4fa96afd94
Although the GIC architecture requires us to map the MMIO regions only at page aligned addresses, we currently do not enforce this from the kernel side. Restrict any vGICv2 regions to be 4K aligned and any GICv3 regions to be 64K aligned. Document this requirement. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
1917 lines
48 KiB
C
1917 lines
48 KiB
C
/*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <linux/irqchip/arm-gic.h>
|
|
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
|
|
/*
|
|
* How the whole thing works (courtesy of Christoffer Dall):
|
|
*
|
|
* - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
|
|
* something is pending on the CPU interface.
|
|
* - Interrupts that are pending on the distributor are stored on the
|
|
* vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
|
|
* ioctls and guest mmio ops, and other in-kernel peripherals such as the
|
|
* arch. timers).
|
|
* - Every time the bitmap changes, the irq_pending_on_cpu oracle is
|
|
* recalculated
|
|
* - To calculate the oracle, we need info for each cpu from
|
|
* compute_pending_for_cpu, which considers:
|
|
* - PPI: dist->irq_pending & dist->irq_enable
|
|
* - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
|
|
* - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
|
|
* registers, stored on each vcpu. We only keep one bit of
|
|
* information per interrupt, making sure that only one vcpu can
|
|
* accept the interrupt.
|
|
* - If any of the above state changes, we must recalculate the oracle.
|
|
* - The same is true when injecting an interrupt, except that we only
|
|
* consider a single interrupt at a time. The irq_spi_cpu array
|
|
* contains the target CPU for each SPI.
|
|
*
|
|
* The handling of level interrupts adds some extra complexity. We
|
|
* need to track when the interrupt has been EOIed, so we can sample
|
|
* the 'line' again. This is achieved as such:
|
|
*
|
|
* - When a level interrupt is moved onto a vcpu, the corresponding
|
|
* bit in irq_queued is set. As long as this bit is set, the line
|
|
* will be ignored for further interrupts. The interrupt is injected
|
|
* into the vcpu with the GICH_LR_EOI bit set (generate a
|
|
* maintenance interrupt on EOI).
|
|
* - When the interrupt is EOIed, the maintenance interrupt fires,
|
|
* and clears the corresponding bit in irq_queued. This allows the
|
|
* interrupt line to be sampled again.
|
|
* - Note that level-triggered interrupts can also be set to pending from
|
|
* writes to GICD_ISPENDRn and lowering the external input line does not
|
|
* cause the interrupt to become inactive in such a situation.
|
|
* Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
|
|
* inactive as long as the external input line is held high.
|
|
*/
|
|
|
|
#include "vgic.h"
|
|
|
|
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
|
|
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
|
|
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
|
|
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
|
|
|
|
static const struct vgic_ops *vgic_ops;
|
|
static const struct vgic_params *vgic;
|
|
|
|
static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
|
|
{
|
|
vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
|
|
}
|
|
|
|
static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
|
|
}
|
|
|
|
int kvm_vgic_map_resources(struct kvm *kvm)
|
|
{
|
|
return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
|
|
}
|
|
|
|
/*
|
|
* struct vgic_bitmap contains a bitmap made of unsigned longs, but
|
|
* extracts u32s out of them.
|
|
*
|
|
* This does not work on 64-bit BE systems, because the bitmap access
|
|
* will store two consecutive 32-bit words with the higher-addressed
|
|
* register's bits at the lower index and the lower-addressed register's
|
|
* bits at the higher index.
|
|
*
|
|
* Therefore, swizzle the register index when accessing the 32-bit word
|
|
* registers to access the right register's value.
|
|
*/
|
|
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
|
|
#define REG_OFFSET_SWIZZLE 1
|
|
#else
|
|
#define REG_OFFSET_SWIZZLE 0
|
|
#endif
|
|
|
|
static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
|
|
{
|
|
int nr_longs;
|
|
|
|
nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
|
|
|
|
b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
|
|
if (!b->private)
|
|
return -ENOMEM;
|
|
|
|
b->shared = b->private + nr_cpus;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vgic_free_bitmap(struct vgic_bitmap *b)
|
|
{
|
|
kfree(b->private);
|
|
b->private = NULL;
|
|
b->shared = NULL;
|
|
}
|
|
|
|
/*
|
|
* Call this function to convert a u64 value to an unsigned long * bitmask
|
|
* in a way that works on both 32-bit and 64-bit LE and BE platforms.
|
|
*
|
|
* Warning: Calling this function may modify *val.
