Now that the associative-array library properly heads dependency chains, the various smp_read_barrier_depends() calls in security/keys/keyring.c are no longer needed. This commit therefore removes them. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: David Howells <dhowells@redhat.com> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: <keyrings@vger.kernel.org> Cc: <linux-security-module@vger.kernel.org> Reviewed-by: James Morris <james.l.morris@oracle.com>
		
			
				
	
	
		
			1587 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1587 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Keyring handling
 | |
|  *
 | |
|  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
 | |
|  * Written by David Howells (dhowells@redhat.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/err.h>
 | |
| #include <keys/keyring-type.h>
 | |
| #include <keys/user-type.h>
 | |
| #include <linux/assoc_array_priv.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * When plumbing the depths of the key tree, this sets a hard limit
 | |
|  * set on how deep we're willing to go.
 | |
|  */
 | |
| #define KEYRING_SEARCH_MAX_DEPTH 6
 | |
| 
 | |
| /*
 | |
|  * We keep all named keyrings in a hash to speed looking them up.
 | |
|  */
 | |
| #define KEYRING_NAME_HASH_SIZE	(1 << 5)
 | |
| 
 | |
| /*
 | |
|  * We mark pointers we pass to the associative array with bit 1 set if
 | |
|  * they're keyrings and clear otherwise.
 | |
|  */
 | |
| #define KEYRING_PTR_SUBTYPE	0x2UL
 | |
| 
 | |
| static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
 | |
| {
 | |
| 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
 | |
| }
 | |
| static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
 | |
| {
 | |
| 	void *object = assoc_array_ptr_to_leaf(x);
 | |
| 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
 | |
| }
 | |
| static inline void *keyring_key_to_ptr(struct key *key)
 | |
| {
 | |
| 	if (key->type == &key_type_keyring)
 | |
| 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
 | |
| 	return key;
 | |
| }
 | |
| 
 | |
| static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
 | |
| static DEFINE_RWLOCK(keyring_name_lock);
 | |
| 
 | |
| static inline unsigned keyring_hash(const char *desc)
 | |
| {
 | |
| 	unsigned bucket = 0;
 | |
| 
 | |
| 	for (; *desc; desc++)
 | |
| 		bucket += (unsigned char)*desc;
 | |
| 
 | |
| 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The keyring key type definition.  Keyrings are simply keys of this type and
 | |
|  * can be treated as ordinary keys in addition to having their own special
 | |
|  * operations.
 | |
|  */
 | |
| static int keyring_preparse(struct key_preparsed_payload *prep);
 | |
| static void keyring_free_preparse(struct key_preparsed_payload *prep);
 | |
| static int keyring_instantiate(struct key *keyring,
 | |
| 			       struct key_preparsed_payload *prep);
 | |
| static void keyring_revoke(struct key *keyring);
 | |
| static void keyring_destroy(struct key *keyring);
 | |
| static void keyring_describe(const struct key *keyring, struct seq_file *m);
 | |
| static long keyring_read(const struct key *keyring,
 | |
| 			 char __user *buffer, size_t buflen);
 | |
| 
 | |
| struct key_type key_type_keyring = {
 | |
| 	.name		= "keyring",
 | |
| 	.def_datalen	= 0,
 | |
| 	.preparse	= keyring_preparse,
 | |
| 	.free_preparse	= keyring_free_preparse,
 | |
| 	.instantiate	= keyring_instantiate,
 | |
| 	.revoke		= keyring_revoke,
 | |
| 	.destroy	= keyring_destroy,
 | |
| 	.describe	= keyring_describe,
 | |
| 	.read		= keyring_read,
 | |
| };
 | |
| EXPORT_SYMBOL(key_type_keyring);
 | |
| 
 | |
| /*
 | |
|  * Semaphore to serialise link/link calls to prevent two link calls in parallel
 | |
|  * introducing a cycle.
 | |
|  */
 | |
| static DECLARE_RWSEM(keyring_serialise_link_sem);
 | |
| 
 | |
| /*
 | |
|  * Publish the name of a keyring so that it can be found by name (if it has
 | |
|  * one).
