9d34e5db07
If we trigger a tracepoint for batch buffer submission, it is a reasonable assumption that we wish to also trace the batch buffer completion. So in order to capture the completion events, we need to enable irqs... However, we cannot rely on the completion event to disable the irq later, so we defer the irq disable to the retire request. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
4928 lines
129 KiB
C
4928 lines
129 KiB
C
/*
|
|
* Copyright © 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*
|
|
*/
|
|
|
|
#include "drmP.h"
|
|
#include "drm.h"
|
|
#include "i915_drm.h"
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
#include <linux/swap.h>
|
|
#include <linux/pci.h>
|
|
|
|
#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
|
|
|
|
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
|
|
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
|
|
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
|
|
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
|
|
int write);
|
|
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
|
|
uint64_t offset,
|
|
uint64_t size);
|
|
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
|
|
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
|
|
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
|
|
unsigned alignment);
|
|
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
|
|
static int i915_gem_evict_something(struct drm_device *dev, int min_size);
|
|
static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
|
|
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv);
|
|
|
|
static LIST_HEAD(shrink_list);
|
|
static DEFINE_SPINLOCK(shrink_list_lock);
|
|
|
|
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
if (start >= end ||
|
|
(start & (PAGE_SIZE - 1)) != 0 ||
|
|
(end & (PAGE_SIZE - 1)) != 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
drm_mm_init(&dev_priv->mm.gtt_space, start,
|
|
end - start);
|
|
|
|
dev->gtt_total = (uint32_t) (end - start);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_init_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_init *args = data;
|
|
int ret;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_get_aperture *args = data;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
args->aper_size = dev->gtt_total;
|
|
args->aper_available_size = (args->aper_size -
|
|
atomic_read(&dev->pin_memory));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Creates a new mm object and returns a handle to it.
|
|
*/
|
|
int
|
|
i915_gem_create_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_create *args = data;
|
|
struct drm_gem_object *obj;
|
|
int ret;
|
|
u32 handle;
|
|
|
|
args->size = roundup(args->size, PAGE_SIZE);
|
|
|
|
/* Allocate the new object */
|
|
obj = drm_gem_object_alloc(dev, args->size);
|
|
if (obj == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = drm_gem_handle_create(file_priv, obj, &handle);
|
|
mutex_lock(&dev->struct_mutex);
|
|
drm_gem_object_handle_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
args->handle = handle;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
fast_shmem_read(struct page **pages,
|
|
loff_t page_base, int page_offset,
|
|
char __user *data,
|
|
int length)
|
|
{
|
|
char __iomem *vaddr;
|
|
int unwritten;
|
|
|
|
vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
|
|
if (vaddr == NULL)
|
|
return -ENOMEM;
|
|
unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
|
|
kunmap_atomic(vaddr, KM_USER0);
|
|
|
|
if (unwritten)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
|
|
{
|
|
drm_i915_private_t *dev_priv = obj->dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
|
|
obj_priv->tiling_mode != I915_TILING_NONE;
|
|
}
|
|
|
|
static inline int
|
|
slow_shmem_copy(struct page *dst_page,
|
|
int dst_offset,
|
|
struct page *src_page,
|
|
int src_offset,
|
|
int length)
|
|
{
|
|
char *dst_vaddr, *src_vaddr;
|
|
|
|
dst_vaddr = kmap_atomic(dst_page, KM_USER0);
|
|
if (dst_vaddr == NULL)
|
|
return -ENOMEM;
|
|
|
|
src_vaddr = kmap_atomic(src_page, KM_USER1);
|
|
if (src_vaddr == NULL) {
|
|
kunmap_atomic(dst_vaddr, KM_USER0);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
|
|
|
|
kunmap_atomic(src_vaddr, KM_USER1);
|
|
kunmap_atomic(dst_vaddr, KM_USER0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
slow_shmem_bit17_copy(struct page *gpu_page,
|
|
int gpu_offset,
|
|
struct page *cpu_page,
|
|
int cpu_offset,
|
|
int length,
|
|
int is_read)
|
|
{
|
|
char *gpu_vaddr, *cpu_vaddr;
|
|
|
|
/* Use the unswizzled path if this page isn't affected. */
|
|
if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
|
|
if (is_read)
|
|
return slow_shmem_copy(cpu_page, cpu_offset,
|
|
gpu_page, gpu_offset, length);
|
|
else
|
|
return slow_shmem_copy(gpu_page, gpu_offset,
|
|
cpu_page, cpu_offset, length);
|
|
}
|
|
|
|
gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
|
|
if (gpu_vaddr == NULL)
|
|
return -ENOMEM;
|
|
|
|
cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
|
|
if (cpu_vaddr == NULL) {
|
|
kunmap_atomic(gpu_vaddr, KM_USER0);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Copy the data, XORing A6 with A17 (1). The user already knows he's
|
|
* XORing with the other bits (A9 for Y, A9 and A10 for X)
|
|
*/
|
|
while (length > 0) {
|
|
int cacheline_end = ALIGN(gpu_offset + 1, 64);
|
|
int this_length = min(cacheline_end - gpu_offset, length);
|
|
int swizzled_gpu_offset = gpu_offset ^ 64;
|
|
|
|
if (is_read) {
|
|
memcpy(cpu_vaddr + cpu_offset,
|
|
gpu_vaddr + swizzled_gpu_offset,
|
|
this_length);
|
|
} else {
|
|
memcpy(gpu_vaddr + swizzled_gpu_offset,
|
|
cpu_vaddr + cpu_offset,
|
|
this_length);
|
|
}
|
|
cpu_offset += this_length;
|
|
gpu_offset += this_length;
|
|
length -= this_length;
|
|
}
|
|
|
|
kunmap_atomic(cpu_vaddr, KM_USER1);
|
|
kunmap_atomic(gpu_vaddr, KM_USER0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This is the fast shmem pread path, which attempts to copy_from_user directly
|
|
* from the backing pages of the object to the user's address space. On a
|
|
* fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pread *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
ssize_t remain;
|
|
loff_t offset, page_base;
|
|
char __user *user_data;
|
|
int page_offset, page_length;
|
|
int ret;
|
|
|
|
user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
remain = args->size;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret != 0)
|
|
goto fail_unlock;
|
|
|
|
ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
|
|
args->size);
|
|
if (ret != 0)
|
|
goto fail_put_pages;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_base = (offset & ~(PAGE_SIZE-1));
|
|
page_offset = offset & (PAGE_SIZE-1);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
ret = fast_shmem_read(obj_priv->pages,
|
|
page_base, page_offset,
|
|
user_data, page_length);
|
|
if (ret)
|
|
goto fail_put_pages;
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
fail_put_pages:
|
|
i915_gem_object_put_pages(obj);
|
|
fail_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline gfp_t
|
|
i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
|
|
{
|
|
return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
|
|
}
|
|
|
|
static inline void
|
|
i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
|
|
{
|
|
mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
|
|
}
|
|
|
|
static int
|
|
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
|
|
{
|
|
int ret;
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
|
|
/* If we've insufficient memory to map in the pages, attempt
|
|
* to make some space by throwing out some old buffers.
|
|
*/
|
|
if (ret == -ENOMEM) {
|
|
struct drm_device *dev = obj->dev;
|
|
gfp_t gfp;
|
|
|
|
ret = i915_gem_evict_something(dev, obj->size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gfp = i915_gem_object_get_page_gfp_mask(obj);
|
|
i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
|
|
ret = i915_gem_object_get_pages(obj);
|
|
i915_gem_object_set_page_gfp_mask (obj, gfp);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* This is the fallback shmem pread path, which allocates temporary storage
|
|
* in kernel space to copy_to_user into outside of the struct_mutex, so we
|
|
* can copy out of the object's backing pages while holding the struct mutex
|
|
* and not take page faults.
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pread *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct mm_struct *mm = current->mm;
|
|
struct page **user_pages;
|
|
ssize_t remain;
|
|
loff_t offset, pinned_pages, i;
|
|
loff_t first_data_page, last_data_page, num_pages;
|
|
int shmem_page_index, shmem_page_offset;
|
|
int data_page_index, data_page_offset;
|
|
int page_length;
|
|
int ret;
|
|
uint64_t data_ptr = args->data_ptr;
|
|
int do_bit17_swizzling;
|
|
|
|
remain = args->size;
|
|
|
|
/* Pin the user pages containing the data. We can't fault while
|
|
* holding the struct mutex, yet we want to hold it while
|
|
* dereferencing the user data.
|
|
*/
|
|
first_data_page = data_ptr / PAGE_SIZE;
|
|
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
|
|
num_pages = last_data_page - first_data_page + 1;
|
|
|
|
user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
|
|
if (user_pages == NULL)
|
|
return -ENOMEM;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
|
|
num_pages, 1, 0, user_pages, NULL);
|
|
up_read(&mm->mmap_sem);
|
|
if (pinned_pages < num_pages) {
|
|
ret = -EFAULT;
|
|
goto fail_put_user_pages;
|
|
}
|
|
|
|
do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
ret = i915_gem_object_get_pages_or_evict(obj);
|
|
if (ret)
|
|
goto fail_unlock;
|
|
|
|
ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
|
|
args->size);
|
|
if (ret != 0)
|
|
goto fail_put_pages;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_index = page number within shmem file
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* data_page_index = page number in get_user_pages return
|
|
* data_page_offset = offset with data_page_index page.
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_index = offset / PAGE_SIZE;
|
|
shmem_page_offset = offset & ~PAGE_MASK;
|
|
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
|
|
data_page_offset = data_ptr & ~PAGE_MASK;
|
|
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
if ((data_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - data_page_offset;
|
|
|
|
if (do_bit17_swizzling) {
|
|
ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
|
|
shmem_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length,
|
|
1);
|
|
} else {
|
|
ret = slow_shmem_copy(user_pages[data_page_index],
|
|
data_page_offset,
|
|
obj_priv->pages[shmem_page_index],
|
|
shmem_page_offset,
|
|
page_length);
|
|
}
|
|
if (ret)
|
|
goto fail_put_pages;
|
|
|
|
remain -= page_length;
|
|
data_ptr += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
fail_put_pages:
|
|
i915_gem_object_put_pages(obj);
|
|
fail_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
fail_put_user_pages:
|
|
for (i = 0; i < pinned_pages; i++) {
|
|
SetPageDirty(user_pages[i]);
|
|
page_cache_release(user_pages[i]);
|
|
}
|
|
drm_free_large(user_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Reads data from the object referenced by handle.
|
|
*
|
|
* On error, the contents of *data are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_pread *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL)
|
|
return -EBADF;
|
|
obj_priv = obj->driver_private;
|
|
|
|
/* Bounds check source.
|
|
*
|
|
* XXX: This could use review for overflow issues...
|
|
*/
|
|
if (args->offset > obj->size || args->size > obj->size ||
|
|
args->offset + args->size > obj->size) {
|
|
drm_gem_object_unreference(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (i915_gem_object_needs_bit17_swizzle(obj)) {
|
|
ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
|
|
} else {
|
|
ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
|
|
if (ret != 0)
|
|
ret = i915_gem_shmem_pread_slow(dev, obj, args,
|
|
file_priv);
|
|
}
|
|
|
|
drm_gem_object_unreference(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This is the fast write path which cannot handle
|
|
* page faults in the source data
|
|
*/
|
|
|
|
static inline int
|
|
fast_user_write(struct io_mapping *mapping,
|
|
loff_t page_base, int page_offset,
|
|
char __user *user_data,
|
|
int length)
|
|
{
|
|
char *vaddr_atomic;
|
|
unsigned long unwritten;
|
|
|
|
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
|
|
unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
|
|
user_data, length);
|
|
io_mapping_unmap_atomic(vaddr_atomic);
|
|
if (unwritten)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/* Here's the write path which can sleep for
|
|
* page faults
|
|
*/
|
|
|
|
static inline int
|
|
slow_kernel_write(struct io_mapping *mapping,
|
|
loff_t gtt_base, int gtt_offset,
|
|
struct page *user_page, int user_offset,
|
|
int length)
|
|
{
|
|
char *src_vaddr, *dst_vaddr;
|
|
unsigned long unwritten;
|
|
|
|
dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
|
|
src_vaddr = kmap_atomic(user_page, KM_USER1);
|
|
unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
|
|
src_vaddr + user_offset,
|
|
length);
|
|
kunmap_atomic(src_vaddr, KM_USER1);
|
|
io_mapping_unmap_atomic(dst_vaddr);
|
|
if (unwritten)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
fast_shmem_write(struct page **pages,
|
|
loff_t page_base, int page_offset,
|
|
char __user *data,
|
|
int length)
|
|
{
|
|
char __iomem *vaddr;
|
|
unsigned long unwritten;
|
|
|
|
vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
|
|
if (vaddr == NULL)
|
|
return -ENOMEM;
|
|
unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
|
|
kunmap_atomic(vaddr, KM_USER0);
|
|
|
|
if (unwritten)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This is the fast pwrite path, where we copy the data directly from the
|
|
* user into the GTT, uncached.
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
ssize_t remain;
|
|
loff_t offset, page_base;
|
|
char __user *user_data;
|
|
int page_offset, page_length;
|
|
int ret;
|
|
|
|
user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
remain = args->size;
|
|
if (!access_ok(VERIFY_READ, user_data, remain))
|
|
return -EFAULT;
|
|
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = i915_gem_object_pin(obj, 0);
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = obj_priv->gtt_offset + args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_base = (offset & ~(PAGE_SIZE-1));
|
|
page_offset = offset & (PAGE_SIZE-1);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
|
|
page_offset, user_data, page_length);
|
|
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
*/
|
|
if (ret)
|
|
goto fail;
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
fail:
|
|
i915_gem_object_unpin(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* This is the fallback GTT pwrite path, which uses get_user_pages to pin
|
|
* the memory and maps it using kmap_atomic for copying.
|
|
*
|
|
* This code resulted in x11perf -rgb10text consuming about 10% more CPU
|
|
* than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
ssize_t remain;
|
|
loff_t gtt_page_base, offset;
|
|
loff_t first_data_page, last_data_page, num_pages;
|
|
loff_t pinned_pages, i;
|
|
struct page **user_pages;
|
|
struct mm_struct *mm = current->mm;
|
|
int gtt_page_offset, data_page_offset, data_page_index, page_length;
|
|
int ret;
|
|
uint64_t data_ptr = args->data_ptr;
|
|
|
|
remain = args->size;
|
|
|
|
/* Pin the user pages containing the data. We can't fault while
|
|
* holding the struct mutex, and all of the pwrite implementations
|
|
* want to hold it while dereferencing the user data.
|
|
*/
|
|
first_data_page = data_ptr / PAGE_SIZE;
|
|
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
|
|
num_pages = last_data_page - first_data_page + 1;
|
|
|
|
user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
|
|
if (user_pages == NULL)
|
|
return -ENOMEM;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
|
|
num_pages, 0, 0, user_pages, NULL);
|
|
up_read(&mm->mmap_sem);
|
|
if (pinned_pages < num_pages) {
|
|
ret = -EFAULT;
|
|
goto out_unpin_pages;
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = i915_gem_object_pin(obj, 0);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
|
|
if (ret)
|
|
goto out_unpin_object;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = obj_priv->gtt_offset + args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* gtt_page_base = page offset within aperture
|
|
* gtt_page_offset = offset within page in aperture
|
|
* data_page_index = page number in get_user_pages return
|
|
* data_page_offset = offset with data_page_index page.
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
gtt_page_base = offset & PAGE_MASK;
|
|
gtt_page_offset = offset & ~PAGE_MASK;
|
|
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
|
|
data_page_offset = data_ptr & ~PAGE_MASK;
|
|
|
|
page_length = remain;
|
|
if ((gtt_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - gtt_page_offset;
|
|
if ((data_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - data_page_offset;
|
|
|
|
ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
|
|
gtt_page_base, gtt_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length);
|
|
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
*/
|
|
if (ret)
|
|
goto out_unpin_object;
|
|
|
|
remain -= page_length;
|
|
offset += page_length;
|
|
data_ptr += page_length;
|
|
}
|
|
|
|
out_unpin_object:
|
|
i915_gem_object_unpin(obj);
|
|
out_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
out_unpin_pages:
|
|
for (i = 0; i < pinned_pages; i++)
|
|
page_cache_release(user_pages[i]);
|
|
drm_free_large(user_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* This is the fast shmem pwrite path, which attempts to directly
|
|
* copy_from_user into the kmapped pages backing the object.