|
|
*/
|
|
static unsigned long *u64_to_bitmask(u64 *val)
|
|
{
|
|
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
|
|
*val = (*val >> 32) | (*val << 32);
|
|
#endif
|
|
return (unsigned long *)val;
|
|
}
|
|
|
|
u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
|
|
{
|
|
offset >>= 2;
|
|
if (!offset)
|
|
return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
|
|
else
|
|
return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
|
|
}
|
|
|
|
static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
|
|
int cpuid, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
return test_bit(irq, x->private + cpuid);
|
|
|
|
return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
|
|
}
|
|
|
|
void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
|
|
int irq, int val)
|
|
{
|
|
unsigned long *reg;
|
|
|
|
if (irq < VGIC_NR_PRIVATE_IRQS) {
|
|
reg = x->private + cpuid;
|
|
} else {
|
|
reg = x->shared;
|
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
|
}
|
|
|
|
if (val)
|
|
set_bit(irq, reg);
|
|
else
|
|
clear_bit(irq, reg);
|
|
}
|
|
|
|
static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
|
|
{
|
|
return x->private + cpuid;
|
|
}
|
|
|
|
unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
|
|
{
|
|
return x->shared;
|
|
}
|
|
|
|
static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
|
|
{
|
|
int size;
|
|
|
|
size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
|
|
size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
|
|
|
|
x->private = kzalloc(size, GFP_KERNEL);
|
|
if (!x->private)
|
|
return -ENOMEM;
|
|
|
|
x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
|
|
return 0;
|
|
}
|
|
|
|
static void vgic_free_bytemap(struct vgic_bytemap *b)
|
|
{
|
|
kfree(b->private);
|
|
b->private = NULL;
|
|
b->shared = NULL;
|
|
}
|
|
|
|
u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
|
|
{
|
|
u32 *reg;
|
|
|
|
if (offset < VGIC_NR_PRIVATE_IRQS) {
|
|
reg = x->private;
|
|
offset += cpuid * VGIC_NR_PRIVATE_IRQS;
|
|
} else {
|
|
reg = x->shared;
|
|
offset -= VGIC_NR_PRIVATE_IRQS;
|
|
}
|
|
|
|
return reg + (offset / sizeof(u32));
|
|
}
|
|
|
|
#define VGIC_CFG_LEVEL 0
|
|
#define VGIC_CFG_EDGE 1
|
|
|
|
static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int irq_val;
|
|
|
|
irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
|
|
return irq_val == VGIC_CFG_EDGE;
|
|
}
|
|
|
|
static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
|
|
}
|
|
|
|
static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
|
|
}
|
|
|
|
static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
|
|
}
|
|
|
|
void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
|
|
else
|
|
set_bit(irq - VGIC_NR_PRIVATE_IRQS,
|
|
vcpu->arch.vgic_cpu.pending_shared);
|
|
}
|
|
|
|
void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
|
|
else
|
|
clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
|
|
vcpu->arch.vgic_cpu.pending_shared);
|
|
}
|
|
|
|
static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
|
|
}
|
|
|
|
/**
|
|
* vgic_reg_access - access vgic register
|
|
* @mmio: pointer to the data describing the mmio access
|
|
* @reg: pointer to the virtual backing of vgic distributor data
|
|
* @offset: least significant 2 bits used for word offset
|
|
* @mode: ACCESS_ mode (see defines above)
|
|
*
|
|
* Helper to make vgic register access easier using one of the access
|
|
* modes defined for vgic register access
|
|
* (read,raz,write-ignored,setbit,clearbit,write)
|
|
*/
|
|
void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
|
|
phys_addr_t offset, int mode)
|
|
{
|
|
int word_offset = (offset & 3) * 8;
|
|
u32 mask = (1UL << (mmio->len * 8)) - 1;
|
|
u32 regval;
|
|
|
|
/*
|
|
* Any alignment fault should have been delivered to the guest
|
|
* directly (ARM ARM B3.12.7 "Prioritization of aborts").
|
|
*/
|
|
|
|
if (reg) {
|
|
regval = *reg;
|
|
} else {
|
|
BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
|
|
regval = 0;
|
|
}
|
|
|
|
if (mmio->is_write) {
|
|
u32 data = mmio_data_read(mmio, mask) << word_offset;
|
|
switch (ACCESS_WRITE_MASK(mode)) {
|
|
case ACCESS_WRITE_IGNORED:
|
|
return;
|
|
|
|
case ACCESS_WRITE_SETBIT:
|
|
regval |= data;
|
|
break;
|
|
|
|
case ACCESS_WRITE_CLEARBIT:
|
|
regval &= ~data;
|
|
break;
|
|
|
|
case ACCESS_WRITE_VALUE:
|
|
regval = (regval & ~(mask << word_offset)) | data;
|
|
break;
|
|
}
|
|
*reg = regval;
|
|
} else {
|
|
switch (ACCESS_READ_MASK(mode)) {
|
|
case ACCESS_READ_RAZ:
|
|
regval = 0;
|
|
/* fall through */
|
|
|
|
case ACCESS_READ_VALUE:
|
|
mmio_data_write(mmio, mask, regval >> word_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
vgic_reg_access(mmio, NULL, offset,
|
|
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
|
|
return false;
|
|
}
|
|
|
|
bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset, int vcpu_id, int access)
|
|
{
|
|
u32 *reg;
|
|
int mode = ACCESS_READ_VALUE | access;
|
|
struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
|
|
|
|
reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset, mode);
|
|
if (mmio->is_write) {
|
|
if (access & ACCESS_WRITE_CLEARBIT) {
|
|
if (offset < 4) /* Force SGI enabled */
|
|
*reg |= 0xffff;
|
|
vgic_retire_disabled_irqs(target_vcpu);
|
|
}
|
|
vgic_update_state(kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool vgic_handle_set_pending_reg(struct kvm *kvm,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset, int vcpu_id)
|
|
{
|
|
u32 *reg, orig;
|
|
u32 level_mask;
|
|
int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
|
reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
|
|
level_mask = (~(*reg));
|
|
|
|
/* Mark both level and edge triggered irqs as pending */
|
|
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
|
|
orig = *reg;
|
|
vgic_reg_access(mmio, reg, offset, mode);
|
|
|
|
if (mmio->is_write) {
|
|
/* Set the soft-pending flag only for level-triggered irqs */
|
|
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
|
|
vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset, mode);
|
|
*reg &= level_mask;
|
|
|
|
/* Ignore writes to SGIs */
|
|
if (offset < 2) {
|
|
*reg &= ~0xffff;
|
|
*reg |= orig & 0xffff;
|
|
}
|
|
|
|
vgic_update_state(kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool vgic_handle_clear_pending_reg(struct kvm *kvm,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset, int vcpu_id)
|
|
{
|
|
u32 *level_active;
|
|
u32 *reg, orig;
|
|
int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
|
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
|
|
orig = *reg;
|
|
vgic_reg_access(mmio, reg, offset, mode);
|
|
if (mmio->is_write) {
|
|
/* Re-set level triggered level-active interrupts */
|
|
level_active = vgic_bitmap_get_reg(&dist->irq_level,
|
|
vcpu_id, offset);
|
|
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
|
|
*reg |= *level_active;
|
|
|
|
/* Ignore writes to SGIs */
|
|
if (offset < 2) {
|
|
*reg &= ~0xffff;
|
|
*reg |= orig & 0xffff;
|
|
}
|
|
|
|
/* Clear soft-pending flags */
|
|
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
|
|
vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset, mode);
|
|
|
|
vgic_update_state(kvm);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static u32 vgic_cfg_expand(u16 val)
|
|
{
|
|
u32 res = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Turn a 16bit value like abcd...mnop into a 32bit word
|
|
* a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
|
|
*/
|
|
for (i = 0; i < 16; i++)
|
|
res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
|
|
|
|
return res;
|
|
}
|
|
|
|
static u16 vgic_cfg_compress(u32 val)
|
|
{
|
|
u16 res = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
|
|
* abcd...mnop which is what we really care about.