 | |
|  */
 | |
| static void keyring_publish_name(struct key *keyring)
 | |
| {
 | |
| 	int bucket;
 | |
| 
 | |
| 	if (keyring->description) {
 | |
| 		bucket = keyring_hash(keyring->description);
 | |
| 
 | |
| 		write_lock(&keyring_name_lock);
 | |
| 
 | |
| 		if (!keyring_name_hash[bucket].next)
 | |
| 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
 | |
| 
 | |
| 		list_add_tail(&keyring->name_link,
 | |
| 			      &keyring_name_hash[bucket]);
 | |
| 
 | |
| 		write_unlock(&keyring_name_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Preparse a keyring payload
 | |
|  */
 | |
| static int keyring_preparse(struct key_preparsed_payload *prep)
 | |
| {
 | |
| 	return prep->datalen != 0 ? -EINVAL : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a preparse of a user defined key payload
 | |
|  */
 | |
| static void keyring_free_preparse(struct key_preparsed_payload *prep)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialise a keyring.
 | |
|  *
 | |
|  * Returns 0 on success, -EINVAL if given any data.
 | |
|  */
 | |
| static int keyring_instantiate(struct key *keyring,
 | |
| 			       struct key_preparsed_payload *prep)
 | |
| {
 | |
| 	assoc_array_init(&keyring->keys);
 | |
| 	/* make the keyring available by name if it has one */
 | |
| 	keyring_publish_name(keyring);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 | |
|  * fold the carry back too, but that requires inline asm.
 | |
|  */
 | |
| static u64 mult_64x32_and_fold(u64 x, u32 y)
 | |
| {
 | |
| 	u64 hi = (u64)(u32)(x >> 32) * y;
 | |
| 	u64 lo = (u64)(u32)(x) * y;
 | |
| 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hash a key type and description.
 | |
|  */
 | |
| static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
 | |
| {
 | |
| 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
 | |
| 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
 | |
| 	const char *description = index_key->description;
 | |
| 	unsigned long hash, type;
 | |
| 	u32 piece;
 | |
| 	u64 acc;
 | |
| 	int n, desc_len = index_key->desc_len;
 | |
| 
 | |
| 	type = (unsigned long)index_key->type;
 | |
| 
 | |
| 	acc = mult_64x32_and_fold(type, desc_len + 13);
 | |
| 	acc = mult_64x32_and_fold(acc, 9207);
 | |
| 	for (;;) {
 | |
| 		n = desc_len;
 | |
| 		if (n <= 0)
 | |
| 			break;
 | |
| 		if (n > 4)
 | |
| 			n = 4;
 | |
| 		piece = 0;
 | |
| 		memcpy(&piece, description, n);
 | |
| 		description += n;
 | |
| 		desc_len -= n;
 | |
| 		acc = mult_64x32_and_fold(acc, piece);
 | |
| 		acc = mult_64x32_and_fold(acc, 9207);
 | |
| 	}
 | |
| 
 | |
| 	/* Fold the hash down to 32 bits if need be. */
 | |
| 	hash = acc;
 | |
| 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
 | |
| 		hash ^= acc >> 32;
 | |
| 
 | |
| 	/* Squidge all the keyrings into a separate part of the tree to
 | |
| 	 * ordinary keys by making sure the lowest level segment in the hash is
 | |
| 	 * zero for keyrings and non-zero otherwise.
 | |
| 	 */
 | |
| 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
 | |
| 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
 | |
| 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
 | |
| 		return (hash + (hash << level_shift)) & ~fan_mask;
 | |
| 	return hash;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build the next index key chunk.
 | |
|  *
 | |
|  * On 32-bit systems the index key is laid out as:
 | |
|  *
 | |
|  *	0	4	5	9...
 | |
|  *	hash	desclen	typeptr	desc[]
 | |
|  *
 | |
|  * On 64-bit systems:
 | |
|  *
 | |
|  *	0	8	9	17...
 | |
|  *	hash	desclen	typeptr	desc[]
 | |
|  *
 | |
|  * We return it one word-sized chunk at a time.