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
ssize_t remain;
|
|
loff_t offset, page_base;
|
|
char __user *user_data;
|
|
int page_offset, page_length;
|
|
int ret;
|
|
|
|
user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
remain = args->size;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret != 0)
|
|
goto fail_unlock;
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
|
|
if (ret != 0)
|
|
goto fail_put_pages;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = args->offset;
|
|
obj_priv->dirty = 1;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_base = (offset & ~(PAGE_SIZE-1));
|
|
page_offset = offset & (PAGE_SIZE-1);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
ret = fast_shmem_write(obj_priv->pages,
|
|
page_base, page_offset,
|
|
user_data, page_length);
|
|
if (ret)
|
|
goto fail_put_pages;
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
fail_put_pages:
|
|
i915_gem_object_put_pages(obj);
|
|
fail_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* This is the fallback shmem pwrite path, which uses get_user_pages to pin
|
|
* the memory and maps it using kmap_atomic for copying.
|
|
*
|
|
* This avoids taking mmap_sem for faulting on the user's address while the
|
|
* struct_mutex is held.
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct mm_struct *mm = current->mm;
|
|
struct page **user_pages;
|
|
ssize_t remain;
|
|
loff_t offset, pinned_pages, i;
|
|
loff_t first_data_page, last_data_page, num_pages;
|
|
int shmem_page_index, shmem_page_offset;
|
|
int data_page_index, data_page_offset;
|
|
int page_length;
|
|
int ret;
|
|
uint64_t data_ptr = args->data_ptr;
|
|
int do_bit17_swizzling;
|
|
|
|
remain = args->size;
|
|
|
|
/* Pin the user pages containing the data. We can't fault while
|
|
* holding the struct mutex, and all of the pwrite implementations
|
|
* want to hold it while dereferencing the user data.
|
|
*/
|
|
first_data_page = data_ptr / PAGE_SIZE;
|
|
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
|
|
num_pages = last_data_page - first_data_page + 1;
|
|
|
|
user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
|
|
if (user_pages == NULL)
|
|
return -ENOMEM;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
|
|
num_pages, 0, 0, user_pages, NULL);
|
|
up_read(&mm->mmap_sem);
|
|
if (pinned_pages < num_pages) {
|
|
ret = -EFAULT;
|
|
goto fail_put_user_pages;
|
|
}
|
|
|
|
do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
ret = i915_gem_object_get_pages_or_evict(obj);
|
|
if (ret)
|
|
goto fail_unlock;
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
|
|
if (ret != 0)
|
|
goto fail_put_pages;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = args->offset;
|
|
obj_priv->dirty = 1;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_index = page number within shmem file
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* data_page_index = page number in get_user_pages return
|
|
* data_page_offset = offset with data_page_index page.
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_index = offset / PAGE_SIZE;
|
|
shmem_page_offset = offset & ~PAGE_MASK;
|
|
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
|
|
data_page_offset = data_ptr & ~PAGE_MASK;
|
|
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
if ((data_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - data_page_offset;
|
|
|
|
if (do_bit17_swizzling) {
|
|
ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
|
|
shmem_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length,
|
|
0);
|
|
} else {
|
|
ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
|
|
shmem_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length);
|
|
}
|
|
if (ret)
|
|
goto fail_put_pages;
|
|
|
|
remain -= page_length;
|
|
data_ptr += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
fail_put_pages:
|
|
i915_gem_object_put_pages(obj);
|
|
fail_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
fail_put_user_pages:
|
|
for (i = 0; i < pinned_pages; i++)
|
|
page_cache_release(user_pages[i]);
|
|
drm_free_large(user_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Writes data to the object referenced by handle.
|
|
*
|
|
* On error, the contents of the buffer that were to be modified are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_pwrite *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret = 0;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL)
|
|
return -EBADF;
|
|
obj_priv = obj->driver_private;
|
|
|
|
/* Bounds check destination.
|
|
*
|
|
* XXX: This could use review for overflow issues...
|
|
*/
|
|
if (args->offset > obj->size || args->size > obj->size ||
|
|
args->offset + args->size > obj->size) {
|
|
drm_gem_object_unreference(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* We can only do the GTT pwrite on untiled buffers, as otherwise
|
|
* it would end up going through the fenced access, and we'll get
|
|
* different detiling behavior between reading and writing.
|
|
* pread/pwrite currently are reading and writing from the CPU
|
|
* perspective, requiring manual detiling by the client.
|
|
*/
|
|
if (obj_priv->phys_obj)
|
|
ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
|
|
else if (obj_priv->tiling_mode == I915_TILING_NONE &&
|
|
dev->gtt_total != 0) {
|
|
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
|
|
if (ret == -EFAULT) {
|
|
ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
|
|
file_priv);
|
|
}
|
|
} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
|
|
ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
|
|
} else {
|
|
ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
|
|
if (ret == -EFAULT) {
|
|
ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
|
|
file_priv);
|
|
}
|
|
}
|
|
|
|
#if WATCH_PWRITE
|
|
if (ret)
|
|
DRM_INFO("pwrite failed %d\n", ret);
|
|
#endif
|
|
|
|
drm_gem_object_unreference(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called when user space prepares to use an object with the CPU, either
|
|
* through the mmap ioctl's mapping or a GTT mapping.
|
|
*/
|
|
int
|
|
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_set_domain *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
uint32_t read_domains = args->read_domains;
|
|
uint32_t write_domain = args->write_domain;
|
|
int ret;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
/* Only handle setting domains to types used by the CPU. */
|
|
if (write_domain & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
if (read_domains & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
/* Having something in the write domain implies it's in the read
|
|
* domain, and only that read domain. Enforce that in the request.
|
|
*/
|
|
if (write_domain != 0 && read_domains != write_domain)
|
|
return -EINVAL;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL)
|
|
return -EBADF;
|
|
obj_priv = obj->driver_private;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
intel_mark_busy(dev, obj);
|
|
|
|
#if WATCH_BUF
|
|
DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
|
|
obj, obj->size, read_domains, write_domain);
|
|
#endif
|
|
if (read_domains & I915_GEM_DOMAIN_GTT) {
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
|
|
|
|
/* Update the LRU on the fence for the CPU access that's
|
|
* about to occur.
|
|
*/
|
|
if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
|
|
list_move_tail(&obj_priv->fence_list,
|
|
&dev_priv->mm.fence_list);
|
|
}
|
|
|
|
/* Silently promote "you're not bound, there was nothing to do"
|
|
* to success, since the client was just asking us to
|
|
* make sure everything was done.
|
|
*/
|
|
if (ret == -EINVAL)
|
|
ret = 0;
|
|
} else {
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
|
|
}
|
|
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called when user space has done writes to this buffer
|
|
*/
|
|
int
|
|
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_sw_finish *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret = 0;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EBADF;
|
|
}
|
|
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s: sw_finish %d (%p %zd)\n",
|
|
__func__, args->handle, obj, obj->size);
|
|
#endif
|
|
obj_priv = obj->driver_private;
|
|
|
|
/* Pinned buffers may be scanout, so flush the cache */
|
|
if (obj_priv->pin_count)
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Maps the contents of an object, returning the address it is mapped
|
|
* into.
|
|
*
|
|
* While the mapping holds a reference on the contents of the object, it doesn't
|
|
* imply a ref on the object itself.
|
|
*/
|
|
int
|
|
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_mmap *args = data;
|
|
struct drm_gem_object *obj;
|
|
loff_t offset;
|
|
unsigned long addr;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL)
|
|
return -EBADF;
|
|
|
|
offset = args->offset;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
addr = do_mmap(obj->filp, 0, args->size,
|
|
PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
args->offset);
|
|
up_write(¤t->mm->mmap_sem);
|
|
mutex_lock(&dev->struct_mutex);
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
if (IS_ERR((void *)addr))
|
|
return addr;
|
|
|
|
args->addr_ptr = (uint64_t) addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_fault - fault a page into the GTT
|
|
* vma: VMA in question
|
|
* vmf: fault info
|
|
*
|
|
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
|
|
* from userspace. The fault handler takes care of binding the object to
|
|
* the GTT (if needed), allocating and programming a fence register (again,
|
|
* only if needed based on whether the old reg is still valid or the object
|
|
* is tiled) and inserting a new PTE into the faulting process.
|
|
*
|
|
* Note that the faulting process may involve evicting existing objects
|
|
* from the GTT and/or fence registers to make room. So performance may
|
|
* suffer if the GTT working set is large or there are few fence registers
|
|
* left.
|
|
*/
|
|
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct drm_gem_object *obj = vma->vm_private_data;
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
pgoff_t page_offset;
|
|
unsigned long pfn;
|
|
int ret = 0;
|
|
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
|
|
|
|
/* We don't use vmf->pgoff since that has the fake offset */
|
|
page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
|
|
PAGE_SHIFT;
|
|
|
|
/* Now bind it into the GTT if needed */
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (!obj_priv->gtt_space) {
|
|
ret = i915_gem_object_bind_to_gtt(obj, 0);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write);
|
|
if (ret)
|
|
goto unlock;
|
|
}
|
|
|
|
/* Need a new fence register? */
|
|
if (obj_priv->tiling_mode != I915_TILING_NONE) {
|
|
ret = i915_gem_object_get_fence_reg(obj);
|
|
if (ret)
|
|
goto unlock;
|
|
}
|
|
|
|
pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
|
|
page_offset;
|
|
|
|
/* Finally, remap it using the new GTT offset */
|
|
ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
case -ERESTARTSYS:
|
|
return VM_FAULT_NOPAGE;
|
|
case -ENOMEM:
|
|
case -EAGAIN:
|
|
return VM_FAULT_OOM;
|
|
default:
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i915_gem_create_mmap_offset - create a fake mmap offset for an object
|
|
* @obj: obj in question
|
|
*
|
|
* GEM memory mapping works by handing back to userspace a fake mmap offset
|
|
* it can use in a subsequent mmap(2) call. The DRM core code then looks
|
|
* up the object based on the offset and sets up the various memory mapping
|
|
* structures.
|
|
*
|
|
* This routine allocates and attaches a fake offset for @obj.
|
|
*/
|
|
static int
|
|
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_gem_mm *mm = dev->mm_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct drm_map_list *list;
|
|
struct drm_local_map *map;
|
|
int ret = 0;
|
|
|
|
/* Set the object up for mmap'ing */
|
|
list = &obj->map_list;
|
|
list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
|
|
if (!list->map)
|
|
return -ENOMEM;
|
|
|
|
map = list->map;
|
|
map->type = _DRM_GEM;
|
|
map->size = obj->size;
|
|
map->handle = obj;
|
|
|
|
/* Get a DRM GEM mmap offset allocated... */
|
|
list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
|
|
obj->size / PAGE_SIZE, 0, 0);
|
|
if (!list->file_offset_node) {
|
|
DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
|
|
ret = -ENOMEM;
|
|
goto out_free_list;
|
|
}
|
|
|
|
list->file_offset_node = drm_mm_get_block(list->file_offset_node,
|
|
obj->size / PAGE_SIZE, 0);
|
|
if (!list->file_offset_node) {
|
|
ret = -ENOMEM;
|
|
goto out_free_list;
|
|
}
|
|
|
|
list->hash.key = list->file_offset_node->start;
|
|
if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
|
|
DRM_ERROR("failed to add to map hash\n");
|
|
goto out_free_mm;
|
|
}
|
|
|
|
/* By now we should be all set, any drm_mmap request on the offset
|
|
* below will get to our mmap & fault handler */
|
|
obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
|
|
|
|
return 0;
|
|
|
|
out_free_mm:
|
|
drm_mm_put_block(list->file_offset_node);
|
|
out_free_list:
|
|
kfree(list->map);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_release_mmap - remove physical page mappings
|
|
* @obj: obj in question
|
|
*
|
|
* Preserve the reservation of the mmaping with the DRM core code, but
|
|
* relinquish ownership of the pages back to the system.
|
|
*
|
|
* It is vital that we remove the page mapping if we have mapped a tiled
|
|
* object through the GTT and then lose the fence register due to
|
|
* resource pressure. Similarly if the object has been moved out of the
|
|
* aperture, than pages mapped into userspace must be revoked. Removing the
|
|
* mapping will then trigger a page fault on the next user access, allowing
|
|
* fixup by i915_gem_fault().
|
|
*/
|
|
void
|
|
i915_gem_release_mmap(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
if (dev->dev_mapping)
|
|
unmap_mapping_range(dev->dev_mapping,
|
|
obj_priv->mmap_offset, obj->size, 1);
|
|
}
|
|
|
|
static void
|
|
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct drm_gem_mm *mm = dev->mm_private;
|
|
struct drm_map_list *list;
|
|
|
|
list = &obj->map_list;
|
|
drm_ht_remove_item(&mm->offset_hash, &list->hash);
|
|
|
|
if (list->file_offset_node) {
|
|
drm_mm_put_block(list->file_offset_node);
|
|
list->file_offset_node = NULL;
|
|
}
|
|
|
|
if (list->map) {
|
|
kfree(list->map);
|
|
list->map = NULL;
|
|
}
|
|
|
|
obj_priv->mmap_offset = 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
|
|
* @obj: object to check
|
|
*
|
|
* Return the required GTT alignment for an object, taking into account
|
|
* potential fence register mapping if needed.
|
|
*/
|
|
static uint32_t
|
|
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int start, i;
|
|
|
|
/*
|
|
* Minimum alignment is 4k (GTT page size), but might be greater
|
|
* if a fence register is needed for the object.
|
|
*/
|
|
if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
|
|
return 4096;
|
|
|
|
/*
|
|
* Previous chips need to be aligned to the size of the smallest
|
|
* fence register that can contain the object.
|
|
*/
|
|
if (IS_I9XX(dev))
|
|
start = 1024*1024;
|
|
else
|
|
start = 512*1024;
|
|
|
|
for (i = start; i < obj->size; i <<= 1)
|
|
;
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
|
|
* @dev: DRM device
|
|
* @data: GTT mapping ioctl data
|
|
* @file_priv: GEM object info
|
|
*
|
|
* Simply returns the fake offset to userspace so it can mmap it.
|
|
* The mmap call will end up in drm_gem_mmap(), which will set things
|
|
* up so we can get faults in the handler above.
|
|
*
|
|
* The fault handler will take care of binding the object into the GTT
|
|
* (since it may have been evicted to make room for something), allocating
|
|
* a fence register, and mapping the appropriate aperture address into
|
|
* userspace.
|
|
*/
|
|
int
|
|
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_mmap_gtt *args = data;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL)
|
|
return -EBADF;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
obj_priv = obj->driver_private;
|
|
|
|
if (obj_priv->madv != I915_MADV_WILLNEED) {
|
|
DRM_ERROR("Attempting to mmap a purgeable buffer\n");
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
if (!obj_priv->mmap_offset) {
|
|
ret = i915_gem_create_mmap_offset(obj);
|
|
if (ret) {
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
args->offset = obj_priv->mmap_offset;
|
|
|
|
/*
|
|
* Pull it into the GTT so that we have a page list (makes the
|
|
* initial fault faster and any subsequent flushing possible).