|
|
*/
|
|
for (i = 0; i < 16; i++)
|
|
res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* The distributor uses 2 bits per IRQ for the CFG register, but the
|
|
* LSB is always 0. As such, we only keep the upper bit, and use the
|
|
* two above functions to compress/expand the bits
|
|
*/
|
|
bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 val;
|
|
|
|
if (offset & 4)
|
|
val = *reg >> 16;
|
|
else
|
|
val = *reg & 0xffff;
|
|
|
|
val = vgic_cfg_expand(val);
|
|
vgic_reg_access(mmio, &val, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
if (offset < 8) {
|
|
*reg = ~0U; /* Force PPIs/SGIs to 1 */
|
|
return false;
|
|
}
|
|
|
|
val = vgic_cfg_compress(val);
|
|
if (offset & 4) {
|
|
*reg &= 0xffff;
|
|
*reg |= val << 16;
|
|
} else {
|
|
*reg &= 0xffff << 16;
|
|
*reg |= val;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
|
|
* @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
|
|
*
|
|
* Move any pending IRQs that have already been assigned to LRs back to the
|
|
* emulated distributor state so that the complete emulated state can be read
|
|
* from the main emulation structures without investigating the LRs.
|
|
*
|
|
* Note that IRQs in the active state in the LRs get their pending state moved
|
|
* to the distributor but the active state stays in the LRs, because we don't
|
|
* track the active state on the distributor side.
|
|
*/
|
|
void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
int i;
|
|
|
|
for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
|
|
struct vgic_lr lr = vgic_get_lr(vcpu, i);
|
|
|
|
/*
|
|
* There are three options for the state bits:
|
|
*
|
|
* 01: pending
|
|
* 10: active
|
|
* 11: pending and active
|
|
*
|
|
* If the LR holds only an active interrupt (not pending) then
|
|
* just leave it alone.
|
|
*/
|
|
if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
|
|
continue;
|
|
|
|
/*
|
|
* Reestablish the pending state on the distributor and the
|
|
* CPU interface. It may have already been pending, but that
|
|
* is fine, then we are only setting a few bits that were
|
|
* already set.
|
|
*/
|
|
vgic_dist_irq_set_pending(vcpu, lr.irq);
|
|
if (lr.irq < VGIC_NR_SGIS)
|
|
add_sgi_source(vcpu, lr.irq, lr.source);
|
|
lr.state &= ~LR_STATE_PENDING;
|
|
vgic_set_lr(vcpu, i, lr);
|
|
|
|
/*
|
|
* If there's no state left on the LR (it could still be
|
|
* active), then the LR does not hold any useful info and can
|
|
* be marked as free for other use.
|
|
*/
|
|
if (!(lr.state & LR_STATE_MASK)) {
|
|
vgic_retire_lr(i, lr.irq, vcpu);
|
|
vgic_irq_clear_queued(vcpu, lr.irq);
|
|
}
|
|
|
|
/* Finally update the VGIC state. */
|
|
vgic_update_state(vcpu->kvm);
|
|
}
|
|
}
|
|
|
|
const
|
|
struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
const struct kvm_mmio_range *r = ranges;
|
|
|
|
while (r->len) {
|
|
if (offset >= r->base &&
|
|
(offset + mmio->len) <= (r->base + r->len))
|
|
return r;
|
|
r++;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool vgic_validate_access(const struct vgic_dist *dist,
|
|
const struct kvm_mmio_range *range,
|
|
unsigned long offset)
|
|
{
|
|
int irq;
|
|
|
|
if (!range->bits_per_irq)
|
|
return true; /* Not an irq-based access */
|
|
|
|
irq = offset * 8 / range->bits_per_irq;
|
|
if (irq >= dist->nr_irqs)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Call the respective handler function for the given range.
|
|
* We split up any 64 bit accesses into two consecutive 32 bit
|
|
* handler calls and merge the result afterwards.
|
|
* We do this in a little endian fashion regardless of the host's
|
|
* or guest's endianness, because the GIC is always LE and the rest of
|
|
* the code (vgic_reg_access) also puts it in a LE fashion already.
|
|
* At this point we have already identified the handle function, so
|
|
* range points to that one entry and offset is relative to this.
|
|
*/
|
|
static bool call_range_handler(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
unsigned long offset,
|
|
const struct kvm_mmio_range *range)
|
|
{
|
|
u32 *data32 = (void *)mmio->data;
|
|
struct kvm_exit_mmio mmio32;
|
|
bool ret;
|
|
|
|
if (likely(mmio->len <= 4))
|
|
return range->handle_mmio(vcpu, mmio, offset);
|
|
|
|
/*
|
|
* Any access bigger than 4 bytes (that we currently handle in KVM)
|
|
* is actually 8 bytes long, caused by a 64-bit access
|
|
*/
|
|
|
|
mmio32.len = 4;
|
|
mmio32.is_write = mmio->is_write;
|
|
mmio32.private = mmio->private;
|
|
|
|
mmio32.phys_addr = mmio->phys_addr + 4;
|
|
if (mmio->is_write)
|
|
*(u32 *)mmio32.data = data32[1];
|
|
ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
|
|
if (!mmio->is_write)
|
|
data32[1] = *(u32 *)mmio32.data;
|
|
|
|
mmio32.phys_addr = mmio->phys_addr;
|
|
if (mmio->is_write)
|
|
*(u32 *)mmio32.data = data32[0];
|
|
ret |= range->handle_mmio(vcpu, &mmio32, offset);
|
|
if (!mmio->is_write)
|
|
data32[0] = *(u32 *)mmio32.data;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vgic_handle_mmio_range - handle an in-kernel MMIO access
|
|
* @vcpu: pointer to the vcpu performing the access
|
|
* @run: pointer to the kvm_run structure
|
|
* @mmio: pointer to the data describing the access
|
|
* @ranges: array of MMIO ranges in a given region
|
|
* @mmio_base: base address of that region
|
|
*
|
|
* returns true if the MMIO access could be performed
|
|
*/
|
|
bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
struct kvm_exit_mmio *mmio,
|
|
const struct kvm_mmio_range *ranges,
|
|
unsigned long mmio_base)
|
|
{
|
|
const struct kvm_mmio_range *range;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
bool updated_state;
|
|
unsigned long offset;
|
|
|
|
offset = mmio->phys_addr - mmio_base;
|
|
range = vgic_find_range(ranges, mmio, offset);
|
|
if (unlikely(!range || !range->handle_mmio)) {
|
|
pr_warn("Unhandled access %d %08llx %d\n",
|
|
mmio->is_write, mmio->phys_addr, mmio->len);
|
|
return false;
|
|
}
|
|
|
|
spin_lock(&vcpu->kvm->arch.vgic.lock);
|
|
offset -= range->base;
|
|
if (vgic_validate_access(dist, range, offset)) {
|
|
updated_state = call_range_handler(vcpu, mmio, offset, range);
|
|
} else {
|
|
if (!mmio->is_write)
|
|
memset(mmio->data, 0, mmio->len);
|
|
updated_state = false;
|
|
}
|
|
spin_unlock(&vcpu->kvm->arch.vgic.lock);
|
|
kvm_prepare_mmio(run, mmio);
|
|
kvm_handle_mmio_return(vcpu, run);
|
|
|
|
if (updated_state)
|
|
vgic_kick_vcpus(vcpu->kvm);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
|
|
* @vcpu: pointer to the vcpu performing the access
|
|
* @run: pointer to the kvm_run structure
|
|
* @mmio: pointer to the data describing the access
|
|
*
|
|
* returns true if the MMIO access has been performed in kernel space,
|
|
* and false if it needs to be emulated in user space.
