencies);
|
|
kmem_cache_destroy(global.slab_priorities);
|
|
}
|
|
|
|
static struct i915_global_scheduler global = { {
|
|
.shrink = i915_global_scheduler_shrink,
|
|
.exit = i915_global_scheduler_exit,
|
|
} };
|
|
|
|
int __init i915_global_scheduler_init(void)
|
|
{
|
|
global.slab_dependencies = KMEM_CACHE(i915_dependency,
|
|
SLAB_HWCACHE_ALIGN);
|
|
if (!global.slab_dependencies)
|
|
return -ENOMEM;
|
|
|
|
global.slab_priorities = KMEM_CACHE(i915_priolist,
|
|
SLAB_HWCACHE_ALIGN);
|
|
if (!global.slab_priorities)
|
|
goto err_priorities;
|
|
|
|
i915_global_register(&global.base);
|
|
return 0;
|
|
|
|
err_priorities:
|
|
kmem_cache_destroy(global.slab_priorities);
|
|
return -ENOMEM;
|
|
}
|