|
|
*/
|
|
if (!obj_priv->agp_mem) {
|
|
ret = i915_gem_object_bind_to_gtt(obj, 0);
|
|
if (ret) {
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
|
|
}
|
|
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_put_pages(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int page_count = obj->size / PAGE_SIZE;
|
|
int i;
|
|
|
|
BUG_ON(obj_priv->pages_refcount == 0);
|
|
BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
|
|
|
|
if (--obj_priv->pages_refcount != 0)
|
|
return;
|
|
|
|
if (obj_priv->tiling_mode != I915_TILING_NONE)
|
|
i915_gem_object_save_bit_17_swizzle(obj);
|
|
|
|
if (obj_priv->madv == I915_MADV_DONTNEED)
|
|
obj_priv->dirty = 0;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
if (obj_priv->pages[i] == NULL)
|
|
break;
|
|
|
|
if (obj_priv->dirty)
|
|
set_page_dirty(obj_priv->pages[i]);
|
|
|
|
if (obj_priv->madv == I915_MADV_WILLNEED)
|
|
mark_page_accessed(obj_priv->pages[i]);
|
|
|
|
page_cache_release(obj_priv->pages[i]);
|
|
}
|
|
obj_priv->dirty = 0;
|
|
|
|
drm_free_large(obj_priv->pages);
|
|
obj_priv->pages = NULL;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
/* Add a reference if we're newly entering the active list. */
|
|
if (!obj_priv->active) {
|
|
drm_gem_object_reference(obj);
|
|
obj_priv->active = 1;
|
|
}
|
|
/* Move from whatever list we were on to the tail of execution. */
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
list_move_tail(&obj_priv->list,
|
|
&dev_priv->mm.active_list);
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
obj_priv->last_rendering_seqno = seqno;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
BUG_ON(!obj_priv->active);
|
|
list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
|
|
obj_priv->last_rendering_seqno = 0;
|
|
}
|
|
|
|
/* Immediately discard the backing storage */
|
|
static void
|
|
i915_gem_object_truncate(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct inode *inode;
|
|
|
|
inode = obj->filp->f_path.dentry->d_inode;
|
|
if (inode->i_op->truncate)
|
|
inode->i_op->truncate (inode);
|
|
|
|
obj_priv->madv = __I915_MADV_PURGED;
|
|
}
|
|
|
|
static inline int
|
|
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
|
|
{
|
|
return obj_priv->madv == I915_MADV_DONTNEED;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
if (obj_priv->pin_count != 0)
|
|
list_del_init(&obj_priv->list);
|
|
else
|
|
list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
|
|
|
|
obj_priv->last_rendering_seqno = 0;
|
|
if (obj_priv->active) {
|
|
obj_priv->active = 0;
|
|
drm_gem_object_unreference(obj);
|
|
}
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
}
|
|
|
|
/**
|
|
* Creates a new sequence number, emitting a write of it to the status page
|
|
* plus an interrupt, which will trigger i915_user_interrupt_handler.
|
|
*
|
|
* Must be called with struct_lock held.
|
|
*
|
|
* Returned sequence numbers are nonzero on success.
|
|
*/
|
|
static uint32_t
|
|
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
|
|
uint32_t flush_domains)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_file_private *i915_file_priv = NULL;
|
|
struct drm_i915_gem_request *request;
|
|
uint32_t seqno;
|
|
int was_empty;
|
|
RING_LOCALS;
|
|
|
|
if (file_priv != NULL)
|
|
i915_file_priv = file_priv->driver_priv;
|
|
|
|
request = kzalloc(sizeof(*request), GFP_KERNEL);
|
|
if (request == NULL)
|
|
return 0;
|
|
|
|
/* Grab the seqno we're going to make this request be, and bump the
|
|
* next (skipping 0 so it can be the reserved no-seqno value).
|
|
*/
|
|
seqno = dev_priv->mm.next_gem_seqno;
|
|
dev_priv->mm.next_gem_seqno++;
|
|
if (dev_priv->mm.next_gem_seqno == 0)
|
|
dev_priv->mm.next_gem_seqno++;
|
|
|
|
BEGIN_LP_RING(4);
|
|
OUT_RING(MI_STORE_DWORD_INDEX);
|
|
OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
|
|
OUT_RING(seqno);
|
|
|
|
OUT_RING(MI_USER_INTERRUPT);
|
|
ADVANCE_LP_RING();
|
|
|
|
DRM_DEBUG("%d\n", seqno);
|
|
|
|
request->seqno = seqno;
|
|
request->emitted_jiffies = jiffies;
|
|
was_empty = list_empty(&dev_priv->mm.request_list);
|
|
list_add_tail(&request->list, &dev_priv->mm.request_list);
|
|
if (i915_file_priv) {
|
|
list_add_tail(&request->client_list,
|
|
&i915_file_priv->mm.request_list);
|
|
} else {
|
|
INIT_LIST_HEAD(&request->client_list);
|
|
}
|
|
|
|
/* Associate any objects on the flushing list matching the write
|
|
* domain we're flushing with our flush.
|
|
*/
|
|
if (flush_domains != 0) {
|
|
struct drm_i915_gem_object *obj_priv, *next;
|
|
|
|
list_for_each_entry_safe(obj_priv, next,
|
|
&dev_priv->mm.flushing_list, list) {
|
|
struct drm_gem_object *obj = obj_priv->obj;
|
|
|
|
if ((obj->write_domain & flush_domains) ==
|
|
obj->write_domain) {
|
|
uint32_t old_write_domain = obj->write_domain;
|
|
|
|
obj->write_domain = 0;
|
|
i915_gem_object_move_to_active(obj, seqno);
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->read_domains,
|
|
old_write_domain);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (!dev_priv->mm.suspended) {
|
|
mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
|
|
if (was_empty)
|
|
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
|
|
}
|
|
return seqno;
|
|
}
|
|
|
|
/**
|
|
* Command execution barrier
|
|
*
|
|
* Ensures that all commands in the ring are finished
|
|
* before signalling the CPU
|
|
*/
|
|
static uint32_t
|
|
i915_retire_commands(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
|
|
uint32_t flush_domains = 0;
|
|
RING_LOCALS;
|
|
|
|
/* The sampler always gets flushed on i965 (sigh) */
|
|
if (IS_I965G(dev))
|
|
flush_domains |= I915_GEM_DOMAIN_SAMPLER;
|
|
BEGIN_LP_RING(2);
|
|
OUT_RING(cmd);
|
|
OUT_RING(0); /* noop */
|
|
ADVANCE_LP_RING();
|
|
return flush_domains;
|
|
}
|
|
|
|
/**
|
|
* Moves buffers associated only with the given active seqno from the active
|
|
* to inactive list, potentially freeing them.
|
|
*/
|
|
static void
|
|
i915_gem_retire_request(struct drm_device *dev,
|
|
struct drm_i915_gem_request *request)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
trace_i915_gem_request_retire(dev, request->seqno);
|
|
|
|
/* Move any buffers on the active list that are no longer referenced
|
|
* by the ringbuffer to the flushing/inactive lists as appropriate.
|
|
*/
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
while (!list_empty(&dev_priv->mm.active_list)) {
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
obj_priv = list_first_entry(&dev_priv->mm.active_list,
|
|
struct drm_i915_gem_object,
|
|
list);
|
|
obj = obj_priv->obj;
|
|
|
|
/* If the seqno being retired doesn't match the oldest in the
|
|
* list, then the oldest in the list must still be newer than
|
|
* this seqno.
|
|
*/
|
|
if (obj_priv->last_rendering_seqno != request->seqno)
|
|
goto out;
|
|
|
|
#if WATCH_LRU
|
|
DRM_INFO("%s: retire %d moves to inactive list %p\n",
|
|
__func__, request->seqno, obj);
|
|
#endif
|
|
|
|
if (obj->write_domain != 0)
|
|
i915_gem_object_move_to_flushing(obj);
|
|
else {
|
|
/* Take a reference on the object so it won't be
|
|
* freed while the spinlock is held. The list
|
|
* protection for this spinlock is safe when breaking
|
|
* the lock like this since the next thing we do
|
|
* is just get the head of the list again.
|
|
*/
|
|
drm_gem_object_reference(obj);
|
|
i915_gem_object_move_to_inactive(obj);
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
drm_gem_object_unreference(obj);
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
}
|
|
}
|
|
out:
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
}
|
|
|
|
/**
|
|
* Returns true if seq1 is later than seq2.
|
|
*/
|
|
bool
|
|
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
|
|
{
|
|
return (int32_t)(seq1 - seq2) >= 0;
|
|
}
|
|
|
|
uint32_t
|
|
i915_get_gem_seqno(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
|
|
}
|
|
|
|
/**
|
|
* This function clears the request list as sequence numbers are passed.
|
|
*/
|
|
void
|
|
i915_gem_retire_requests(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
uint32_t seqno;
|
|
|
|
if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
|
|
return;
|
|
|
|
seqno = i915_get_gem_seqno(dev);
|
|
|
|
while (!list_empty(&dev_priv->mm.request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
uint32_t retiring_seqno;
|
|
|
|
request = list_first_entry(&dev_priv->mm.request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
retiring_seqno = request->seqno;
|
|
|
|
if (i915_seqno_passed(seqno, retiring_seqno) ||
|
|
atomic_read(&dev_priv->mm.wedged)) {
|
|
i915_gem_retire_request(dev, request);
|
|
|
|
list_del(&request->list);
|
|
list_del(&request->client_list);
|
|
kfree(request);
|
|
} else
|
|
break;
|
|
}
|
|
|
|
if (unlikely (dev_priv->trace_irq_seqno &&
|
|
i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
|
|
i915_user_irq_put(dev);
|
|
dev_priv->trace_irq_seqno = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
i915_gem_retire_work_handler(struct work_struct *work)
|
|
{
|
|
drm_i915_private_t *dev_priv;
|
|
struct drm_device *dev;
|
|
|
|
dev_priv = container_of(work, drm_i915_private_t,
|
|
mm.retire_work.work);
|
|
dev = dev_priv->dev;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
i915_gem_retire_requests(dev);
|
|
if (!dev_priv->mm.suspended &&
|
|
!list_empty(&dev_priv->mm.request_list))
|
|
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
/**
|
|
* Waits for a sequence number to be signaled, and cleans up the
|
|
* request and object lists appropriately for that event.
|
|
*/
|
|
static int
|
|
i915_wait_request(struct drm_device *dev, uint32_t seqno)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
u32 ier;
|
|
int ret = 0;
|
|
|
|
BUG_ON(seqno == 0);
|
|
|
|
if (atomic_read(&dev_priv->mm.wedged))
|
|
return -EIO;
|
|
|
|
if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
|
|
if (IS_IGDNG(dev))
|
|
ier = I915_READ(DEIER) | I915_READ(GTIER);
|
|
else
|
|
ier = I915_READ(IER);
|
|
if (!ier) {
|
|
DRM_ERROR("something (likely vbetool) disabled "
|
|
"interrupts, re-enabling\n");
|
|
i915_driver_irq_preinstall(dev);
|
|
i915_driver_irq_postinstall(dev);
|
|
}
|
|
|
|
trace_i915_gem_request_wait_begin(dev, seqno);
|
|
|
|
dev_priv->mm.waiting_gem_seqno = seqno;
|
|
i915_user_irq_get(dev);
|
|
ret = wait_event_interruptible(dev_priv->irq_queue,
|
|
i915_seqno_passed(i915_get_gem_seqno(dev),
|
|
seqno) ||
|
|
atomic_read(&dev_priv->mm.wedged));
|
|
i915_user_irq_put(dev);
|
|
dev_priv->mm.waiting_gem_seqno = 0;
|
|
|
|
trace_i915_gem_request_wait_end(dev, seqno);
|
|
}
|
|
if (atomic_read(&dev_priv->mm.wedged))
|
|
ret = -EIO;
|
|
|
|
if (ret && ret != -ERESTARTSYS)
|
|
DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
|
|
__func__, ret, seqno, i915_get_gem_seqno(dev));
|
|
|
|
/* Directly dispatch request retiring. While we have the work queue
|
|
* to handle this, the waiter on a request often wants an associated
|
|
* buffer to have made it to the inactive list, and we would need
|
|
* a separate wait queue to handle that.
|
|
*/
|
|
if (ret == 0)
|
|
i915_gem_retire_requests(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
i915_gem_flush(struct drm_device *dev,
|
|
uint32_t invalidate_domains,
|
|
uint32_t flush_domains)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
uint32_t cmd;
|
|
RING_LOCALS;
|
|
|
|
#if WATCH_EXEC
|
|
DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
|
|
invalidate_domains, flush_domains);
|
|
#endif
|
|
trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
|
|
invalidate_domains, flush_domains);
|
|
|
|
if (flush_domains & I915_GEM_DOMAIN_CPU)
|
|
drm_agp_chipset_flush(dev);
|
|
|
|
if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
|
|
/*
|
|
* read/write caches:
|
|
*
|
|
* I915_GEM_DOMAIN_RENDER is always invalidated, but is
|
|
* only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
|
|
* also flushed at 2d versus 3d pipeline switches.
|
|
*
|
|
* read-only caches:
|
|
*
|
|
* I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
|
|
* MI_READ_FLUSH is set, and is always flushed on 965.
|
|
*
|
|
* I915_GEM_DOMAIN_COMMAND may not exist?
|
|
*
|
|
* I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
|
|
* invalidated when MI_EXE_FLUSH is set.
|
|
*
|
|
* I915_GEM_DOMAIN_VERTEX, which exists on 965, is
|
|
* invalidated with every MI_FLUSH.
|
|
*
|
|
* TLBs:
|
|
*
|
|
* On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
|
|
* and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
|
|
* I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
|
|
* are flushed at any MI_FLUSH.
|
|
*/
|
|
|
|
cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
|
|
if ((invalidate_domains|flush_domains) &
|
|
I915_GEM_DOMAIN_RENDER)
|
|
cmd &= ~MI_NO_WRITE_FLUSH;
|
|
if (!IS_I965G(dev)) {
|
|
/*
|
|
* On the 965, the sampler cache always gets flushed
|
|
* and this bit is reserved.
|
|
*/
|
|
if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
|
|
cmd |= MI_READ_FLUSH;
|
|
}
|
|
if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
|
|
cmd |= MI_EXE_FLUSH;
|
|
|
|
#if WATCH_EXEC
|
|
DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
|
|
#endif
|
|
BEGIN_LP_RING(2);
|
|
OUT_RING(cmd);
|
|
OUT_RING(0); /* noop */
|
|
ADVANCE_LP_RING();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Ensures that all rendering to the object has completed and the object is
|
|
* safe to unbind from the GTT or access from the CPU.
|
|
*/
|
|
static int
|
|
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int ret;
|
|
|
|
/* This function only exists to support waiting for existing rendering,
|
|
* not for emitting required flushes.
|
|
*/
|
|
BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
|
|
|
|
/* If there is rendering queued on the buffer being evicted, wait for
|
|
* it.
|
|
*/
|
|
if (obj_priv->active) {
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s: object %p wait for seqno %08x\n",
|
|
__func__, obj, obj_priv->last_rendering_seqno);
|
|
#endif
|
|
ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Unbinds an object from the GTT aperture.
|
|
*/
|
|
int
|
|
i915_gem_object_unbind(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int ret = 0;
|
|
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
|
|
DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
|
|
#endif
|
|
if (obj_priv->gtt_space == NULL)
|
|
return 0;
|
|
|
|
if (obj_priv->pin_count != 0) {
|
|
DRM_ERROR("Attempting to unbind pinned buffer\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* blow away mappings if mapped through GTT */
|
|
i915_gem_release_mmap(obj);
|
|
|
|
if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
|
|
i915_gem_clear_fence_reg(obj);
|
|
|
|
/* Move the object to the CPU domain to ensure that
|
|
* any possible CPU writes while it's not in the GTT
|
|
* are flushed when we go to remap it. This will
|
|
* also ensure that all pending GPU writes are finished
|
|
* before we unbind.