|
|
* Calls the actual handling routine for the selected VGIC model.
|
|
*/
|
|
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
struct kvm_exit_mmio *mmio)
|
|
{
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return false;
|
|
|
|
/*
|
|
* This will currently call either vgic_v2_handle_mmio() or
|
|
* vgic_v3_handle_mmio(), which in turn will call
|
|
* vgic_handle_mmio_range() defined above.
|
|
*/
|
|
return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
|
|
}
|
|
|
|
static int vgic_nr_shared_irqs(struct vgic_dist *dist)
|
|
{
|
|
return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
|
|
}
|
|
|
|
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
|
|
unsigned long pending_private, pending_shared;
|
|
int nr_shared = vgic_nr_shared_irqs(dist);
|
|
int vcpu_id;
|
|
|
|
vcpu_id = vcpu->vcpu_id;
|
|
pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
|
|
pend_shared = vcpu->arch.vgic_cpu.pending_shared;
|
|
|
|
pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
|
|
enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
|
|
bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
|
|
|
|
pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
|
|
enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
|
|
bitmap_and(pend_shared, pending, enabled, nr_shared);
|
|
bitmap_and(pend_shared, pend_shared,
|
|
vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
|
|
nr_shared);
|
|
|
|
pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
|
|
pending_shared = find_first_bit(pend_shared, nr_shared);
|
|
return (pending_private < VGIC_NR_PRIVATE_IRQS ||
|
|
pending_shared < vgic_nr_shared_irqs(dist));
|
|
}
|
|
|
|
/*
|
|
* Update the interrupt state and determine which CPUs have pending
|
|
* interrupts. Must be called with distributor lock held.
|
|
*/
|
|
void vgic_update_state(struct kvm *kvm)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int c;
|
|
|
|
if (!dist->enabled) {
|
|
set_bit(0, dist->irq_pending_on_cpu);
|
|
return;
|
|
}
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
if (compute_pending_for_cpu(vcpu)) {
|
|
pr_debug("CPU%d has pending interrupts\n", c);
|
|
set_bit(c, dist->irq_pending_on_cpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
|
|
{
|
|
return vgic_ops->get_lr(vcpu, lr);
|
|
}
|
|
|
|
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
|
|
struct vgic_lr vlr)
|
|
{
|
|
vgic_ops->set_lr(vcpu, lr, vlr);
|
|
}
|
|
|
|
static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
|
|
struct vgic_lr vlr)
|
|
{
|
|
vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
|
|
}
|
|
|
|
static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vgic_ops->get_elrsr(vcpu);
|
|
}
|
|
|
|
static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vgic_ops->get_eisr(vcpu);
|
|
}
|
|
|
|
static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vgic_ops->get_interrupt_status(vcpu);
|
|
}
|
|
|
|
static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
|
|
{
|
|
vgic_ops->enable_underflow(vcpu);
|
|
}
|
|
|
|
static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
|
|
{
|
|
vgic_ops->disable_underflow(vcpu);
|
|
}
|
|
|
|
void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
|
|
{
|
|
vgic_ops->get_vmcr(vcpu, vmcr);
|
|
}
|
|
|
|
void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
|
|
{
|
|
vgic_ops->set_vmcr(vcpu, vmcr);
|
|
}
|
|
|
|
static inline void vgic_enable(struct kvm_vcpu *vcpu)
|
|
{
|
|
vgic_ops->enable(vcpu);
|
|
}
|
|
|
|
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
|
|
|
|
vlr.state = 0;
|
|
vgic_set_lr(vcpu, lr_nr, vlr);
|
|
clear_bit(lr_nr, vgic_cpu->lr_used);
|
|
vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
|
|
}
|
|
|
|
/*
|
|
* An interrupt may have been disabled after being made pending on the
|
|
* CPU interface (the classic case is a timer running while we're
|
|
* rebooting the guest - the interrupt would kick as soon as the CPU
|
|
* interface gets enabled, with deadly consequences).
|
|
*
|
|
* The solution is to examine already active LRs, and check the
|
|
* interrupt is still enabled. If not, just retire it.
|
|
*/
|
|
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
int lr;
|
|
|
|
for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
|
|
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
|
|
|
|
if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
|
|
vgic_retire_lr(lr, vlr.irq, vcpu);
|
|
if (vgic_irq_is_queued(vcpu, vlr.irq))
|
|
vgic_irq_clear_queued(vcpu, vlr.irq);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Queue an interrupt to a CPU virtual interface. Return true on success,
|
|
* or false if it wasn't possible to queue it.
|
|
* sgi_source must be zero for any non-SGI interrupts.