 | |
|  */
 | |
| static unsigned long keyring_get_key_chunk(const void *data, int level)
 | |
| {
 | |
| 	const struct keyring_index_key *index_key = data;
 | |
| 	unsigned long chunk = 0;
 | |
| 	long offset = 0;
 | |
| 	int desc_len = index_key->desc_len, n = sizeof(chunk);
 | |
| 
 | |
| 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
 | |
| 	switch (level) {
 | |
| 	case 0:
 | |
| 		return hash_key_type_and_desc(index_key);
 | |
| 	case 1:
 | |
| 		return ((unsigned long)index_key->type << 8) | desc_len;
 | |
| 	case 2:
 | |
| 		if (desc_len == 0)
 | |
| 			return (u8)((unsigned long)index_key->type >>
 | |
| 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 | |
| 		n--;
 | |
| 		offset = 1;
 | |
| 	default:
 | |
| 		offset += sizeof(chunk) - 1;
 | |
| 		offset += (level - 3) * sizeof(chunk);
 | |
| 		if (offset >= desc_len)
 | |
| 			return 0;
 | |
| 		desc_len -= offset;
 | |
| 		if (desc_len > n)
 | |
| 			desc_len = n;
 | |
| 		offset += desc_len;
 | |
| 		do {
 | |
| 			chunk <<= 8;
 | |
| 			chunk |= ((u8*)index_key->description)[--offset];
 | |
| 		} while (--desc_len > 0);
 | |
| 
 | |
| 		if (level == 2) {
 | |
| 			chunk <<= 8;
 | |
| 			chunk |= (u8)((unsigned long)index_key->type >>
 | |
| 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 | |
| 		}
 | |
| 		return chunk;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long keyring_get_object_key_chunk(const void *object, int level)
 | |
| {
 | |
| 	const struct key *key = keyring_ptr_to_key(object);
 | |
| 	return keyring_get_key_chunk(&key->index_key, level);
 | |
| }
 | |
| 
 | |
| static bool keyring_compare_object(const void *object, const void *data)
 | |
| {
 | |
| 	const struct keyring_index_key *index_key = data;
 | |
| 	const struct key *key = keyring_ptr_to_key(object);
 | |
| 
 | |
| 	return key->index_key.type == index_key->type &&
 | |
| 		key->index_key.desc_len == index_key->desc_len &&
 | |
| 		memcmp(key->index_key.description, index_key->description,
 | |
| 		       index_key->desc_len) == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare the index keys of a pair of objects and determine the bit position
 | |
|  * at which they differ - if they differ.
 | |
|  */
 | |
| static int keyring_diff_objects(const void *object, const void *data)
 | |
| {
 | |
| 	const struct key *key_a = keyring_ptr_to_key(object);
 | |
| 	const struct keyring_index_key *a = &key_a->index_key;
 | |
| 	const struct keyring_index_key *b = data;
 | |
| 	unsigned long seg_a, seg_b;
 | |
| 	int level, i;
 | |
| 
 | |
| 	level = 0;
 | |
| 	seg_a = hash_key_type_and_desc(a);
 | |
| 	seg_b = hash_key_type_and_desc(b);
 | |
| 	if ((seg_a ^ seg_b) != 0)
 | |
| 		goto differ;
 | |
| 
 | |
| 	/* The number of bits contributed by the hash is controlled by a
 | |
| 	 * constant in the assoc_array headers.  Everything else thereafter we
 | |
| 	 * can deal with as being machine word-size dependent.
 | |
| 	 */
 | |
| 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
 | |
| 	seg_a = a->desc_len;
 | |
| 	seg_b = b->desc_len;
 | |
| 	if ((seg_a ^ seg_b) != 0)
 | |
| 		goto differ;
 | |
| 
 | |
| 	/* The next bit may not work on big endian */
 | |
| 	level++;
 | |
| 	seg_a = (unsigned long)a->type;
 | |
| 	seg_b = (unsigned long)b->type;
 | |
| 	if ((seg_a ^ seg_b) != 0)
 | |
| 		goto differ;
 | |
| 
 | |
| 	level += sizeof(unsigned long);
 | |
| 	if (a->desc_len == 0)
 | |
| 		goto same;
 | |
| 
 | |
| 	i = 0;
 | |
| 	if (((unsigned long)a->description | (unsigned long)b->description) &
 | |
| 	    (sizeof(unsigned long) - 1)) {
 | |
| 		do {
 | |
| 			seg_a = *(unsigned long *)(a->description + i);
 | |
| 			seg_b = *(unsigned long *)(b->description + i);
 | |
| 			if ((seg_a ^ seg_b) != 0)
 | |
| 				goto differ_plus_i;
 | |
| 			i += sizeof(unsigned long);
 | |
| 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
 | |
| 	}
 | |
| 
 | |
| 	for (; i < a->desc_len; i++) {
 | |
| 		seg_a = *(unsigned char *)(a->description + i);
 | |
| 		seg_b = *(unsigned char *)(b->description + i);
 | |
| 		if ((seg_a ^ seg_b) != 0)
 | |
| 			goto differ_plus_i;
 | |
| 	}
 | |
| 
 | |
| same:
 | |
| 	return -1;
 | |
| 
 | |
| differ_plus_i:
 | |
| 	level += i;
 | |
| differ:
 | |
| 	i = level * 8 + __ffs(seg_a ^ seg_b);
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free an object after stripping the keyring flag off of the pointer.