|
|
*/
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
|
|
if (ret) {
|
|
if (ret != -ERESTARTSYS)
|
|
DRM_ERROR("set_domain failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
BUG_ON(obj_priv->active);
|
|
|
|
if (obj_priv->agp_mem != NULL) {
|
|
drm_unbind_agp(obj_priv->agp_mem);
|
|
drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
|
|
obj_priv->agp_mem = NULL;
|
|
}
|
|
|
|
i915_gem_object_put_pages(obj);
|
|
BUG_ON(obj_priv->pages_refcount);
|
|
|
|
if (obj_priv->gtt_space) {
|
|
atomic_dec(&dev->gtt_count);
|
|
atomic_sub(obj->size, &dev->gtt_memory);
|
|
|
|
drm_mm_put_block(obj_priv->gtt_space);
|
|
obj_priv->gtt_space = NULL;
|
|
}
|
|
|
|
/* Remove ourselves from the LRU list if present. */
|
|
if (!list_empty(&obj_priv->list))
|
|
list_del_init(&obj_priv->list);
|
|
|
|
if (i915_gem_object_is_purgeable(obj_priv))
|
|
i915_gem_object_truncate(obj);
|
|
|
|
trace_i915_gem_object_unbind(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct drm_gem_object *
|
|
i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
struct drm_gem_object *best = NULL;
|
|
struct drm_gem_object *first = NULL;
|
|
|
|
/* Try to find the smallest clean object */
|
|
list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
|
|
struct drm_gem_object *obj = obj_priv->obj;
|
|
if (obj->size >= min_size) {
|
|
if ((!obj_priv->dirty ||
|
|
i915_gem_object_is_purgeable(obj_priv)) &&
|
|
(!best || obj->size < best->size)) {
|
|
best = obj;
|
|
if (best->size == min_size)
|
|
return best;
|
|
}
|
|
if (!first)
|
|
first = obj;
|
|
}
|
|
}
|
|
|
|
return best ? best : first;
|
|
}
|
|
|
|
static int
|
|
i915_gem_evict_everything(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
uint32_t seqno;
|
|
int ret;
|
|
bool lists_empty;
|
|
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
|
|
list_empty(&dev_priv->mm.flushing_list) &&
|
|
list_empty(&dev_priv->mm.active_list));
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
|
|
if (lists_empty)
|
|
return -ENOSPC;
|
|
|
|
/* Flush everything (on to the inactive lists) and evict */
|
|
i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
|
|
if (seqno == 0)
|
|
return -ENOMEM;
|
|
|
|
ret = i915_wait_request(dev, seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_evict_from_inactive_list(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
|
|
list_empty(&dev_priv->mm.flushing_list) &&
|
|
list_empty(&dev_priv->mm.active_list));
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
BUG_ON(!lists_empty);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_evict_something(struct drm_device *dev, int min_size)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_gem_object *obj;
|
|
int ret;
|
|
|
|
for (;;) {
|
|
i915_gem_retire_requests(dev);
|
|
|
|
/* If there's an inactive buffer available now, grab it
|
|
* and be done.
|
|
*/
|
|
obj = i915_gem_find_inactive_object(dev, min_size);
|
|
if (obj) {
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
#if WATCH_LRU
|
|
DRM_INFO("%s: evicting %p\n", __func__, obj);
|
|
#endif
|
|
obj_priv = obj->driver_private;
|
|
BUG_ON(obj_priv->pin_count != 0);
|
|
BUG_ON(obj_priv->active);
|
|
|
|
/* Wait on the rendering and unbind the buffer. */
|
|
return i915_gem_object_unbind(obj);
|
|
}
|
|
|
|
/* If we didn't get anything, but the ring is still processing
|
|
* things, wait for the next to finish and hopefully leave us
|
|
* a buffer to evict.
|
|
*/
|
|
if (!list_empty(&dev_priv->mm.request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&dev_priv->mm.request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
|
|
ret = i915_wait_request(dev, request->seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* If we didn't have anything on the request list but there
|
|
* are buffers awaiting a flush, emit one and try again.
|
|
* When we wait on it, those buffers waiting for that flush
|
|
* will get moved to inactive.
|
|
*/
|
|
if (!list_empty(&dev_priv->mm.flushing_list)) {
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
/* Find an object that we can immediately reuse */
|
|
list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
|
|
obj = obj_priv->obj;
|
|
if (obj->size >= min_size)
|
|
break;
|
|
|
|
obj = NULL;
|
|
}
|
|
|
|
if (obj != NULL) {
|
|
uint32_t seqno;
|
|
|
|
i915_gem_flush(dev,
|
|
obj->write_domain,
|
|
obj->write_domain);
|
|
seqno = i915_add_request(dev, NULL, obj->write_domain);
|
|
if (seqno == 0)
|
|
return -ENOMEM;
|
|
|
|
ret = i915_wait_request(dev, seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* If we didn't do any of the above, there's no single buffer
|
|
* large enough to swap out for the new one, so just evict
|
|
* everything and start again. (This should be rare.)
|
|
*/
|
|
if (!list_empty (&dev_priv->mm.inactive_list))
|
|
return i915_gem_evict_from_inactive_list(dev);
|
|
else
|
|
return i915_gem_evict_everything(dev);
|
|
}
|
|
}
|
|
|
|
int
|
|
i915_gem_object_get_pages(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int page_count, i;
|
|
struct address_space *mapping;
|
|
struct inode *inode;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
if (obj_priv->pages_refcount++ != 0)
|
|
return 0;
|
|
|
|
/* Get the list of pages out of our struct file. They'll be pinned
|
|
* at this point until we release them.
|
|
*/
|
|
page_count = obj->size / PAGE_SIZE;
|
|
BUG_ON(obj_priv->pages != NULL);
|
|
obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
|
|
if (obj_priv->pages == NULL) {
|
|
obj_priv->pages_refcount--;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
inode = obj->filp->f_path.dentry->d_inode;
|
|
mapping = inode->i_mapping;
|
|
for (i = 0; i < page_count; i++) {
|
|
page = read_mapping_page(mapping, i, NULL);
|
|
if (IS_ERR(page)) {
|
|
ret = PTR_ERR(page);
|
|
i915_gem_object_put_pages(obj);
|
|
return ret;
|
|
}
|
|
obj_priv->pages[i] = page;
|
|
}
|
|
|
|
if (obj_priv->tiling_mode != I915_TILING_NONE)
|
|
i915_gem_object_do_bit_17_swizzle(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
|
|
{
|
|
struct drm_gem_object *obj = reg->obj;
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int regnum = obj_priv->fence_reg;
|
|
uint64_t val;
|
|
|
|
val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
|
|
0xfffff000) << 32;
|
|
val |= obj_priv->gtt_offset & 0xfffff000;
|
|
val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
|
|
if (obj_priv->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
|
|
val |= I965_FENCE_REG_VALID;
|
|
|
|
I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
|
|
}
|
|
|
|
static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
|
|
{
|
|
struct drm_gem_object *obj = reg->obj;
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int regnum = obj_priv->fence_reg;
|
|
int tile_width;
|
|
uint32_t fence_reg, val;
|
|
uint32_t pitch_val;
|
|
|
|
if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
|
|
(obj_priv->gtt_offset & (obj->size - 1))) {
|
|
WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
|
|
__func__, obj_priv->gtt_offset, obj->size);
|
|
return;
|
|
}
|
|
|
|
if (obj_priv->tiling_mode == I915_TILING_Y &&
|
|
HAS_128_BYTE_Y_TILING(dev))
|
|
tile_width = 128;
|
|
else
|
|
tile_width = 512;
|
|
|
|
/* Note: pitch better be a power of two tile widths */
|
|
pitch_val = obj_priv->stride / tile_width;
|
|
pitch_val = ffs(pitch_val) - 1;
|
|
|
|
val = obj_priv->gtt_offset;
|
|
if (obj_priv->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
|
|
val |= I915_FENCE_SIZE_BITS(obj->size);
|
|
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
|
|
val |= I830_FENCE_REG_VALID;
|
|
|
|
if (regnum < 8)
|
|
fence_reg = FENCE_REG_830_0 + (regnum * 4);
|
|
else
|
|
fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
|
|
I915_WRITE(fence_reg, val);
|
|
}
|
|
|
|
static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
|
|
{
|
|
struct drm_gem_object *obj = reg->obj;
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int regnum = obj_priv->fence_reg;
|
|
uint32_t val;
|
|
uint32_t pitch_val;
|
|
uint32_t fence_size_bits;
|
|
|
|
if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
|
|
(obj_priv->gtt_offset & (obj->size - 1))) {
|
|
WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
|
|
__func__, obj_priv->gtt_offset);
|
|
return;
|
|
}
|
|
|
|
pitch_val = obj_priv->stride / 128;
|
|
pitch_val = ffs(pitch_val) - 1;
|
|
WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
|
|
|
|
val = obj_priv->gtt_offset;
|
|
if (obj_priv->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
|
|
fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
|
|
WARN_ON(fence_size_bits & ~0x00000f00);
|
|
val |= fence_size_bits;
|
|
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
|
|
val |= I830_FENCE_REG_VALID;
|
|
|
|
I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
|
|
}
|
|
|
|
/**
|
|
* i915_gem_object_get_fence_reg - set up a fence reg for an object
|
|
* @obj: object to map through a fence reg
|
|
*
|
|
* When mapping objects through the GTT, userspace wants to be able to write
|
|
* to them without having to worry about swizzling if the object is tiled.
|
|
*
|
|
* This function walks the fence regs looking for a free one for @obj,
|
|
* stealing one if it can't find any.
|
|
*
|
|
* It then sets up the reg based on the object's properties: address, pitch
|
|
* and tiling format.
|
|
*/
|
|
int
|
|
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct drm_i915_fence_reg *reg = NULL;
|
|
struct drm_i915_gem_object *old_obj_priv = NULL;
|
|
int i, ret, avail;
|
|
|
|
/* Just update our place in the LRU if our fence is getting used. */
|
|
if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
|
|
list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
|
|
return 0;
|
|
}
|
|
|
|
switch (obj_priv->tiling_mode) {
|
|
case I915_TILING_NONE:
|
|
WARN(1, "allocating a fence for non-tiled object?\n");
|
|
break;
|
|
case I915_TILING_X:
|
|
if (!obj_priv->stride)
|
|
return -EINVAL;
|
|
WARN((obj_priv->stride & (512 - 1)),
|
|
"object 0x%08x is X tiled but has non-512B pitch\n",
|
|
obj_priv->gtt_offset);
|
|
break;
|
|
case I915_TILING_Y:
|
|
if (!obj_priv->stride)
|
|
return -EINVAL;
|
|
WARN((obj_priv->stride & (128 - 1)),
|
|
"object 0x%08x is Y tiled but has non-128B pitch\n",
|
|
obj_priv->gtt_offset);
|
|
break;
|
|
}
|
|
|
|
/* First try to find a free reg */
|
|
avail = 0;
|
|
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
|
|
reg = &dev_priv->fence_regs[i];
|
|
if (!reg->obj)
|
|
break;
|
|
|
|
old_obj_priv = reg->obj->driver_private;
|
|
if (!old_obj_priv->pin_count)
|
|
avail++;
|
|
}
|
|
|
|
/* None available, try to steal one or wait for a user to finish */
|
|
if (i == dev_priv->num_fence_regs) {
|
|
struct drm_gem_object *old_obj = NULL;
|
|
|
|
if (avail == 0)
|
|
return -ENOSPC;
|
|
|
|
list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
|
|
fence_list) {
|
|
old_obj = old_obj_priv->obj;
|
|
|
|
if (old_obj_priv->pin_count)
|
|
continue;
|
|
|
|
/* Take a reference, as otherwise the wait_rendering
|
|
* below may cause the object to get freed out from
|
|
* under us.
|
|
*/
|
|
drm_gem_object_reference(old_obj);
|
|
|
|
/* i915 uses fences for GPU access to tiled buffers */
|
|
if (IS_I965G(dev) || !old_obj_priv->active)
|
|
break;
|
|
|
|
/* This brings the object to the head of the LRU if it
|
|
* had been written to. The only way this should
|
|
* result in us waiting longer than the expected
|
|
* optimal amount of time is if there was a
|
|
* fence-using buffer later that was read-only.
|
|
*/
|
|
i915_gem_object_flush_gpu_write_domain(old_obj);
|
|
ret = i915_gem_object_wait_rendering(old_obj);
|
|
if (ret != 0) {
|
|
drm_gem_object_unreference(old_obj);
|
|
return ret;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Zap this virtual mapping so we can set up a fence again
|
|
* for this object next time we need it.
|
|
*/
|
|
i915_gem_release_mmap(old_obj);
|
|
|
|
i = old_obj_priv->fence_reg;
|
|
reg = &dev_priv->fence_regs[i];
|
|
|
|
old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
|
|
list_del_init(&old_obj_priv->fence_list);
|
|
|
|
drm_gem_object_unreference(old_obj);
|
|
}
|
|
|
|
obj_priv->fence_reg = i;
|
|
list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
|
|
|
|
reg->obj = obj;
|
|
|
|
if (IS_I965G(dev))
|
|
i965_write_fence_reg(reg);
|
|
else if (IS_I9XX(dev))
|
|
i915_write_fence_reg(reg);
|
|
else
|
|
i830_write_fence_reg(reg);
|
|
|
|
trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_clear_fence_reg - clear out fence register info
|
|
* @obj: object to clear
|
|
*
|
|
* Zeroes out the fence register itself and clears out the associated
|
|
* data structures in dev_priv and obj_priv.
|
|
*/
|
|
static void
|
|
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
if (IS_I965G(dev))
|
|
I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
|
|
else {
|
|
uint32_t fence_reg;
|
|
|
|
if (obj_priv->fence_reg < 8)
|
|
fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
|
|
else
|
|
fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
|
|
8) * 4;
|
|
|
|
I915_WRITE(fence_reg, 0);
|
|
}
|
|
|
|
dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
|
|
obj_priv->fence_reg = I915_FENCE_REG_NONE;
|
|
list_del_init(&obj_priv->fence_list);
|
|
}
|
|
|
|
/**
|
|
* i915_gem_object_put_fence_reg - waits on outstanding fenced access
|
|
* to the buffer to finish, and then resets the fence register.
|
|
* @obj: tiled object holding a fence register.
|
|
*
|
|
* Zeroes out the fence register itself and clears out the associated
|
|
* data structures in dev_priv and obj_priv.
|
|
*/
|
|
int
|
|
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
|
|
return 0;
|
|
|
|
/* On the i915, GPU access to tiled buffers is via a fence,
|
|
* therefore we must wait for any outstanding access to complete
|
|
* before clearing the fence.
|
|
*/
|
|
if (!IS_I965G(dev)) {
|
|
int ret;
|
|
|
|
i915_gem_object_flush_gpu_write_domain(obj);
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
ret = i915_gem_object_wait_rendering(obj);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
i915_gem_clear_fence_reg (obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Finds free space in the GTT aperture and binds the object there.
|
|
*/
|
|
static int
|
|
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct drm_mm_node *free_space;
|
|
bool retry_alloc = false;
|
|
int ret;
|
|
|
|
if (dev_priv->mm.suspended)
|
|
return -EBUSY;
|
|
|
|
if (obj_priv->madv != I915_MADV_WILLNEED) {
|
|
DRM_ERROR("Attempting to bind a purgeable object\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (alignment == 0)
|
|
alignment = i915_gem_get_gtt_alignment(obj);
|
|
if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
|
|
DRM_ERROR("Invalid object alignment requested %u\n", alignment);
|
|
return -EINVAL;
|
|
}
|
|
|
|
search_free:
|
|
free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
|
|
obj->size, alignment, 0);
|
|
if (free_space != NULL) {
|
|
obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
|
|
alignment);
|
|
if (obj_priv->gtt_space != NULL) {
|
|
obj_priv->gtt_space->private = obj;
|
|
obj_priv->gtt_offset = obj_priv->gtt_space->start;
|
|
}
|
|
}
|
|
if (obj_priv->gtt_space == NULL) {
|
|
/* If the gtt is empty and we're still having trouble
|
|
* fitting our object in, we're out of memory.