|
|
*/
|
|
bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
struct vgic_lr vlr;
|
|
int lr;
|
|
|
|
/* Sanitize the input... */
|
|
BUG_ON(sgi_source_id & ~7);
|
|
BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
|
|
BUG_ON(irq >= dist->nr_irqs);
|
|
|
|
kvm_debug("Queue IRQ%d\n", irq);
|
|
|
|
lr = vgic_cpu->vgic_irq_lr_map[irq];
|
|
|
|
/* Do we have an active interrupt for the same CPUID? */
|
|
if (lr != LR_EMPTY) {
|
|
vlr = vgic_get_lr(vcpu, lr);
|
|
if (vlr.source == sgi_source_id) {
|
|
kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
|
|
BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
|
|
vlr.state |= LR_STATE_PENDING;
|
|
vgic_set_lr(vcpu, lr, vlr);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* Try to use another LR for this interrupt */
|
|
lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
|
|
vgic->nr_lr);
|
|
if (lr >= vgic->nr_lr)
|
|
return false;
|
|
|
|
kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
|
|
vgic_cpu->vgic_irq_lr_map[irq] = lr;
|
|
set_bit(lr, vgic_cpu->lr_used);
|
|
|
|
vlr.irq = irq;
|
|
vlr.source = sgi_source_id;
|
|
vlr.state = LR_STATE_PENDING;
|
|
if (!vgic_irq_is_edge(vcpu, irq))
|
|
vlr.state |= LR_EOI_INT;
|
|
|
|
vgic_set_lr(vcpu, lr, vlr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (!vgic_can_sample_irq(vcpu, irq))
|
|
return true; /* level interrupt, already queued */
|
|
|
|
if (vgic_queue_irq(vcpu, 0, irq)) {
|
|
if (vgic_irq_is_edge(vcpu, irq)) {
|
|
vgic_dist_irq_clear_pending(vcpu, irq);
|
|
vgic_cpu_irq_clear(vcpu, irq);
|
|
} else {
|
|
vgic_irq_set_queued(vcpu, irq);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Fill the list registers with pending interrupts before running the
|
|
* guest.
|
|
*/
|
|
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int i, vcpu_id;
|
|
int overflow = 0;
|
|
|
|
vcpu_id = vcpu->vcpu_id;
|
|
|
|
/*
|
|
* We may not have any pending interrupt, or the interrupts
|
|
* may have been serviced from another vcpu. In all cases,
|
|
* move along.
|
|
*/
|
|
if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
|
|
pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
|
|
goto epilog;
|
|
}
|
|
|
|
/* SGIs */
|
|
for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
|
|
if (!queue_sgi(vcpu, i))
|
|
overflow = 1;
|
|
}
|
|
|
|
/* PPIs */
|
|
for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
|
|
if (!vgic_queue_hwirq(vcpu, i))
|
|
overflow = 1;
|
|
}
|
|
|
|
/* SPIs */
|
|
for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
|
|
if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
|
|
overflow = 1;
|
|
}
|
|
|
|
epilog:
|
|
if (overflow) {
|
|
vgic_enable_underflow(vcpu);
|
|
} else {
|
|
vgic_disable_underflow(vcpu);
|
|
/*
|
|
* We're about to run this VCPU, and we've consumed
|
|
* everything the distributor had in store for
|
|
* us. Claim we don't have anything pending. We'll
|
|
* adjust that if needed while exiting.
|
|
*/
|
|
clear_bit(vcpu_id, dist->irq_pending_on_cpu);
|
|
}
|
|
}
|
|
|
|
static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 status = vgic_get_interrupt_status(vcpu);
|
|
bool level_pending = false;
|
|
|
|
kvm_debug("STATUS = %08x\n", status);
|
|
|
|
if (status & INT_STATUS_EOI) {
|
|
/*
|
|
* Some level interrupts have been EOIed. Clear their
|
|
* active bit.
|
|
*/
|
|
u64 eisr = vgic_get_eisr(vcpu);
|
|
unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
|
|
int lr;
|
|
|
|
for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
|
|
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
|
|
WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
|
|
|
|
vgic_irq_clear_queued(vcpu, vlr.irq);
|
|
WARN_ON(vlr.state & LR_STATE_MASK);
|
|
vlr.state = 0;
|
|
vgic_set_lr(vcpu, lr, vlr);
|
|
|
|
/*
|
|
* If the IRQ was EOIed it was also ACKed and we we
|
|
* therefore assume we can clear the soft pending
|
|
* state (should it had been set) for this interrupt.
|
|
*
|
|
* Note: if the IRQ soft pending state was set after
|
|
* the IRQ was acked, it actually shouldn't be
|
|
* cleared, but we have no way of knowing that unless
|
|
* we start trapping ACKs when the soft-pending state
|
|
* is set.
|
|
*/
|
|
vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
|
|
|
|
/* Any additional pending interrupt? */
|
|
if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
|
|
vgic_cpu_irq_set(vcpu, vlr.irq);
|
|
level_pending = true;
|
|
} else {
|
|
vgic_dist_irq_clear_pending(vcpu, vlr.irq);
|
|
vgic_cpu_irq_clear(vcpu, vlr.irq);
|
|
}
|
|
|
|
/*
|
|
* Despite being EOIed, the LR may not have
|
|
* been marked as empty.
|
|
*/
|
|
vgic_sync_lr_elrsr(vcpu, lr, vlr);
|
|
}
|
|
}
|
|
|
|
if (status & INT_STATUS_UNDERFLOW)
|
|
vgic_disable_underflow(vcpu);
|
|
|
|
return level_pending;
|
|
}
|
|
|
|
/*
|
|
* Sync back the VGIC state after a guest run. The distributor lock is
|
|
* needed so we don't get preempted in the middle of the state processing.