 | |
|  */
 | |
| static void keyring_free_object(void *object)
 | |
| {
 | |
| 	key_put(keyring_ptr_to_key(object));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Operations for keyring management by the index-tree routines.
 | |
|  */
 | |
| static const struct assoc_array_ops keyring_assoc_array_ops = {
 | |
| 	.get_key_chunk		= keyring_get_key_chunk,
 | |
| 	.get_object_key_chunk	= keyring_get_object_key_chunk,
 | |
| 	.compare_object		= keyring_compare_object,
 | |
| 	.diff_objects		= keyring_diff_objects,
 | |
| 	.free_object		= keyring_free_object,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 | |
|  * and dispose of its data.
 | |
|  *
 | |
|  * The garbage collector detects the final key_put(), removes the keyring from
 | |
|  * the serial number tree and then does RCU synchronisation before coming here,
 | |
|  * so we shouldn't need to worry about code poking around here with the RCU
 | |
|  * readlock held by this time.
 | |
|  */
 | |
| static void keyring_destroy(struct key *keyring)
 | |
| {
 | |
| 	if (keyring->description) {
 | |
| 		write_lock(&keyring_name_lock);
 | |
| 
 | |
| 		if (keyring->name_link.next != NULL &&
 | |
| 		    !list_empty(&keyring->name_link))
 | |
| 			list_del(&keyring->name_link);
 | |
| 
 | |
| 		write_unlock(&keyring_name_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (keyring->restrict_link) {
 | |
| 		struct key_restriction *keyres = keyring->restrict_link;
 | |
| 
 | |
| 		key_put(keyres->key);
 | |
| 		kfree(keyres);
 | |
| 	}
 | |
| 
 | |
| 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Describe a keyring for /proc.
 | |
|  */
 | |
| static void keyring_describe(const struct key *keyring, struct seq_file *m)
 | |
| {
 | |
| 	if (keyring->description)
 | |
| 		seq_puts(m, keyring->description);
 | |
| 	else
 | |
| 		seq_puts(m, "[anon]");
 | |
| 
 | |
| 	if (key_is_positive(keyring)) {
 | |
| 		if (keyring->keys.nr_leaves_on_tree != 0)
 | |
| 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
 | |
| 		else
 | |
| 			seq_puts(m, ": empty");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct keyring_read_iterator_context {
 | |
| 	size_t			buflen;
 | |
| 	size_t			count;
 | |
| 	key_serial_t __user	*buffer;
 | |
| };
 | |
| 
 | |
| static int keyring_read_iterator(const void *object, void *data)
 | |
| {
 | |
| 	struct keyring_read_iterator_context *ctx = data;
 | |
| 	const struct key *key = keyring_ptr_to_key(object);
 | |
| 	int ret;
 | |
| 
 | |
| 	kenter("{%s,%d},,{%zu/%zu}",
 | |
| 	       key->type->name, key->serial, ctx->count, ctx->buflen);
 | |
| 
 | |
| 	if (ctx->count >= ctx->buflen)
 | |
| 		return 1;
 | |
| 
 | |
| 	ret = put_user(key->serial, ctx->buffer);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	ctx->buffer++;
 | |
| 	ctx->count += sizeof(key->serial);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a list of key IDs from the keyring's contents in binary form
 | |
|  *
 | |
|  * The keyring's semaphore is read-locked by the caller.  This prevents someone
 | |
|  * from modifying it under us - which could cause us to read key IDs multiple
 | |
|  * times.