|
|
*/
|
|
#if WATCH_LRU
|
|
DRM_INFO("%s: GTT full, evicting something\n", __func__);
|
|
#endif
|
|
ret = i915_gem_evict_something(dev, obj->size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
goto search_free;
|
|
}
|
|
|
|
#if WATCH_BUF
|
|
DRM_INFO("Binding object of size %zd at 0x%08x\n",
|
|
obj->size, obj_priv->gtt_offset);
|
|
#endif
|
|
if (retry_alloc) {
|
|
i915_gem_object_set_page_gfp_mask (obj,
|
|
i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
|
|
}
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (retry_alloc) {
|
|
i915_gem_object_set_page_gfp_mask (obj,
|
|
i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
|
|
}
|
|
if (ret) {
|
|
drm_mm_put_block(obj_priv->gtt_space);
|
|
obj_priv->gtt_space = NULL;
|
|
|
|
if (ret == -ENOMEM) {
|
|
/* first try to clear up some space from the GTT */
|
|
ret = i915_gem_evict_something(dev, obj->size);
|
|
if (ret) {
|
|
/* now try to shrink everyone else */
|
|
if (! retry_alloc) {
|
|
retry_alloc = true;
|
|
goto search_free;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
goto search_free;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Create an AGP memory structure pointing at our pages, and bind it
|
|
* into the GTT.
|
|
*/
|
|
obj_priv->agp_mem = drm_agp_bind_pages(dev,
|
|
obj_priv->pages,
|
|
obj->size >> PAGE_SHIFT,
|
|
obj_priv->gtt_offset,
|
|
obj_priv->agp_type);
|
|
if (obj_priv->agp_mem == NULL) {
|
|
i915_gem_object_put_pages(obj);
|
|
drm_mm_put_block(obj_priv->gtt_space);
|
|
obj_priv->gtt_space = NULL;
|
|
|
|
ret = i915_gem_evict_something(dev, obj->size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
goto search_free;
|
|
}
|
|
atomic_inc(&dev->gtt_count);
|
|
atomic_add(obj->size, &dev->gtt_memory);
|
|
|
|
/* Assert that the object is not currently in any GPU domain. As it
|
|
* wasn't in the GTT, there shouldn't be any way it could have been in
|
|
* a GPU cache
|
|
*/
|
|
BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
|
|
BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
|
|
|
|
trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_clflush_object(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
/* If we don't have a page list set up, then we're not pinned
|
|
* to GPU, and we can ignore the cache flush because it'll happen
|
|
* again at bind time.
|
|
*/
|
|
if (obj_priv->pages == NULL)
|
|
return;
|
|
|
|
trace_i915_gem_object_clflush(obj);
|
|
|
|
drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
|
|
}
|
|
|
|
/** Flushes any GPU write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
uint32_t seqno;
|
|
uint32_t old_write_domain;
|
|
|
|
if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
|
|
return;
|
|
|
|
/* Queue the GPU write cache flushing we need. */
|
|
old_write_domain = obj->write_domain;
|
|
i915_gem_flush(dev, 0, obj->write_domain);
|
|
seqno = i915_add_request(dev, NULL, obj->write_domain);
|
|
obj->write_domain = 0;
|
|
i915_gem_object_move_to_active(obj, seqno);
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
/** Flushes the GTT write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
|
|
{
|
|
uint32_t old_write_domain;
|
|
|
|
if (obj->write_domain != I915_GEM_DOMAIN_GTT)
|
|
return;
|
|
|
|
/* No actual flushing is required for the GTT write domain. Writes
|
|
* to it immediately go to main memory as far as we know, so there's
|
|
* no chipset flush. It also doesn't land in render cache.
|
|
*/
|
|
old_write_domain = obj->write_domain;
|
|
obj->write_domain = 0;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
/** Flushes the CPU write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
uint32_t old_write_domain;
|
|
|
|
if (obj->write_domain != I915_GEM_DOMAIN_CPU)
|
|
return;
|
|
|
|
i915_gem_clflush_object(obj);
|
|
drm_agp_chipset_flush(dev);
|
|
old_write_domain = obj->write_domain;
|
|
obj->write_domain = 0;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the GTT read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
uint32_t old_write_domain, old_read_domains;
|
|
int ret;
|
|
|
|
/* Not valid to be called on unbound objects. */
|
|
if (obj_priv->gtt_space == NULL)
|
|
return -EINVAL;
|
|
|
|
i915_gem_object_flush_gpu_write_domain(obj);
|
|
/* Wait on any GPU rendering and flushing to occur. */
|
|
ret = i915_gem_object_wait_rendering(obj);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
old_write_domain = obj->write_domain;
|
|
old_read_domains = obj->read_domains;
|
|
|
|
/* If we're writing through the GTT domain, then CPU and GPU caches
|
|
* will need to be invalidated at next use.
|
|
*/
|
|
if (write)
|
|
obj->read_domains &= I915_GEM_DOMAIN_GTT;
|
|
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
|
|
obj->read_domains |= I915_GEM_DOMAIN_GTT;
|
|
if (write) {
|
|
obj->write_domain = I915_GEM_DOMAIN_GTT;
|
|
obj_priv->dirty = 1;
|
|
}
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the CPU read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
static int
|
|
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
|
|
{
|
|
uint32_t old_write_domain, old_read_domains;
|
|
int ret;
|
|
|
|
i915_gem_object_flush_gpu_write_domain(obj);
|
|
/* Wait on any GPU rendering and flushing to occur. */
|
|
ret = i915_gem_object_wait_rendering(obj);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
/* If we have a partially-valid cache of the object in the CPU,
|
|
* finish invalidating it and free the per-page flags.
|
|
*/
|
|
i915_gem_object_set_to_full_cpu_read_domain(obj);
|
|
|
|
old_write_domain = obj->write_domain;
|
|
old_read_domains = obj->read_domains;
|
|
|
|
/* Flush the CPU cache if it's still invalid. */
|
|
if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
|
|
i915_gem_clflush_object(obj);
|
|
|
|
obj->read_domains |= I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
|
|
|
|
/* If we're writing through the CPU, then the GPU read domains will
|
|
* need to be invalidated at next use.
|
|
*/
|
|
if (write) {
|
|
obj->read_domains &= I915_GEM_DOMAIN_CPU;
|
|
obj->write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the next domain for the specified object. This
|
|
* may not actually perform the necessary flushing/invaliding though,
|
|
* as that may want to be batched with other set_domain operations
|
|
*
|
|
* This is (we hope) the only really tricky part of gem. The goal
|
|
* is fairly simple -- track which caches hold bits of the object
|
|
* and make sure they remain coherent. A few concrete examples may
|
|
* help to explain how it works. For shorthand, we use the notation
|
|
* (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
|
|
* a pair of read and write domain masks.
|
|
*
|
|
* Case 1: the batch buffer
|
|
*
|
|
* 1. Allocated
|
|
* 2. Written by CPU
|
|
* 3. Mapped to GTT
|
|
* 4. Read by GPU
|
|
* 5. Unmapped from GTT
|
|
* 6. Freed
|
|
*
|
|
* Let's take these a step at a time
|
|
*
|
|
* 1. Allocated
|
|
* Pages allocated from the kernel may still have
|
|
* cache contents, so we set them to (CPU, CPU) always.
|
|
* 2. Written by CPU (using pwrite)
|
|
* The pwrite function calls set_domain (CPU, CPU) and
|
|
* this function does nothing (as nothing changes)
|
|
* 3. Mapped by GTT
|
|
* This function asserts that the object is not
|
|
* currently in any GPU-based read or write domains
|
|
* 4. Read by GPU
|
|
* i915_gem_execbuffer calls set_domain (COMMAND, 0).
|
|
* As write_domain is zero, this function adds in the
|
|
* current read domains (CPU+COMMAND, 0).
|
|
* flush_domains is set to CPU.
|
|
* invalidate_domains is set to COMMAND
|
|
* clflush is run to get data out of the CPU caches
|
|
* then i915_dev_set_domain calls i915_gem_flush to
|
|
* emit an MI_FLUSH and drm_agp_chipset_flush
|
|
* 5. Unmapped from GTT
|
|
* i915_gem_object_unbind calls set_domain (CPU, CPU)
|
|
* flush_domains and invalidate_domains end up both zero
|
|
* so no flushing/invalidating happens
|
|
* 6. Freed
|
|
* yay, done
|
|
*
|
|
* Case 2: The shared render buffer
|
|
*
|
|
* 1. Allocated
|
|
* 2. Mapped to GTT
|
|
* 3. Read/written by GPU
|
|
* 4. set_domain to (CPU,CPU)
|
|
* 5. Read/written by CPU
|
|
* 6. Read/written by GPU
|
|
*
|
|
* 1. Allocated
|
|
* Same as last example, (CPU, CPU)
|
|
* 2. Mapped to GTT
|
|
* Nothing changes (assertions find that it is not in the GPU)
|
|
* 3. Read/written by GPU
|
|
* execbuffer calls set_domain (RENDER, RENDER)
|
|
* flush_domains gets CPU
|
|
* invalidate_domains gets GPU
|
|
* clflush (obj)
|
|
* MI_FLUSH and drm_agp_chipset_flush
|
|
* 4. set_domain (CPU, CPU)
|
|
* flush_domains gets GPU
|
|
* invalidate_domains gets CPU
|
|
* wait_rendering (obj) to make sure all drawing is complete.
|
|
* This will include an MI_FLUSH to get the data from GPU
|
|
* to memory
|
|
* clflush (obj) to invalidate the CPU cache
|
|
* Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
|
|
* 5. Read/written by CPU
|
|
* cache lines are loaded and dirtied
|
|
* 6. Read written by GPU
|
|
* Same as last GPU access
|
|
*
|
|
* Case 3: The constant buffer
|
|
*
|
|
* 1. Allocated
|
|
* 2. Written by CPU
|
|
* 3. Read by GPU
|
|
* 4. Updated (written) by CPU again
|
|
* 5. Read by GPU
|
|
*
|
|
* 1. Allocated
|
|
* (CPU, CPU)
|
|
* 2. Written by CPU
|
|
* (CPU, CPU)
|
|
* 3. Read by GPU
|
|
* (CPU+RENDER, 0)
|
|
* flush_domains = CPU
|
|
* invalidate_domains = RENDER
|
|
* clflush (obj)
|
|
* MI_FLUSH
|
|
* drm_agp_chipset_flush
|
|
* 4. Updated (written) by CPU again
|
|
* (CPU, CPU)
|
|
* flush_domains = 0 (no previous write domain)
|
|
* invalidate_domains = 0 (no new read domains)
|
|
* 5. Read by GPU
|
|
* (CPU+RENDER, 0)
|
|
* flush_domains = CPU
|
|
* invalidate_domains = RENDER
|
|
* clflush (obj)
|
|
* MI_FLUSH
|
|
* drm_agp_chipset_flush
|
|
*/
|
|
static void
|
|
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
uint32_t invalidate_domains = 0;
|
|
uint32_t flush_domains = 0;
|
|
uint32_t old_read_domains;
|
|
|
|
BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
|
|
BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
|
|
|
|
intel_mark_busy(dev, obj);
|
|
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
|
|
__func__, obj,
|
|
obj->read_domains, obj->pending_read_domains,
|
|
obj->write_domain, obj->pending_write_domain);
|
|
#endif
|
|
/*
|
|
* If the object isn't moving to a new write domain,
|
|
* let the object stay in multiple read domains
|
|
*/
|
|
if (obj->pending_write_domain == 0)
|
|
obj->pending_read_domains |= obj->read_domains;
|
|
else
|
|
obj_priv->dirty = 1;
|
|
|
|
/*
|
|
* Flush the current write domain if
|
|
* the new read domains don't match. Invalidate
|
|
* any read domains which differ from the old
|
|
* write domain
|
|
*/
|
|
if (obj->write_domain &&
|
|
obj->write_domain != obj->pending_read_domains) {
|
|
flush_domains |= obj->write_domain;
|
|
invalidate_domains |=
|
|
obj->pending_read_domains & ~obj->write_domain;
|
|
}
|
|
/*
|
|
* Invalidate any read caches which may have
|
|
* stale data. That is, any new read domains.
|
|
*/
|
|
invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
|
|
if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
|
|
__func__, flush_domains, invalidate_domains);
|
|
#endif
|
|
i915_gem_clflush_object(obj);
|
|
}
|
|
|
|
old_read_domains = obj->read_domains;
|
|
|
|
/* The actual obj->write_domain will be updated with
|
|
* pending_write_domain after we emit the accumulated flush for all
|
|
* of our domain changes in execbuffers (which clears objects'
|
|
* write_domains). So if we have a current write domain that we
|
|
* aren't changing, set pending_write_domain to that.
|
|
*/
|
|
if (flush_domains == 0 && obj->pending_write_domain == 0)
|
|
obj->pending_write_domain = obj->write_domain;
|
|
obj->read_domains = obj->pending_read_domains;
|
|
|
|
dev->invalidate_domains |= invalidate_domains;
|
|
dev->flush_domains |= flush_domains;
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
|
|
__func__,
|
|
obj->read_domains, obj->write_domain,
|
|
dev->invalidate_domains, dev->flush_domains);
|
|
#endif
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
obj->write_domain);
|
|
}
|
|
|
|
/**
|
|
* Moves the object from a partially CPU read to a full one.
|
|
*
|
|
* Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
|
|
* and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
|
|
*/
|
|
static void
|
|
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
if (!obj_priv->page_cpu_valid)
|
|
return;
|
|
|
|
/* If we're partially in the CPU read domain, finish moving it in.
|
|
*/
|
|
if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
|
|
int i;
|
|
|
|
for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
|
|
if (obj_priv->page_cpu_valid[i])
|
|
continue;
|
|
drm_clflush_pages(obj_priv->pages + i, 1);
|
|
}
|
|
}
|
|
|
|
/* Free the page_cpu_valid mappings which are now stale, whether
|
|
* or not we've got I915_GEM_DOMAIN_CPU.
|
|
*/
|
|
kfree(obj_priv->page_cpu_valid);
|
|
obj_priv->page_cpu_valid = NULL;
|
|
}
|
|
|
|
/**
|
|
* Set the CPU read domain on a range of the object.
|
|
*
|
|
* The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
|
|
* not entirely valid. The page_cpu_valid member of the object flags which
|
|
* pages have been flushed, and will be respected by
|
|
* i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
|
|
* of the whole object.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
static int
|
|
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
|
|
uint64_t offset, uint64_t size)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
uint32_t old_read_domains;
|
|
int i, ret;
|
|
|
|
if (offset == 0 && size == obj->size)
|
|
return i915_gem_object_set_to_cpu_domain(obj, 0);
|
|
|
|
i915_gem_object_flush_gpu_write_domain(obj);
|
|
/* Wait on any GPU rendering and flushing to occur. */
|
|
ret = i915_gem_object_wait_rendering(obj);
|
|
if (ret != 0)
|
|
return ret;
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
/* If we're already fully in the CPU read domain, we're done. */
|
|
if (obj_priv->page_cpu_valid == NULL &&
|
|
(obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
|
|
return 0;
|
|
|
|
/* Otherwise, create/clear the per-page CPU read domain flag if we're
|
|
* newly adding I915_GEM_DOMAIN_CPU
|
|
*/
|
|
if (obj_priv->page_cpu_valid == NULL) {
|
|
obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
|
|
GFP_KERNEL);
|
|
if (obj_priv->page_cpu_valid == NULL)
|
|
return -ENOMEM;
|
|
} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
|
|
memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
|
|
|
|
/* Flush the cache on any pages that are still invalid from the CPU's
|
|
* perspective.
|
|
*/
|
|
for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
|
|
i++) {
|
|
if (obj_priv->page_cpu_valid[i])
|
|
continue;
|
|
|
|
drm_clflush_pages(obj_priv->pages + i, 1);
|
|
|
|
obj_priv->page_cpu_valid[i] = 1;
|
|
}
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
|
|
|
|
old_read_domains = obj->read_domains;
|
|
obj->read_domains |= I915_GEM_DOMAIN_CPU;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
obj->write_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Pin an object to the GTT and evaluate the relocations landing in it.