|
|
*/
|
|
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
u64 elrsr;
|
|
unsigned long *elrsr_ptr;
|
|
int lr, pending;
|
|
bool level_pending;
|
|
|
|
level_pending = vgic_process_maintenance(vcpu);
|
|
elrsr = vgic_get_elrsr(vcpu);
|
|
elrsr_ptr = u64_to_bitmask(&elrsr);
|
|
|
|
/* Clear mappings for empty LRs */
|
|
for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
|
|
struct vgic_lr vlr;
|
|
|
|
if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
|
|
continue;
|
|
|
|
vlr = vgic_get_lr(vcpu, lr);
|
|
|
|
BUG_ON(vlr.irq >= dist->nr_irqs);
|
|
vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
|
|
}
|
|
|
|
/* Check if we still have something up our sleeve... */
|
|
pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
|
|
if (level_pending || pending < vgic->nr_lr)
|
|
set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return;
|
|
|
|
spin_lock(&dist->lock);
|
|
__kvm_vgic_flush_hwstate(vcpu);
|
|
spin_unlock(&dist->lock);
|
|
}
|
|
|
|
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return;
|
|
|
|
spin_lock(&dist->lock);
|
|
__kvm_vgic_sync_hwstate(vcpu);
|
|
spin_unlock(&dist->lock);
|
|
}
|
|
|
|
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return 0;
|
|
|
|
return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
void vgic_kick_vcpus(struct kvm *kvm)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int c;
|
|
|
|
/*
|
|
* We've injected an interrupt, time to find out who deserves
|
|
* a good kick...
|
|
*/
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
if (kvm_vgic_vcpu_pending_irq(vcpu))
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
}
|
|
|
|
static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
|
|
{
|
|
int edge_triggered = vgic_irq_is_edge(vcpu, irq);
|
|
|
|
/*
|
|
* Only inject an interrupt if:
|
|
* - edge triggered and we have a rising edge
|
|
* - level triggered and we change level
|
|
*/
|
|
if (edge_triggered) {
|
|
int state = vgic_dist_irq_is_pending(vcpu, irq);
|
|
return level > state;
|
|
} else {
|
|
int state = vgic_dist_irq_get_level(vcpu, irq);
|
|
return level != state;
|
|
}
|
|
}
|
|
|
|
static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
|
|
unsigned int irq_num, bool level)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int edge_triggered, level_triggered;
|
|
int enabled;
|
|
bool ret = true, can_inject = true;
|
|
|
|
spin_lock(&dist->lock);
|
|
|
|
vcpu = kvm_get_vcpu(kvm, cpuid);
|
|
edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
|
|
level_triggered = !edge_triggered;
|
|
|
|
if (!vgic_validate_injection(vcpu, irq_num, level)) {
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
|
|
cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
|
|
if (cpuid == VCPU_NOT_ALLOCATED) {
|
|
/* Pretend we use CPU0, and prevent injection */
|
|
cpuid = 0;
|
|
can_inject = false;
|
|
}
|
|
vcpu = kvm_get_vcpu(kvm, cpuid);
|
|
}
|
|
|
|
kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
|
|
|
|
if (level) {
|
|
if (level_triggered)
|
|
vgic_dist_irq_set_level(vcpu, irq_num);
|
|
vgic_dist_irq_set_pending(vcpu, irq_num);
|
|
} else {
|
|
if (level_triggered) {
|
|
vgic_dist_irq_clear_level(vcpu, irq_num);
|
|
if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
|
|
vgic_dist_irq_clear_pending(vcpu, irq_num);
|
|
}
|
|
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
enabled = vgic_irq_is_enabled(vcpu, irq_num);
|
|
|
|
if (!enabled || !can_inject) {
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (!vgic_can_sample_irq(vcpu, irq_num)) {
|
|
/*
|
|
* Level interrupt in progress, will be picked up
|
|
* when EOId.
|
|
*/
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (level) {
|
|
vgic_cpu_irq_set(vcpu, irq_num);
|
|
set_bit(cpuid, dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
out:
|
|
spin_unlock(&dist->lock);
|
|
|
|
return ret ? cpuid : -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
|
|
* @kvm: The VM structure pointer
|
|
* @cpuid: The CPU for PPIs
|
|
* @irq_num: The IRQ number that is assigned to the device
|
|
* @level: Edge-triggered: true: to trigger the interrupt
|
|
* false: to ignore the call
|
|
* Level-sensitive true: activates an interrupt
|
|
* false: deactivates an interrupt
|
|
*
|
|
* The GIC is not concerned with devices being active-LOW or active-HIGH for
|
|
* level-sensitive interrupts. You can think of the level parameter as 1
|
|
* being HIGH and 0 being LOW and all devices being active-HIGH.
|
|
*/
|
|
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
|
|
bool level)
|
|
{
|
|
int ret = 0;
|
|
int vcpu_id;
|
|
|
|
if (unlikely(!vgic_initialized(kvm))) {
|
|
/*
|
|
* We only provide the automatic initialization of the VGIC
|
|
* for the legacy case of a GICv2. Any other type must
|
|
* be explicitly initialized once setup with the respective
|
|
* KVM device call.
|
|
*/
|
|
if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
mutex_lock(&kvm->lock);
|
|
ret = vgic_init(kvm);
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
|
|
if (vcpu_id >= 0) {
|
|
/* kick the specified vcpu */
|
|
kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t vgic_maintenance_handler(int irq, void *data)
|
|
{
|
|
/*
|
|
* We cannot rely on the vgic maintenance interrupt to be
|
|
* delivered synchronously. This means we can only use it to
|
|
* exit the VM, and we perform the handling of EOIed
|
|
* interrupts on the exit path (see vgic_process_maintenance).
|
|
*/
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
|
kfree(vgic_cpu->pending_shared);
|
|
kfree(vgic_cpu->vgic_irq_lr_map);
|
|
vgic_cpu->pending_shared = NULL;
|
|
vgic_cpu->vgic_irq_lr_map = NULL;
|
|
}
|
|
|
|
static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
|
int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
|
|
vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
|
|
vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
|
|
|
|
if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
|
|
kvm_vgic_vcpu_destroy(vcpu);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
|
|
|
|
/*
|
|
* Store the number of LRs per vcpu, so we don't have to go
|
|
* all the way to the distributor structure to find out. Only
|
|
* assembly code should use this one.
|
|
*/
|
|
vgic_cpu->nr_lr = vgic->nr_lr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
|
|
*
|
|
* The host's GIC naturally limits the maximum amount of VCPUs a guest
|
|
* can use.