 | |
|  */
 | |
| static long keyring_read(const struct key *keyring,
 | |
| 			 char __user *buffer, size_t buflen)
 | |
| {
 | |
| 	struct keyring_read_iterator_context ctx;
 | |
| 	long ret;
 | |
| 
 | |
| 	kenter("{%d},,%zu", key_serial(keyring), buflen);
 | |
| 
 | |
| 	if (buflen & (sizeof(key_serial_t) - 1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Copy as many key IDs as fit into the buffer */
 | |
| 	if (buffer && buflen) {
 | |
| 		ctx.buffer = (key_serial_t __user *)buffer;
 | |
| 		ctx.buflen = buflen;
 | |
| 		ctx.count = 0;
 | |
| 		ret = assoc_array_iterate(&keyring->keys,
 | |
| 					  keyring_read_iterator, &ctx);
 | |
| 		if (ret < 0) {
 | |
| 			kleave(" = %ld [iterate]", ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Return the size of the buffer needed */
 | |
| 	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
 | |
| 	if (ret <= buflen)
 | |
| 		kleave("= %ld [ok]", ret);
 | |
| 	else
 | |
| 		kleave("= %ld [buffer too small]", ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a keyring and link into the destination keyring.
 | |
|  */
 | |
| struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
 | |
| 			  const struct cred *cred, key_perm_t perm,
 | |
| 			  unsigned long flags,
 | |
| 			  struct key_restriction *restrict_link,
 | |
| 			  struct key *dest)
 | |
| {
 | |
| 	struct key *keyring;
 | |
| 	int ret;
 | |
| 
 | |
| 	keyring = key_alloc(&key_type_keyring, description,
 | |
| 			    uid, gid, cred, perm, flags, restrict_link);
 | |
| 	if (!IS_ERR(keyring)) {
 | |
| 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 | |
| 		if (ret < 0) {
 | |
| 			key_put(keyring);
 | |
| 			keyring = ERR_PTR(ret);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return keyring;
 | |
| }
 | |
| EXPORT_SYMBOL(keyring_alloc);
 | |
| 
 | |
| /**
 | |
|  * restrict_link_reject - Give -EPERM to restrict link
 | |
|  * @keyring: The keyring being added to.
 | |
|  * @type: The type of key being added.
 | |
|  * @payload: The payload of the key intended to be added.
 | |
|  * @data: Additional data for evaluating restriction.
 | |
|  *
 | |
|  * Reject the addition of any links to a keyring.  It can be overridden by
 | |
|  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
 | |
|  * adding a key to a keyring.
 | |
|  *
 | |
|  * This is meant to be stored in a key_restriction structure which is passed
 | |
|  * in the restrict_link parameter to keyring_alloc().
 | |
|  */
 | |
| int restrict_link_reject(struct key *keyring,
 | |
| 			 const struct key_type *type,
 | |
| 			 const union key_payload *payload,
 | |
| 			 struct key *restriction_key)
 | |
| {
 | |
| 	return -EPERM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * By default, we keys found by getting an exact match on their descriptions.
 | |
|  */
 | |
| bool key_default_cmp(const struct key *key,
 | |
| 		     const struct key_match_data *match_data)
 | |
| {
 | |
| 	return strcmp(key->description, match_data->raw_data) == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iteration function to consider each key found.