|
|
*/
|
|
static int
|
|
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
|
|
struct drm_file *file_priv,
|
|
struct drm_i915_gem_exec_object *entry,
|
|
struct drm_i915_gem_relocation_entry *relocs)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int i, ret;
|
|
void __iomem *reloc_page;
|
|
|
|
/* Choose the GTT offset for our buffer and put it there. */
|
|
ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
|
|
if (ret)
|
|
return ret;
|
|
|
|
entry->offset = obj_priv->gtt_offset;
|
|
|
|
/* Apply the relocations, using the GTT aperture to avoid cache
|
|
* flushing requirements.
|
|
*/
|
|
for (i = 0; i < entry->relocation_count; i++) {
|
|
struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
|
|
struct drm_gem_object *target_obj;
|
|
struct drm_i915_gem_object *target_obj_priv;
|
|
uint32_t reloc_val, reloc_offset;
|
|
uint32_t __iomem *reloc_entry;
|
|
|
|
target_obj = drm_gem_object_lookup(obj->dev, file_priv,
|
|
reloc->target_handle);
|
|
if (target_obj == NULL) {
|
|
i915_gem_object_unpin(obj);
|
|
return -EBADF;
|
|
}
|
|
target_obj_priv = target_obj->driver_private;
|
|
|
|
#if WATCH_RELOC
|
|
DRM_INFO("%s: obj %p offset %08x target %d "
|
|
"read %08x write %08x gtt %08x "
|
|
"presumed %08x delta %08x\n",
|
|
__func__,
|
|
obj,
|
|
(int) reloc->offset,
|
|
(int) reloc->target_handle,
|
|
(int) reloc->read_domains,
|
|
(int) reloc->write_domain,
|
|
(int) target_obj_priv->gtt_offset,
|
|
(int) reloc->presumed_offset,
|
|
reloc->delta);
|
|
#endif
|
|
|
|
/* The target buffer should have appeared before us in the
|
|
* exec_object list, so it should have a GTT space bound by now.
|
|
*/
|
|
if (target_obj_priv->gtt_space == NULL) {
|
|
DRM_ERROR("No GTT space found for object %d\n",
|
|
reloc->target_handle);
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Validate that the target is in a valid r/w GPU domain */
|
|
if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
|
|
reloc->read_domains & I915_GEM_DOMAIN_CPU) {
|
|
DRM_ERROR("reloc with read/write CPU domains: "
|
|
"obj %p target %d offset %d "
|
|
"read %08x write %08x",
|
|
obj, reloc->target_handle,
|
|
(int) reloc->offset,
|
|
reloc->read_domains,
|
|
reloc->write_domain);
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
if (reloc->write_domain && target_obj->pending_write_domain &&
|
|
reloc->write_domain != target_obj->pending_write_domain) {
|
|
DRM_ERROR("Write domain conflict: "
|
|
"obj %p target %d offset %d "
|
|
"new %08x old %08x\n",
|
|
obj, reloc->target_handle,
|
|
(int) reloc->offset,
|
|
reloc->write_domain,
|
|
target_obj->pending_write_domain);
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
target_obj->pending_read_domains |= reloc->read_domains;
|
|
target_obj->pending_write_domain |= reloc->write_domain;
|
|
|
|
/* If the relocation already has the right value in it, no
|
|
* more work needs to be done.
|
|
*/
|
|
if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
|
|
drm_gem_object_unreference(target_obj);
|
|
continue;
|
|
}
|
|
|
|
/* Check that the relocation address is valid... */
|
|
if (reloc->offset > obj->size - 4) {
|
|
DRM_ERROR("Relocation beyond object bounds: "
|
|
"obj %p target %d offset %d size %d.\n",
|
|
obj, reloc->target_handle,
|
|
(int) reloc->offset, (int) obj->size);
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
if (reloc->offset & 3) {
|
|
DRM_ERROR("Relocation not 4-byte aligned: "
|
|
"obj %p target %d offset %d.\n",
|
|
obj, reloc->target_handle,
|
|
(int) reloc->offset);
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* and points to somewhere within the target object. */
|
|
if (reloc->delta >= target_obj->size) {
|
|
DRM_ERROR("Relocation beyond target object bounds: "
|
|
"obj %p target %d delta %d size %d.\n",
|
|
obj, reloc->target_handle,
|
|
(int) reloc->delta, (int) target_obj->size);
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
|
|
if (ret != 0) {
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Map the page containing the relocation we're going to
|
|
* perform.
|
|
*/
|
|
reloc_offset = obj_priv->gtt_offset + reloc->offset;
|
|
reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
|
|
(reloc_offset &
|
|
~(PAGE_SIZE - 1)));
|
|
reloc_entry = (uint32_t __iomem *)(reloc_page +
|
|
(reloc_offset & (PAGE_SIZE - 1)));
|
|
reloc_val = target_obj_priv->gtt_offset + reloc->delta;
|
|
|
|
#if WATCH_BUF
|
|
DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
|
|
obj, (unsigned int) reloc->offset,
|
|
readl(reloc_entry), reloc_val);
|
|
#endif
|
|
writel(reloc_val, reloc_entry);
|
|
io_mapping_unmap_atomic(reloc_page);
|
|
|
|
/* The updated presumed offset for this entry will be
|
|
* copied back out to the user.
|
|
*/
|
|
reloc->presumed_offset = target_obj_priv->gtt_offset;
|
|
|
|
drm_gem_object_unreference(target_obj);
|
|
}
|
|
|
|
#if WATCH_BUF
|
|
if (0)
|
|
i915_gem_dump_object(obj, 128, __func__, ~0);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/** Dispatch a batchbuffer to the ring
|
|
*/
|
|
static int
|
|
i915_dispatch_gem_execbuffer(struct drm_device *dev,
|
|
struct drm_i915_gem_execbuffer *exec,
|
|
struct drm_clip_rect *cliprects,
|
|
uint64_t exec_offset)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int nbox = exec->num_cliprects;
|
|
int i = 0, count;
|
|
uint32_t exec_start, exec_len;
|
|
RING_LOCALS;
|
|
|
|
exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
|
|
exec_len = (uint32_t) exec->batch_len;
|
|
|
|
trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
|
|
|
|
count = nbox ? nbox : 1;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (i < nbox) {
|
|
int ret = i915_emit_box(dev, cliprects, i,
|
|
exec->DR1, exec->DR4);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (IS_I830(dev) || IS_845G(dev)) {
|
|
BEGIN_LP_RING(4);
|
|
OUT_RING(MI_BATCH_BUFFER);
|
|
OUT_RING(exec_start | MI_BATCH_NON_SECURE);
|
|
OUT_RING(exec_start + exec_len - 4);
|
|
OUT_RING(0);
|
|
ADVANCE_LP_RING();
|
|
} else {
|
|
BEGIN_LP_RING(2);
|
|
if (IS_I965G(dev)) {
|
|
OUT_RING(MI_BATCH_BUFFER_START |
|
|
(2 << 6) |
|
|
MI_BATCH_NON_SECURE_I965);
|
|
OUT_RING(exec_start);
|
|
} else {
|
|
OUT_RING(MI_BATCH_BUFFER_START |
|
|
(2 << 6));
|
|
OUT_RING(exec_start | MI_BATCH_NON_SECURE);
|
|
}
|
|
ADVANCE_LP_RING();
|
|
}
|
|
}
|
|
|
|
/* XXX breadcrumb */
|
|
return 0;
|
|
}
|
|
|
|
/* Throttle our rendering by waiting until the ring has completed our requests
|
|
* emitted over 20 msec ago.
|
|
*
|
|
* Note that if we were to use the current jiffies each time around the loop,
|
|
* we wouldn't escape the function with any frames outstanding if the time to
|
|
* render a frame was over 20ms.
|
|
*
|
|
* This should get us reasonable parallelism between CPU and GPU but also
|
|
* relatively low latency when blocking on a particular request to finish.
|
|
*/
|
|
static int
|
|
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
|
|
int ret = 0;
|
|
unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
while (!list_empty(&i915_file_priv->mm.request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&i915_file_priv->mm.request_list,
|
|
struct drm_i915_gem_request,
|
|
client_list);
|
|
|
|
if (time_after_eq(request->emitted_jiffies, recent_enough))
|
|
break;
|
|
|
|
ret = i915_wait_request(dev, request->seqno);
|
|
if (ret != 0)
|
|
break;
|
|
}
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
|
|
uint32_t buffer_count,
|
|
struct drm_i915_gem_relocation_entry **relocs)
|
|
{
|
|
uint32_t reloc_count = 0, reloc_index = 0, i;
|
|
int ret;
|
|
|
|
*relocs = NULL;
|
|
for (i = 0; i < buffer_count; i++) {
|
|
if (reloc_count + exec_list[i].relocation_count < reloc_count)
|
|
return -EINVAL;
|
|
reloc_count += exec_list[i].relocation_count;
|
|
}
|
|
|
|
*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
|
|
if (*relocs == NULL)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < buffer_count; i++) {
|
|
struct drm_i915_gem_relocation_entry __user *user_relocs;
|
|
|
|
user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
|
|
|
|
ret = copy_from_user(&(*relocs)[reloc_index],
|
|
user_relocs,
|
|
exec_list[i].relocation_count *
|
|
sizeof(**relocs));
|
|
if (ret != 0) {
|
|
drm_free_large(*relocs);
|
|
*relocs = NULL;
|
|
return -EFAULT;
|
|
}
|
|
|
|
reloc_index += exec_list[i].relocation_count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
|
|
uint32_t buffer_count,
|
|
struct drm_i915_gem_relocation_entry *relocs)
|
|
{
|
|
uint32_t reloc_count = 0, i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < buffer_count; i++) {
|
|
struct drm_i915_gem_relocation_entry __user *user_relocs;
|
|
int unwritten;
|
|
|
|
user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
|
|
|
|
unwritten = copy_to_user(user_relocs,
|
|
&relocs[reloc_count],
|
|
exec_list[i].relocation_count *
|
|
sizeof(*relocs));
|
|
|
|
if (unwritten) {
|
|
ret = -EFAULT;
|
|
goto err;
|
|
}
|
|
|
|
reloc_count += exec_list[i].relocation_count;
|
|
}
|
|
|
|
err:
|
|
drm_free_large(relocs);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
|
|
uint64_t exec_offset)
|
|
{
|
|
uint32_t exec_start, exec_len;
|
|
|
|
exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
|
|
exec_len = (uint32_t) exec->batch_len;
|
|
|
|
if ((exec_start | exec_len) & 0x7)
|
|
return -EINVAL;
|
|
|
|
if (!exec_start)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_execbuffer(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_execbuffer *args = data;
|
|
struct drm_i915_gem_exec_object *exec_list = NULL;
|
|
struct drm_gem_object **object_list = NULL;
|
|
struct drm_gem_object *batch_obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
struct drm_clip_rect *cliprects = NULL;
|
|
struct drm_i915_gem_relocation_entry *relocs;
|
|
int ret, ret2, i, pinned = 0;
|
|
uint64_t exec_offset;
|
|
uint32_t seqno, flush_domains, reloc_index;
|
|
int pin_tries;
|
|
|
|
#if WATCH_EXEC
|
|
DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
|
|
(int) args->buffers_ptr, args->buffer_count, args->batch_len);
|
|
#endif
|
|
|
|
if (args->buffer_count < 1) {
|
|
DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
|
|
return -EINVAL;
|
|
}
|
|
/* Copy in the exec list from userland */
|
|
exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
|
|
object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
|
|
if (exec_list == NULL || object_list == NULL) {
|
|
DRM_ERROR("Failed to allocate exec or object list "
|
|
"for %d buffers\n",
|
|
args->buffer_count);
|
|
ret = -ENOMEM;
|
|
goto pre_mutex_err;
|
|
}
|
|
ret = copy_from_user(exec_list,
|
|
(struct drm_i915_relocation_entry __user *)
|
|
(uintptr_t) args->buffers_ptr,
|
|
sizeof(*exec_list) * args->buffer_count);
|
|
if (ret != 0) {
|
|
DRM_ERROR("copy %d exec entries failed %d\n",
|
|
args->buffer_count, ret);
|
|
goto pre_mutex_err;
|
|
}
|
|
|
|
if (args->num_cliprects != 0) {
|
|
cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
|
|
GFP_KERNEL);
|
|
if (cliprects == NULL)
|
|
goto pre_mutex_err;
|
|
|
|
ret = copy_from_user(cliprects,
|
|
(struct drm_clip_rect __user *)
|
|
(uintptr_t) args->cliprects_ptr,
|
|
sizeof(*cliprects) * args->num_cliprects);
|
|
if (ret != 0) {
|
|
DRM_ERROR("copy %d cliprects failed: %d\n",
|
|
args->num_cliprects, ret);
|
|
goto pre_mutex_err;
|
|
}
|
|
}
|
|
|
|
ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
|
|
&relocs);
|
|
if (ret != 0)
|
|
goto pre_mutex_err;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
if (atomic_read(&dev_priv->mm.wedged)) {
|
|
DRM_ERROR("Execbuf while wedged\n");
|
|
mutex_unlock(&dev->struct_mutex);
|
|
ret = -EIO;
|
|
goto pre_mutex_err;
|
|
}
|
|
|
|
if (dev_priv->mm.suspended) {
|
|
DRM_ERROR("Execbuf while VT-switched.\n");
|
|
mutex_unlock(&dev->struct_mutex);
|
|
ret = -EBUSY;
|
|
goto pre_mutex_err;
|
|
}
|
|
|
|
/* Look up object handles */
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
object_list[i] = drm_gem_object_lookup(dev, file_priv,
|
|
exec_list[i].handle);
|
|
if (object_list[i] == NULL) {
|
|
DRM_ERROR("Invalid object handle %d at index %d\n",
|
|
exec_list[i].handle, i);
|
|
ret = -EBADF;
|
|
goto err;
|
|
}
|
|
|
|
obj_priv = object_list[i]->driver_private;
|
|
if (obj_priv->in_execbuffer) {
|
|
DRM_ERROR("Object %p appears more than once in object list\n",
|
|
object_list[i]);
|
|
ret = -EBADF;
|
|
goto err;
|
|
}
|
|
obj_priv->in_execbuffer = true;
|
|
}
|
|
|
|
/* Pin and relocate */
|
|
for (pin_tries = 0; ; pin_tries++) {
|
|
ret = 0;
|
|
reloc_index = 0;
|
|
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
object_list[i]->pending_read_domains = 0;
|
|
object_list[i]->pending_write_domain = 0;
|
|
ret = i915_gem_object_pin_and_relocate(object_list[i],
|
|
file_priv,
|
|
&exec_list[i],
|
|
&relocs[reloc_index]);
|
|
if (ret)
|
|
break;
|
|
pinned = i + 1;
|
|
reloc_index += exec_list[i].relocation_count;
|
|
}
|
|
/* success */
|
|
if (ret == 0)
|
|
break;
|
|
|
|
/* error other than GTT full, or we've already tried again */
|
|
if (ret != -ENOSPC || pin_tries >= 1) {
|
|
if (ret != -ERESTARTSYS) {
|
|
unsigned long long total_size = 0;
|
|
for (i = 0; i < args->buffer_count; i++)
|
|
total_size += object_list[i]->size;
|
|
DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
|
|
pinned+1, args->buffer_count,
|
|
total_size, ret);
|
|
DRM_ERROR("%d objects [%d pinned], "
|
|
"%d object bytes [%d pinned], "
|
|
"%d/%d gtt bytes\n",
|
|
atomic_read(&dev->object_count),
|
|
atomic_read(&dev->pin_count),
|
|
atomic_read(&dev->object_memory),
|
|
atomic_read(&dev->pin_memory),
|
|
atomic_read(&dev->gtt_memory),
|
|
dev->gtt_total);
|
|
}
|
|
goto err;
|
|
}
|
|
|
|
/* unpin all of our buffers */
|
|
for (i = 0; i < pinned; i++)
|
|
i915_gem_object_unpin(object_list[i]);
|
|
pinned = 0;
|
|
|
|
/* evict everyone we can from the aperture */
|
|
ret = i915_gem_evict_everything(dev);
|
|
if (ret && ret != -ENOSPC)
|
|
goto err;
|
|
}
|
|
|
|
/* Set the pending read domains for the batch buffer to COMMAND */
|
|
batch_obj = object_list[args->buffer_count-1];
|
|
if (batch_obj->pending_write_domain) {
|
|
DRM_ERROR("Attempting to use self-modifying batch buffer\n");
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
|
|
|
|
/* Sanity check the batch buffer, prior to moving objects */
|
|
exec_offset = exec_list[args->buffer_count - 1].offset;
|
|
ret = i915_gem_check_execbuffer (args, exec_offset);
|
|
if (ret != 0) {
|
|
DRM_ERROR("execbuf with invalid offset/length\n");
|
|
goto err;
|
|
}
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
/* Zero the global flush/invalidate flags. These
|
|
* will be modified as new domains are computed
|
|
* for each object
|
|
*/
|
|
dev->invalidate_domains = 0;
|
|
dev->flush_domains = 0;
|
|
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
struct drm_gem_object *obj = object_list[i];
|
|
|
|
/* Compute new gpu domains and update invalidate/flush */
|
|
i915_gem_object_set_to_gpu_domain(obj);
|
|
}
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
if (dev->invalidate_domains | dev->flush_domains) {
|
|
#if WATCH_EXEC
|
|
DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
|
|
__func__,
|
|
dev->invalidate_domains,
|
|
dev->flush_domains);
|
|
#endif
|
|
i915_gem_flush(dev,
|
|
dev->invalidate_domains,
|
|
dev->flush_domains);
|
|
if (dev->flush_domains)
|
|
(void)i915_add_request(dev, file_priv,
|
|
dev->flush_domains);
|
|
}
|
|
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
struct drm_gem_object *obj = object_list[i];
|
|
uint32_t old_write_domain = obj->write_domain;
|
|
|
|
obj->write_domain = obj->pending_write_domain;
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
#if WATCH_COHERENCY
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
i915_gem_object_check_coherency(object_list[i],
|
|
exec_list[i].handle);
|
|
}
|
|
#endif
|
|
|
|
#if WATCH_EXEC
|
|
i915_gem_dump_object(batch_obj,
|
|
args->batch_len,
|
|
__func__,
|
|
~0);
|
|
#endif
|
|
|
|
/* Exec the batchbuffer */
|
|
ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
|
|
if (ret) {
|
|
DRM_ERROR("dispatch failed %d\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Ensure that the commands in the batch buffer are
|
|
* finished before the interrupt fires
|
|
*/
|
|
flush_domains = i915_retire_commands(dev);
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
/*
|
|
* Get a seqno representing the execution of the current buffer,
|
|
* which we can wait on. We would like to mitigate these interrupts,
|
|
* likely by only creating seqnos occasionally (so that we have
|
|
* *some* interrupts representing completion of buffers that we can
|
|
* wait on when trying to clear up gtt space).