|
|
*/
|
|
int kvm_vgic_get_max_vcpus(void)
|
|
{
|
|
return vgic->max_gic_vcpus;
|
|
}
|
|
|
|
void kvm_vgic_destroy(struct kvm *kvm)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvm_vgic_vcpu_destroy(vcpu);
|
|
|
|
vgic_free_bitmap(&dist->irq_enabled);
|
|
vgic_free_bitmap(&dist->irq_level);
|
|
vgic_free_bitmap(&dist->irq_pending);
|
|
vgic_free_bitmap(&dist->irq_soft_pend);
|
|
vgic_free_bitmap(&dist->irq_queued);
|
|
vgic_free_bitmap(&dist->irq_cfg);
|
|
vgic_free_bytemap(&dist->irq_priority);
|
|
if (dist->irq_spi_target) {
|
|
for (i = 0; i < dist->nr_cpus; i++)
|
|
vgic_free_bitmap(&dist->irq_spi_target[i]);
|
|
}
|
|
kfree(dist->irq_sgi_sources);
|
|
kfree(dist->irq_spi_cpu);
|
|
kfree(dist->irq_spi_mpidr);
|
|
kfree(dist->irq_spi_target);
|
|
kfree(dist->irq_pending_on_cpu);
|
|
dist->irq_sgi_sources = NULL;
|
|
dist->irq_spi_cpu = NULL;
|
|
dist->irq_spi_target = NULL;
|
|
dist->irq_pending_on_cpu = NULL;
|
|
dist->nr_cpus = 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize the various data structures. Must be called
|
|
* with kvm->lock held!
|
|
*/
|
|
int vgic_init(struct kvm *kvm)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int nr_cpus, nr_irqs;
|
|
int ret, i, vcpu_id;
|
|
|
|
if (vgic_initialized(kvm))
|
|
return 0;
|
|
|
|
nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
|
|
if (!nr_cpus) /* No vcpus? Can't be good... */
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* If nobody configured the number of interrupts, use the
|
|
* legacy one.
|
|
*/
|
|
if (!dist->nr_irqs)
|
|
dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
|
|
|
|
nr_irqs = dist->nr_irqs;
|
|
|
|
ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
|
|
dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
|
|
dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
|
|
GFP_KERNEL);
|
|
dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
|
|
GFP_KERNEL);
|
|
if (!dist->irq_sgi_sources ||
|
|
!dist->irq_spi_cpu ||
|
|
!dist->irq_spi_target ||
|
|
!dist->irq_pending_on_cpu) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < nr_cpus; i++)
|
|
ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
|
|
nr_cpus, nr_irqs);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = kvm->arch.vgic.vm_ops.init_model(kvm);
|
|
if (ret)
|
|
goto out;
|
|
|
|
kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
|
|
ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
|
|
if (ret) {
|
|
kvm_err("VGIC: Failed to allocate vcpu memory\n");
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < dist->nr_irqs; i++) {
|
|
if (i < VGIC_NR_PPIS)
|
|
vgic_bitmap_set_irq_val(&dist->irq_enabled,
|
|
vcpu->vcpu_id, i, 1);
|
|
if (i < VGIC_NR_PRIVATE_IRQS)
|
|
vgic_bitmap_set_irq_val(&dist->irq_cfg,
|
|
vcpu->vcpu_id, i,
|
|
VGIC_CFG_EDGE);
|
|
}
|
|
|
|
vgic_enable(vcpu);
|
|
}
|
|
|
|
out:
|
|
if (ret)
|
|
kvm_vgic_destroy(kvm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int init_vgic_model(struct kvm *kvm, int type)
|
|
{
|
|
switch (type) {
|
|
case KVM_DEV_TYPE_ARM_VGIC_V2:
|
|
vgic_v2_init_emulation(kvm);
|
|
break;
|
|
#ifdef CONFIG_ARM_GIC_V3
|
|
case KVM_DEV_TYPE_ARM_VGIC_V3:
|
|
vgic_v3_init_emulation(kvm);
|
|
break;
|
|
#endif
|
|
default:
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
|
|
return -E2BIG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vgic_create(struct kvm *kvm, u32 type)
|
|
{
|
|
int i, vcpu_lock_idx = -1, ret;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
if (irqchip_in_kernel(kvm)) {
|
|
ret = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* This function is also called by the KVM_CREATE_IRQCHIP handler,
|
|
* which had no chance yet to check the availability of the GICv2
|
|
* emulation. So check this here again. KVM_CREATE_DEVICE does
|
|
* the proper checks already.
|
|
*/
|
|
if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* Any time a vcpu is run, vcpu_load is called which tries to grab the
|
|
* vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
|
|
* that no other VCPUs are run while we create the vgic.
|
|
*/
|
|
ret = -EBUSY;
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!mutex_trylock(&vcpu->mutex))
|
|
goto out_unlock;
|
|
vcpu_lock_idx = i;
|
|
}
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (vcpu->arch.has_run_once)
|
|
goto out_unlock;
|
|
}
|
|
ret = 0;
|
|
|
|
ret = init_vgic_model(kvm, type);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
spin_lock_init(&kvm->arch.vgic.lock);
|
|
kvm->arch.vgic.in_kernel = true;
|
|
kvm->arch.vgic.vgic_model = type;
|
|
kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
|
|
kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
|
|
kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
|
|
kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
|
|
|
|
out_unlock:
|
|
for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
|
|
vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
|
|
mutex_unlock(&vcpu->mutex);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int vgic_ioaddr_overlap(struct kvm *kvm)
|
|
{
|
|
phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
|
|
phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
|
|
|
|
if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
|
|
return 0;
|
|
if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
|
|
(cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
|
|
phys_addr_t addr, phys_addr_t size)
|
|
{
|
|
int ret;
|
|
|
|
if (addr & ~KVM_PHYS_MASK)
|
|
return -E2BIG;
|
|
|
|
if (addr & (SZ_4K - 1))
|
|
return -EINVAL;
|
|
|
|
if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
|
|
return -EEXIST;
|
|
if (addr + size < addr)
|
|
return -EINVAL;
|
|
|
|
*ioaddr = addr;
|
|
ret = vgic_ioaddr_overlap(kvm);
|
|
if (ret)
|
|
*ioaddr = VGIC_ADDR_UNDEF;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_addr - set or get vgic VM base addresses
|
|
* @kvm: pointer to the vm struct
|
|
* @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
|
|
* @addr: pointer to address value
|
|
* @write: if true set the address in the VM address space, if false read the
|
|
* address
|
|
*
|
|
* Set or get the vgic base addresses for the distributor and the virtual CPU
|
|
* interface in the VM physical address space. These addresses are properties
|
|
* of the emulated core/SoC and therefore user space initially knows this
|
|
* information.