 | |
|  */
 | |
| static int keyring_search_iterator(const void *object, void *iterator_data)
 | |
| {
 | |
| 	struct keyring_search_context *ctx = iterator_data;
 | |
| 	const struct key *key = keyring_ptr_to_key(object);
 | |
| 	unsigned long kflags = READ_ONCE(key->flags);
 | |
| 	short state = READ_ONCE(key->state);
 | |
| 
 | |
| 	kenter("{%d}", key->serial);
 | |
| 
 | |
| 	/* ignore keys not of this type */
 | |
| 	if (key->type != ctx->index_key.type) {
 | |
| 		kleave(" = 0 [!type]");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* skip invalidated, revoked and expired keys */
 | |
| 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 | |
| 		time64_t expiry = READ_ONCE(key->expiry);
 | |
| 
 | |
| 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 | |
| 			      (1 << KEY_FLAG_REVOKED))) {
 | |
| 			ctx->result = ERR_PTR(-EKEYREVOKED);
 | |
| 			kleave(" = %d [invrev]", ctx->skipped_ret);
 | |
| 			goto skipped;
 | |
| 		}
 | |
| 
 | |
| 		if (expiry && ctx->now >= expiry) {
 | |
| 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
 | |
| 				ctx->result = ERR_PTR(-EKEYEXPIRED);
 | |
| 			kleave(" = %d [expire]", ctx->skipped_ret);
 | |
| 			goto skipped;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* keys that don't match */
 | |
| 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
 | |
| 		kleave(" = 0 [!match]");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* key must have search permissions */
 | |
| 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 | |
| 	    key_task_permission(make_key_ref(key, ctx->possessed),
 | |
| 				ctx->cred, KEY_NEED_SEARCH) < 0) {
 | |
| 		ctx->result = ERR_PTR(-EACCES);
 | |
| 		kleave(" = %d [!perm]", ctx->skipped_ret);
 | |
| 		goto skipped;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 | |
| 		/* we set a different error code if we pass a negative key */
 | |
| 		if (state < 0) {
 | |
| 			ctx->result = ERR_PTR(state);
 | |
| 			kleave(" = %d [neg]", ctx->skipped_ret);
 | |
| 			goto skipped;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Found */
 | |
| 	ctx->result = make_key_ref(key, ctx->possessed);
 | |
| 	kleave(" = 1 [found]");
 | |
| 	return 1;
 | |
| 
 | |
| skipped:
 | |
| 	return ctx->skipped_ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search inside a keyring for a key.  We can search by walking to it
 | |
|  * directly based on its index-key or we can iterate over the entire
 | |
|  * tree looking for it, based on the match function.
 | |
|  */
 | |
| static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
 | |
| {
 | |
| 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
 | |
| 		const void *object;
 | |
| 
 | |
| 		object = assoc_array_find(&keyring->keys,
 | |
| 					  &keyring_assoc_array_ops,
 | |
| 					  &ctx->index_key);
 | |
| 		return object ? ctx->iterator(object, ctx) : 0;
 | |
| 	}
 | |
| 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search a tree of keyrings that point to other keyrings up to the maximum
 | |
|  * depth.
 | |
|  */
 | |
| static bool search_nested_keyrings(struct key *keyring,
 | |
| 				   struct keyring_search_context *ctx)
 | |
| {
 | |
| 	struct {
 | |
| 		struct key *keyring;
 | |
| 		struct assoc_array_node *node;
 | |
| 		int slot;
 | |
| 	} stack[KEYRING_SEARCH_MAX_DEPTH];
 | |
| 
 | |
| 	struct assoc_array_shortcut *shortcut;
 | |
| 	struct assoc_array_node *node;
 | |
| 	struct assoc_array_ptr *ptr;
 | |
| 	struct key *key;
 | |
| 	int sp = 0, slot;
 | |
| 
 | |
| 	kenter("{%d},{%s,%s}",
 | |
| 	       keyring->serial,
 | |
| 	       ctx->index_key.type->name,
 | |
| 	       ctx->index_key.description);
 | |
| 
 | |
| #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
 | |
| 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
 | |
| 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
 | |
| 
 | |
| 	if (ctx->index_key.description)
 | |
| 		ctx->index_key.desc_len = strlen(ctx->index_key.description);
 | |
| 
 | |
| 	/* Check to see if this top-level keyring is what we are looking for
 | |
| 	 * and whether it is valid or not.
 | |
| 	 */
 | |
| 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
 | |
| 	    keyring_compare_object(keyring, &ctx->index_key)) {
 | |
| 		ctx->skipped_ret = 2;
 | |
| 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
 | |
| 		case 1:
 | |
| 			goto found;
 | |
| 		case 2:
 | |
| 			return false;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ctx->skipped_ret = 0;
 | |
| 
 | |
| 	/* Start processing a new keyring */
 | |
| descend_to_keyring:
 | |
| 	kdebug("descend to %d", keyring->serial);
 | |
| 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 | |
| 			      (1 << KEY_FLAG_REVOKED)))
 | |
| 		goto not_this_keyring;
 | |
| 
 | |
| 	/* Search through the keys in this keyring before its searching its
 | |
| 	 * subtrees.