|
|
*/
|
|
seqno = i915_add_request(dev, file_priv, flush_domains);
|
|
BUG_ON(seqno == 0);
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
struct drm_gem_object *obj = object_list[i];
|
|
|
|
i915_gem_object_move_to_active(obj, seqno);
|
|
#if WATCH_LRU
|
|
DRM_INFO("%s: move to exec list %p\n", __func__, obj);
|
|
#endif
|
|
}
|
|
#if WATCH_LRU
|
|
i915_dump_lru(dev, __func__);
|
|
#endif
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
err:
|
|
for (i = 0; i < pinned; i++)
|
|
i915_gem_object_unpin(object_list[i]);
|
|
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
if (object_list[i]) {
|
|
obj_priv = object_list[i]->driver_private;
|
|
obj_priv->in_execbuffer = false;
|
|
}
|
|
drm_gem_object_unreference(object_list[i]);
|
|
}
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (!ret) {
|
|
/* Copy the new buffer offsets back to the user's exec list. */
|
|
ret = copy_to_user((struct drm_i915_relocation_entry __user *)
|
|
(uintptr_t) args->buffers_ptr,
|
|
exec_list,
|
|
sizeof(*exec_list) * args->buffer_count);
|
|
if (ret) {
|
|
ret = -EFAULT;
|
|
DRM_ERROR("failed to copy %d exec entries "
|
|
"back to user (%d)\n",
|
|
args->buffer_count, ret);
|
|
}
|
|
}
|
|
|
|
/* Copy the updated relocations out regardless of current error
|
|
* state. Failure to update the relocs would mean that the next
|
|
* time userland calls execbuf, it would do so with presumed offset
|
|
* state that didn't match the actual object state.
|
|
*/
|
|
ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
|
|
relocs);
|
|
if (ret2 != 0) {
|
|
DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
|
|
|
|
if (ret == 0)
|
|
ret = ret2;
|
|
}
|
|
|
|
pre_mutex_err:
|
|
drm_free_large(object_list);
|
|
drm_free_large(exec_list);
|
|
kfree(cliprects);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int ret;
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
if (obj_priv->gtt_space == NULL) {
|
|
ret = i915_gem_object_bind_to_gtt(obj, alignment);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
/*
|
|
* Pre-965 chips need a fence register set up in order to
|
|
* properly handle tiled surfaces.
|
|
*/
|
|
if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
|
|
ret = i915_gem_object_get_fence_reg(obj);
|
|
if (ret != 0) {
|
|
if (ret != -EBUSY && ret != -ERESTARTSYS)
|
|
DRM_ERROR("Failure to install fence: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
}
|
|
obj_priv->pin_count++;
|
|
|
|
/* If the object is not active and not pending a flush,
|
|
* remove it from the inactive list
|
|
*/
|
|
if (obj_priv->pin_count == 1) {
|
|
atomic_inc(&dev->pin_count);
|
|
atomic_add(obj->size, &dev->pin_memory);
|
|
if (!obj_priv->active &&
|
|
(obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
|
|
!list_empty(&obj_priv->list))
|
|
list_del_init(&obj_priv->list);
|
|
}
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_unpin(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
obj_priv->pin_count--;
|
|
BUG_ON(obj_priv->pin_count < 0);
|
|
BUG_ON(obj_priv->gtt_space == NULL);
|
|
|
|
/* If the object is no longer pinned, and is
|
|
* neither active nor being flushed, then stick it on
|
|
* the inactive list
|
|
*/
|
|
if (obj_priv->pin_count == 0) {
|
|
if (!obj_priv->active &&
|
|
(obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
|
|
list_move_tail(&obj_priv->list,
|
|
&dev_priv->mm.inactive_list);
|
|
atomic_dec(&dev->pin_count);
|
|
atomic_sub(obj->size, &dev->pin_memory);
|
|
}
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
}
|
|
|
|
int
|
|
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_pin *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EBADF;
|
|
}
|
|
obj_priv = obj->driver_private;
|
|
|
|
if (obj_priv->madv != I915_MADV_WILLNEED) {
|
|
DRM_ERROR("Attempting to pin a purgeable buffer\n");
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
|
|
DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
obj_priv->user_pin_count++;
|
|
obj_priv->pin_filp = file_priv;
|
|
if (obj_priv->user_pin_count == 1) {
|
|
ret = i915_gem_object_pin(obj, args->alignment);
|
|
if (ret != 0) {
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* XXX - flush the CPU caches for pinned objects
|
|
* as the X server doesn't manage domains yet
|
|
*/
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
args->offset = obj_priv->gtt_offset;
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_pin *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
|
|
args->handle);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EBADF;
|
|
}
|
|
|
|
obj_priv = obj->driver_private;
|
|
if (obj_priv->pin_filp != file_priv) {
|
|
DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EINVAL;
|
|
}
|
|
obj_priv->user_pin_count--;
|
|
if (obj_priv->user_pin_count == 0) {
|
|
obj_priv->pin_filp = NULL;
|
|
i915_gem_object_unpin(obj);
|
|
}
|
|
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_busy *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
|
|
args->handle);
|
|
return -EBADF;
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
/* Update the active list for the hardware's current position.
|
|
* Otherwise this only updates on a delayed timer or when irqs are
|
|
* actually unmasked, and our working set ends up being larger than
|
|
* required.
|
|
*/
|
|
i915_gem_retire_requests(dev);
|
|
|
|
obj_priv = obj->driver_private;
|
|
/* Don't count being on the flushing list against the object being
|
|
* done. Otherwise, a buffer left on the flushing list but not getting
|
|
* flushed (because nobody's flushing that domain) won't ever return
|
|
* unbusy and get reused by libdrm's bo cache. The other expected
|
|
* consumer of this interface, OpenGL's occlusion queries, also specs
|
|
* that the objects get unbusy "eventually" without any interference.
|
|
*/
|
|
args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
|
|
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
return i915_gem_ring_throttle(dev, file_priv);
|
|
}
|
|
|
|
int
|
|
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_madvise *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
switch (args->madv) {
|
|
case I915_MADV_DONTNEED:
|
|
case I915_MADV_WILLNEED:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
|
|
args->handle);
|
|
return -EBADF;
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
obj_priv = obj->driver_private;
|
|
|
|
if (obj_priv->pin_count) {
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (obj_priv->madv != __I915_MADV_PURGED)
|
|
obj_priv->madv = args->madv;
|
|
|
|
/* if the object is no longer bound, discard its backing storage */
|
|
if (i915_gem_object_is_purgeable(obj_priv) &&
|
|
obj_priv->gtt_space == NULL)
|
|
i915_gem_object_truncate(obj);
|
|
|
|
args->retained = obj_priv->madv != __I915_MADV_PURGED;
|
|
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_init_object(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
|
|
if (obj_priv == NULL)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* We've just allocated pages from the kernel,
|
|
* so they've just been written by the CPU with
|
|
* zeros. They'll need to be clflushed before we
|
|
* use them with the GPU.
|
|
*/
|
|
obj->write_domain = I915_GEM_DOMAIN_CPU;
|
|
obj->read_domains = I915_GEM_DOMAIN_CPU;
|
|
|
|
obj_priv->agp_type = AGP_USER_MEMORY;
|
|
|
|
obj->driver_private = obj_priv;
|
|
obj_priv->obj = obj;
|
|
obj_priv->fence_reg = I915_FENCE_REG_NONE;
|
|
INIT_LIST_HEAD(&obj_priv->list);
|
|
INIT_LIST_HEAD(&obj_priv->fence_list);
|
|
obj_priv->madv = I915_MADV_WILLNEED;
|
|
|
|
trace_i915_gem_object_create(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_free_object(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
trace_i915_gem_object_destroy(obj);
|
|
|
|
while (obj_priv->pin_count > 0)
|
|
i915_gem_object_unpin(obj);
|
|
|
|
if (obj_priv->phys_obj)
|
|
i915_gem_detach_phys_object(dev, obj);
|
|
|
|
i915_gem_object_unbind(obj);
|
|
|
|
if (obj_priv->mmap_offset)
|
|
i915_gem_free_mmap_offset(obj);
|
|
|
|
kfree(obj_priv->page_cpu_valid);
|
|
kfree(obj_priv->bit_17);
|
|
kfree(obj->driver_private);
|
|
}
|
|
|
|
/** Unbinds all inactive objects. */
|
|
static int
|
|
i915_gem_evict_from_inactive_list(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
while (!list_empty(&dev_priv->mm.inactive_list)) {
|
|
struct drm_gem_object *obj;
|
|
int ret;
|
|
|
|
obj = list_first_entry(&dev_priv->mm.inactive_list,
|
|
struct drm_i915_gem_object,
|
|
list)->obj;
|
|
|
|
ret = i915_gem_object_unbind(obj);
|
|
if (ret != 0) {
|
|
DRM_ERROR("Error unbinding object: %d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_idle(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
uint32_t seqno, cur_seqno, last_seqno;
|
|
int stuck, ret;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return 0;
|
|
}
|
|
|
|
/* Hack! Don't let anybody do execbuf while we don't control the chip.
|
|
* We need to replace this with a semaphore, or something.
|
|
*/
|
|
dev_priv->mm.suspended = 1;
|
|
del_timer(&dev_priv->hangcheck_timer);
|
|
|
|
/* Cancel the retire work handler, wait for it to finish if running
|
|
*/
|
|
mutex_unlock(&dev->struct_mutex);
|
|
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
i915_kernel_lost_context(dev);
|
|
|
|
/* Flush the GPU along with all non-CPU write domains
|
|
*/
|
|
i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
|
|
|
|
if (seqno == 0) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dev_priv->mm.waiting_gem_seqno = seqno;
|
|
last_seqno = 0;
|
|
stuck = 0;
|
|
for (;;) {
|
|
cur_seqno = i915_get_gem_seqno(dev);
|
|
if (i915_seqno_passed(cur_seqno, seqno))
|
|
break;
|
|
if (last_seqno == cur_seqno) {
|
|
if (stuck++ > 100) {
|
|
DRM_ERROR("hardware wedged\n");
|
|
atomic_set(&dev_priv->mm.wedged, 1);
|
|
DRM_WAKEUP(&dev_priv->irq_queue);
|
|
break;
|
|
}
|
|
}
|
|
msleep(10);
|
|
last_seqno = cur_seqno;
|
|
}
|
|
dev_priv->mm.waiting_gem_seqno = 0;
|
|
|
|
i915_gem_retire_requests(dev);
|
|
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
if (!atomic_read(&dev_priv->mm.wedged)) {
|
|
/* Active and flushing should now be empty as we've
|
|
* waited for a sequence higher than any pending execbuffer
|
|
*/
|
|
WARN_ON(!list_empty(&dev_priv->mm.active_list));
|
|
WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
|
|
/* Request should now be empty as we've also waited
|
|
* for the last request in the list
|
|
*/
|
|
WARN_ON(!list_empty(&dev_priv->mm.request_list));
|
|
}
|
|
|
|
/* Empty the active and flushing lists to inactive. If there's
|
|
* anything left at this point, it means that we're wedged and
|
|
* nothing good's going to happen by leaving them there. So strip
|
|
* the GPU domains and just stuff them onto inactive.
|
|
*/
|
|
while (!list_empty(&dev_priv->mm.active_list)) {
|
|
struct drm_gem_object *obj;
|
|
uint32_t old_write_domain;
|
|
|
|
obj = list_first_entry(&dev_priv->mm.active_list,
|
|
struct drm_i915_gem_object,
|
|
list)->obj;
|
|
old_write_domain = obj->write_domain;
|
|
obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
|
|
i915_gem_object_move_to_inactive(obj);
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->read_domains,
|
|
old_write_domain);
|
|
}
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
|
|
while (!list_empty(&dev_priv->mm.flushing_list)) {
|
|
struct drm_gem_object *obj;
|
|
uint32_t old_write_domain;
|
|
|
|
obj = list_first_entry(&dev_priv->mm.flushing_list,
|
|
struct drm_i915_gem_object,
|
|
list)->obj;
|
|
old_write_domain = obj->write_domain;
|
|
obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
|
|
i915_gem_object_move_to_inactive(obj);
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
|
|
/* Move all inactive buffers out of the GTT. */
|
|
ret = i915_gem_evict_from_inactive_list(dev);
|
|
WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
i915_gem_cleanup_ringbuffer(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_init_hws(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret;
|
|
|
|
/* If we need a physical address for the status page, it's already
|
|
* initialized at driver load time.