|
|
*/
|
|
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
|
|
{
|
|
int r = 0;
|
|
struct vgic_dist *vgic = &kvm->arch.vgic;
|
|
int type_needed;
|
|
phys_addr_t *addr_ptr, block_size;
|
|
phys_addr_t alignment;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
switch (type) {
|
|
case KVM_VGIC_V2_ADDR_TYPE_DIST:
|
|
type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
|
|
addr_ptr = &vgic->vgic_dist_base;
|
|
block_size = KVM_VGIC_V2_DIST_SIZE;
|
|
alignment = SZ_4K;
|
|
break;
|
|
case KVM_VGIC_V2_ADDR_TYPE_CPU:
|
|
type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
|
|
addr_ptr = &vgic->vgic_cpu_base;
|
|
block_size = KVM_VGIC_V2_CPU_SIZE;
|
|
alignment = SZ_4K;
|
|
break;
|
|
#ifdef CONFIG_ARM_GIC_V3
|
|
case KVM_VGIC_V3_ADDR_TYPE_DIST:
|
|
type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
|
|
addr_ptr = &vgic->vgic_dist_base;
|
|
block_size = KVM_VGIC_V3_DIST_SIZE;
|
|
alignment = SZ_64K;
|
|
break;
|
|
case KVM_VGIC_V3_ADDR_TYPE_REDIST:
|
|
type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
|
|
addr_ptr = &vgic->vgic_redist_base;
|
|
block_size = KVM_VGIC_V3_REDIST_SIZE;
|
|
alignment = SZ_64K;
|
|
break;
|
|
#endif
|
|
default:
|
|
r = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
if (vgic->vgic_model != type_needed) {
|
|
r = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
if (write) {
|
|
if (!IS_ALIGNED(*addr, alignment))
|
|
r = -EINVAL;
|
|
else
|
|
r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
|
|
block_size);
|
|
} else {
|
|
*addr = *addr_ptr;
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
}
|
|
|
|
int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
int r;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
u64 addr;
|
|
unsigned long type = (unsigned long)attr->attr;
|
|
|
|
if (copy_from_user(&addr, uaddr, sizeof(addr)))
|
|
return -EFAULT;
|
|
|
|
r = kvm_vgic_addr(dev->kvm, type, &addr, true);
|
|
return (r == -ENODEV) ? -ENXIO : r;
|
|
}
|
|
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
|
|
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
|
u32 val;
|
|
int ret = 0;
|
|
|
|
if (get_user(val, uaddr))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* We require:
|
|
* - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
|
|
* - at most 1024 interrupts
|
|
* - a multiple of 32 interrupts
|
|
*/
|
|
if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
|
|
val > VGIC_MAX_IRQS ||
|
|
(val & 31))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&dev->kvm->lock);
|
|
|
|
if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
|
|
ret = -EBUSY;
|
|
else
|
|
dev->kvm->arch.vgic.nr_irqs = val;
|
|
|
|
mutex_unlock(&dev->kvm->lock);
|
|
|
|
return ret;
|
|
}
|
|
case KVM_DEV_ARM_VGIC_GRP_CTRL: {
|
|
switch (attr->attr) {
|
|
case KVM_DEV_ARM_VGIC_CTRL_INIT:
|
|
r = vgic_init(dev->kvm);
|
|
return r;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
int r = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
u64 addr;
|
|
unsigned long type = (unsigned long)attr->attr;
|
|
|
|
r = kvm_vgic_addr(dev->kvm, type, &addr, false);
|
|
if (r)
|
|
return (r == -ENODEV) ? -ENXIO : r;
|
|
|
|
if (copy_to_user(uaddr, &addr, sizeof(addr)))
|
|
return -EFAULT;
|
|
break;
|
|
}
|
|
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
|
|
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
|
|
|
r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset)
|
|
{
|
|
struct kvm_exit_mmio dev_attr_mmio;
|
|
|
|
dev_attr_mmio.len = 4;
|
|
if (vgic_find_range(ranges, &dev_attr_mmio, offset))
|
|
return 0;
|
|
else
|
|
return -ENXIO;
|
|
}
|
|
|
|
static void vgic_init_maintenance_interrupt(void *info)
|
|
{
|
|
enable_percpu_irq(vgic->maint_irq, 0);
|
|
}
|
|
|
|
static int vgic_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *cpu)
|
|
{
|
|
switch (action) {
|
|
case CPU_STARTING:
|
|
case CPU_STARTING_FROZEN:
|
|
vgic_init_maintenance_interrupt(NULL);
|
|
break;
|
|
case CPU_DYING:
|
|
case CPU_DYING_FROZEN:
|
|
disable_percpu_irq(vgic->maint_irq);
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block vgic_cpu_nb = {
|
|
.notifier_call = vgic_cpu_notify,
|
|
};
|
|
|
|
static const struct of_device_id vgic_ids[] = {
|
|
{ .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
|
|
{ .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
|
|
{},
|
|
};
|
|
|
|
int kvm_vgic_hyp_init(void)
|
|
{
|
|
const struct of_device_id *matched_id;
|
|
const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
|
|
const struct vgic_params **);
|
|
struct device_node *vgic_node;
|
|
int ret;
|
|
|
|
vgic_node = of_find_matching_node_and_match(NULL,
|
|
vgic_ids, &matched_id);
|
|
if (!vgic_node) {
|
|
kvm_err("error: no compatible GIC node found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
vgic_probe = matched_id->data;
|
|
ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
|
|
"vgic", kvm_get_running_vcpus());
|
|
if (ret) {
|
|
kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
|
|
return ret;
|
|
}
|
|
|
|
ret = __register_cpu_notifier(&vgic_cpu_nb);
|
|
if (ret) {
|
|
kvm_err("Cannot register vgic CPU notifier\n");
|
|
goto out_free_irq;
|
|
}
|
|
|
|
/* Callback into for arch code for setup */
|
|
vgic_arch_setup(vgic);
|
|
|
|
on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
|
|
|
|
return 0;
|
|
|
|
out_free_irq:
|
|
free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
|
|
return ret;
|
|
}
|