|
|
*/
|
|
if (!I915_NEED_GFX_HWS(dev))
|
|
return 0;
|
|
|
|
obj = drm_gem_object_alloc(dev, 4096);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Failed to allocate status page\n");
|
|
return -ENOMEM;
|
|
}
|
|
obj_priv = obj->driver_private;
|
|
obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
|
|
|
|
ret = i915_gem_object_pin(obj, 4096);
|
|
if (ret != 0) {
|
|
drm_gem_object_unreference(obj);
|
|
return ret;
|
|
}
|
|
|
|
dev_priv->status_gfx_addr = obj_priv->gtt_offset;
|
|
|
|
dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
|
|
if (dev_priv->hw_status_page == NULL) {
|
|
DRM_ERROR("Failed to map status page.\n");
|
|
memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
|
|
i915_gem_object_unpin(obj);
|
|
drm_gem_object_unreference(obj);
|
|
return -EINVAL;
|
|
}
|
|
dev_priv->hws_obj = obj;
|
|
memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
|
|
I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
|
|
I915_READ(HWS_PGA); /* posting read */
|
|
DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
i915_gem_cleanup_hws(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
if (dev_priv->hws_obj == NULL)
|
|
return;
|
|
|
|
obj = dev_priv->hws_obj;
|
|
obj_priv = obj->driver_private;
|
|
|
|
kunmap(obj_priv->pages[0]);
|
|
i915_gem_object_unpin(obj);
|
|
drm_gem_object_unreference(obj);
|
|
dev_priv->hws_obj = NULL;
|
|
|
|
memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
|
|
dev_priv->hw_status_page = NULL;
|
|
|
|
/* Write high address into HWS_PGA when disabling. */
|
|
I915_WRITE(HWS_PGA, 0x1ffff000);
|
|
}
|
|
|
|
int
|
|
i915_gem_init_ringbuffer(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
drm_i915_ring_buffer_t *ring = &dev_priv->ring;
|
|
int ret;
|
|
u32 head;
|
|
|
|
ret = i915_gem_init_hws(dev);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
obj = drm_gem_object_alloc(dev, 128 * 1024);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Failed to allocate ringbuffer\n");
|
|
i915_gem_cleanup_hws(dev);
|
|
return -ENOMEM;
|
|
}
|
|
obj_priv = obj->driver_private;
|
|
|
|
ret = i915_gem_object_pin(obj, 4096);
|
|
if (ret != 0) {
|
|
drm_gem_object_unreference(obj);
|
|
i915_gem_cleanup_hws(dev);
|
|
return ret;
|
|
}
|
|
|
|
/* Set up the kernel mapping for the ring. */
|
|
ring->Size = obj->size;
|
|
|
|
ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
|
|
ring->map.size = obj->size;
|
|
ring->map.type = 0;
|
|
ring->map.flags = 0;
|
|
ring->map.mtrr = 0;
|
|
|
|
drm_core_ioremap_wc(&ring->map, dev);
|
|
if (ring->map.handle == NULL) {
|
|
DRM_ERROR("Failed to map ringbuffer.\n");
|
|
memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
|
|
i915_gem_object_unpin(obj);
|
|
drm_gem_object_unreference(obj);
|
|
i915_gem_cleanup_hws(dev);
|
|
return -EINVAL;
|
|
}
|
|
ring->ring_obj = obj;
|
|
ring->virtual_start = ring->map.handle;
|
|
|
|
/* Stop the ring if it's running. */
|
|
I915_WRITE(PRB0_CTL, 0);
|
|
I915_WRITE(PRB0_TAIL, 0);
|
|
I915_WRITE(PRB0_HEAD, 0);
|
|
|
|
/* Initialize the ring. */
|
|
I915_WRITE(PRB0_START, obj_priv->gtt_offset);
|
|
head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
|
|
|
|
/* G45 ring initialization fails to reset head to zero */
|
|
if (head != 0) {
|
|
DRM_ERROR("Ring head not reset to zero "
|
|
"ctl %08x head %08x tail %08x start %08x\n",
|
|
I915_READ(PRB0_CTL),
|
|
I915_READ(PRB0_HEAD),
|
|
I915_READ(PRB0_TAIL),
|
|
I915_READ(PRB0_START));
|
|
I915_WRITE(PRB0_HEAD, 0);
|
|
|
|
DRM_ERROR("Ring head forced to zero "
|
|
"ctl %08x head %08x tail %08x start %08x\n",
|
|
I915_READ(PRB0_CTL),
|
|
I915_READ(PRB0_HEAD),
|
|
I915_READ(PRB0_TAIL),
|
|
I915_READ(PRB0_START));
|
|
}
|
|
|
|
I915_WRITE(PRB0_CTL,
|
|
((obj->size - 4096) & RING_NR_PAGES) |
|
|
RING_NO_REPORT |
|
|
RING_VALID);
|
|
|
|
head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
|
|
|
|
/* If the head is still not zero, the ring is dead */
|
|
if (head != 0) {
|
|
DRM_ERROR("Ring initialization failed "
|
|
"ctl %08x head %08x tail %08x start %08x\n",
|
|
I915_READ(PRB0_CTL),
|
|
I915_READ(PRB0_HEAD),
|
|
I915_READ(PRB0_TAIL),
|
|
I915_READ(PRB0_START));
|
|
return -EIO;
|
|
}
|
|
|
|
/* Update our cache of the ring state */
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
i915_kernel_lost_context(dev);
|
|
else {
|
|
ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
|
|
ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
|
|
ring->space = ring->head - (ring->tail + 8);
|
|
if (ring->space < 0)
|
|
ring->space += ring->Size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
if (dev_priv->ring.ring_obj == NULL)
|
|
return;
|
|
|
|
drm_core_ioremapfree(&dev_priv->ring.map, dev);
|
|
|
|
i915_gem_object_unpin(dev_priv->ring.ring_obj);
|
|
drm_gem_object_unreference(dev_priv->ring.ring_obj);
|
|
dev_priv->ring.ring_obj = NULL;
|
|
memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
|
|
|
|
i915_gem_cleanup_hws(dev);
|
|
}
|
|
|
|
int
|
|
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return 0;
|
|
|
|
if (atomic_read(&dev_priv->mm.wedged)) {
|
|
DRM_ERROR("Reenabling wedged hardware, good luck\n");
|
|
atomic_set(&dev_priv->mm.wedged, 0);
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
dev_priv->mm.suspended = 0;
|
|
|
|
ret = i915_gem_init_ringbuffer(dev);
|
|
if (ret != 0) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
BUG_ON(!list_empty(&dev_priv->mm.active_list));
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
|
|
BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
|
|
BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
|
|
BUG_ON(!list_empty(&dev_priv->mm.request_list));
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
drm_irq_install(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return 0;
|
|
|
|
drm_irq_uninstall(dev);
|
|
return i915_gem_idle(dev);
|
|
}
|
|
|
|
void
|
|
i915_gem_lastclose(struct drm_device *dev)
|
|
{
|
|
int ret;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return;
|
|
|
|
ret = i915_gem_idle(dev);
|
|
if (ret)
|
|
DRM_ERROR("failed to idle hardware: %d\n", ret);
|
|
}
|
|
|
|
void
|
|
i915_gem_load(struct drm_device *dev)
|
|
{
|
|
int i;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
spin_lock_init(&dev_priv->mm.active_list_lock);
|
|
INIT_LIST_HEAD(&dev_priv->mm.active_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.request_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
|
|
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
|
|
i915_gem_retire_work_handler);
|
|
dev_priv->mm.next_gem_seqno = 1;
|
|
|
|
spin_lock(&shrink_list_lock);
|
|
list_add(&dev_priv->mm.shrink_list, &shrink_list);
|
|
spin_unlock(&shrink_list_lock);
|
|
|
|
/* Old X drivers will take 0-2 for front, back, depth buffers */
|
|
dev_priv->fence_reg_start = 3;
|
|
|
|
if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
|
|
dev_priv->num_fence_regs = 16;
|
|
else
|
|
dev_priv->num_fence_regs = 8;
|
|
|
|
/* Initialize fence registers to zero */
|
|
if (IS_I965G(dev)) {
|
|
for (i = 0; i < 16; i++)
|
|
I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
|
|
} else {
|
|
for (i = 0; i < 8; i++)
|
|
I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
|
|
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
|
|
for (i = 0; i < 8; i++)
|
|
I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
|
|
}
|
|
|
|
i915_gem_detect_bit_6_swizzle(dev);
|
|
}
|
|
|
|
/*
|
|
* Create a physically contiguous memory object for this object
|
|
* e.g. for cursor + overlay regs
|
|
*/
|
|
int i915_gem_init_phys_object(struct drm_device *dev,
|
|
int id, int size)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_phys_object *phys_obj;
|
|
int ret;
|
|
|
|
if (dev_priv->mm.phys_objs[id - 1] || !size)
|
|
return 0;
|
|
|
|
phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
|
|
if (!phys_obj)
|
|
return -ENOMEM;
|
|
|
|
phys_obj->id = id;
|
|
|
|
phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
|
|
if (!phys_obj->handle) {
|
|
ret = -ENOMEM;
|
|
goto kfree_obj;
|
|
}
|
|
#ifdef CONFIG_X86
|
|
set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
|
|
#endif
|
|
|
|
dev_priv->mm.phys_objs[id - 1] = phys_obj;
|
|
|
|
return 0;
|
|
kfree_obj:
|
|
kfree(phys_obj);
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_free_phys_object(struct drm_device *dev, int id)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_phys_object *phys_obj;
|
|
|
|
if (!dev_priv->mm.phys_objs[id - 1])
|
|
return;
|
|
|
|
phys_obj = dev_priv->mm.phys_objs[id - 1];
|
|
if (phys_obj->cur_obj) {
|
|
i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
|
|
}
|
|
|
|
#ifdef CONFIG_X86
|
|
set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
|
|
#endif
|
|
drm_pci_free(dev, phys_obj->handle);
|
|
kfree(phys_obj);
|
|
dev_priv->mm.phys_objs[id - 1] = NULL;
|
|
}
|
|
|
|
void i915_gem_free_all_phys_object(struct drm_device *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
|
|
i915_gem_free_phys_object(dev, i);
|
|
}
|
|
|
|
void i915_gem_detach_phys_object(struct drm_device *dev,
|
|
struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int i;
|
|
int ret;
|
|
int page_count;
|
|
|
|
obj_priv = obj->driver_private;
|
|
if (!obj_priv->phys_obj)
|
|
return;
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
goto out;
|
|
|
|
page_count = obj->size / PAGE_SIZE;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
|
|
char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
|
|
|
|
memcpy(dst, src, PAGE_SIZE);
|
|
kunmap_atomic(dst, KM_USER0);
|
|
}
|
|
drm_clflush_pages(obj_priv->pages, page_count);
|
|
drm_agp_chipset_flush(dev);
|
|
|
|
i915_gem_object_put_pages(obj);
|
|
out:
|
|
obj_priv->phys_obj->cur_obj = NULL;
|
|
obj_priv->phys_obj = NULL;
|
|
}
|
|
|
|
int
|
|
i915_gem_attach_phys_object(struct drm_device *dev,
|
|
struct drm_gem_object *obj, int id)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret = 0;
|
|
int page_count;
|
|
int i;
|
|
|
|
if (id > I915_MAX_PHYS_OBJECT)
|
|
return -EINVAL;
|
|
|
|
obj_priv = obj->driver_private;
|
|
|
|
if (obj_priv->phys_obj) {
|
|
if (obj_priv->phys_obj->id == id)
|
|
return 0;
|
|
i915_gem_detach_phys_object(dev, obj);
|
|
}
|
|
|
|
|
|
/* create a new object */
|
|
if (!dev_priv->mm.phys_objs[id - 1]) {
|
|
ret = i915_gem_init_phys_object(dev, id,
|
|
obj->size);
|
|
if (ret) {
|
|
DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* bind to the object */
|
|
obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
|
|
obj_priv->phys_obj->cur_obj = obj;
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret) {
|
|
DRM_ERROR("failed to get page list\n");
|
|
goto out;
|
|
}
|
|
|
|
page_count = obj->size / PAGE_SIZE;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
|
|
char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
|
|
|
|
memcpy(dst, src, PAGE_SIZE);
|
|
kunmap_atomic(src, KM_USER0);
|
|
}
|
|
|
|
i915_gem_object_put_pages(obj);
|
|
|
|
return 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
void *obj_addr;
|
|
int ret;
|
|
char __user *user_data;
|
|
|
|
user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
|
|
|
|
DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
|
|
ret = copy_from_user(obj_addr, user_data, args->size);
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
drm_agp_chipset_flush(dev);
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
|
|
|
|
/* Clean up our request list when the client is going away, so that
|
|
* later retire_requests won't dereference our soon-to-be-gone
|
|
* file_priv.
|
|
*/
|
|
mutex_lock(&dev->struct_mutex);
|
|
while (!list_empty(&i915_file_priv->mm.request_list))
|
|
list_del_init(i915_file_priv->mm.request_list.next);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
static int
|
|
i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
|
|
{
|
|
drm_i915_private_t *dev_priv, *next_dev;
|
|
struct drm_i915_gem_object *obj_priv, *next_obj;
|
|
int cnt = 0;
|
|
int would_deadlock = 1;
|
|
|
|
/* "fast-path" to count number of available objects */
|
|
if (nr_to_scan == 0) {
|
|
spin_lock(&shrink_list_lock);
|
|
list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
|
|
struct drm_device *dev = dev_priv->dev;
|
|
|
|
if (mutex_trylock(&dev->struct_mutex)) {
|
|
list_for_each_entry(obj_priv,
|
|
&dev_priv->mm.inactive_list,
|
|
list)
|
|
cnt++;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
}
|
|
spin_unlock(&shrink_list_lock);
|
|
|
|
return (cnt / 100) * sysctl_vfs_cache_pressure;
|
|
}
|
|
|
|
spin_lock(&shrink_list_lock);
|
|
|
|
/* first scan for clean buffers */
|
|
list_for_each_entry_safe(dev_priv, next_dev,
|
|
&shrink_list, mm.shrink_list) {
|
|
struct drm_device *dev = dev_priv->dev;
|
|
|
|
if (! mutex_trylock(&dev->struct_mutex))
|
|
continue;
|
|
|
|
spin_unlock(&shrink_list_lock);
|
|
|
|
i915_gem_retire_requests(dev);
|
|
|
|
list_for_each_entry_safe(obj_priv, next_obj,
|
|
&dev_priv->mm.inactive_list,
|
|
list) {
|
|
if (i915_gem_object_is_purgeable(obj_priv)) {
|
|
i915_gem_object_unbind(obj_priv->obj);
|
|
if (--nr_to_scan <= 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
spin_lock(&shrink_list_lock);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
would_deadlock = 0;
|
|
|
|
if (nr_to_scan <= 0)
|
|
break;
|
|
}
|
|
|
|
/* second pass, evict/count anything still on the inactive list */
|
|
list_for_each_entry_safe(dev_priv, next_dev,
|
|
&shrink_list, mm.shrink_list) {
|
|
struct drm_device *dev = dev_priv->dev;
|
|
|
|
if (! mutex_trylock(&dev->struct_mutex))
|
|
continue;
|
|
|
|
spin_unlock(&shrink_list_lock);
|
|
|
|
list_for_each_entry_safe(obj_priv, next_obj,
|
|
&dev_priv->mm.inactive_list,
|
|
list) {
|
|
if (nr_to_scan > 0) {
|
|
i915_gem_object_unbind(obj_priv->obj);
|
|
nr_to_scan--;
|
|
} else
|
|
cnt++;
|
|
}
|
|
|
|
spin_lock(&shrink_list_lock);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
would_deadlock = 0;
|
|
}
|
|
|
|
spin_unlock(&shrink_list_lock);
|
|
|
|
if (would_deadlock)
|
|
return -1;
|
|
else if (cnt > 0)
|
|
return (cnt / 100) * sysctl_vfs_cache_pressure;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static struct shrinker shrinker = {
|
|
.shrink = i915_gem_shrink,
|
|
.seeks = DEFAULT_SEEKS,
|
|
};
|
|
|
|
__init void
|
|
i915_gem_shrinker_init(void)
|
|
{
|
|
register_shrinker(&shrinker);
|
|
}
|
|
|
|
__exit void
|
|
i915_gem_shrinker_exit(void)
|
|
{
|
|
unregister_shrinker(&shrinker);
|
|
}
|