 | |
| 	 */
 | |
| 	if (search_keyring(keyring, ctx))
 | |
| 		goto found;
 | |
| 
 | |
| 	/* Then manually iterate through the keyrings nested in this one.
 | |
| 	 *
 | |
| 	 * Start from the root node of the index tree.  Because of the way the
 | |
| 	 * hash function has been set up, keyrings cluster on the leftmost
 | |
| 	 * branch of the root node (root slot 0) or in the root node itself.
 | |
| 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
 | |
| 	 * slots 1-15).
 | |
| 	 */
 | |
| 	ptr = READ_ONCE(keyring->keys.root);
 | |
| 	if (!ptr)
 | |
| 		goto not_this_keyring;
 | |
| 
 | |
| 	if (assoc_array_ptr_is_shortcut(ptr)) {
 | |
| 		/* If the root is a shortcut, either the keyring only contains
 | |
| 		 * keyring pointers (everything clusters behind root slot 0) or
 | |
| 		 * doesn't contain any keyring pointers.
 | |
| 		 */
 | |
| 		shortcut = assoc_array_ptr_to_shortcut(ptr);
 | |
| 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
 | |
| 			goto not_this_keyring;
 | |
| 
 | |
| 		ptr = READ_ONCE(shortcut->next_node);
 | |
| 		node = assoc_array_ptr_to_node(ptr);
 | |
| 		goto begin_node;
 | |
| 	}
 | |
| 
 | |
| 	node = assoc_array_ptr_to_node(ptr);
 | |
| 	ptr = node->slots[0];
 | |
| 	if (!assoc_array_ptr_is_meta(ptr))
 | |
| 		goto begin_node;
 | |
| 
 | |
| descend_to_node:
 | |
| 	/* Descend to a more distal node in this keyring's content tree and go
 | |
| 	 * through that.
 | |
| 	 */
 | |
| 	kdebug("descend");
 | |
| 	if (assoc_array_ptr_is_shortcut(ptr)) {
 | |
| 		shortcut = assoc_array_ptr_to_shortcut(ptr);
 | |
| 		ptr = READ_ONCE(shortcut->next_node);
 | |
| 		BUG_ON(!assoc_array_ptr_is_node(ptr));
 | |
| 	}
 | |
| 	node = assoc_array_ptr_to_node(ptr);
 | |
| 
 | |
| begin_node:
 | |
| 	kdebug("begin_node");
 | |
| 	slot = 0;
 | |
| ascend_to_node:
 | |
| 	/* Go through the slots in a node */
 | |
| 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 | |
| 		ptr = READ_ONCE(node->slots[slot]);
 | |
| 
 | |
| 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
 | |
| 			goto descend_to_node;
 | |
| 
 | |
| 		if (!keyring_ptr_is_keyring(ptr))
 | |
| 			continue;
 | |
| 
 | |
| 		key = keyring_ptr_to_key(ptr);
 | |
| 
 | |
| 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
 | |
| 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
 | |
| 				ctx->result = ERR_PTR(-ELOOP);
 | |
| 				return false;
 | |
| 			}
 | |
| 			goto not_this_keyring;
 | |
| 		}
 | |
| 
 | |
| 		/* Search a nested keyring */
 | |
| 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 | |
| 		    key_task_permission(make_key_ref(key, ctx->possessed),
 | |
| 					ctx->cred, KEY_NEED_SEARCH) < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* stack the current position */
 | |
| 		stack[sp].keyring = keyring;
 | |
| 		stack[sp].node = node;
 | |
| 		stack[sp].slot = slot;
 | |
| 		sp++;
 | |
| 
 | |
| 		/* begin again with the new keyring */
 | |
| 		keyring = key;
 | |
| 		goto descend_to_keyring;
 | |
| 	}
 | |
| 
 | |
| 	/* We've dealt with all the slots in the current node, so now we need
 | |
| 	 * to ascend to the parent and continue processing there.
 | |
| 	 */
 | |
| 	ptr = READ_ONCE(node->back_pointer);
 | |
| 	slot = node->parent_slot;
 | |
| 
 | |
| 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
 | |
| 		shortcut = assoc_array_ptr_to_shortcut(ptr);
 | |
| 		ptr = READ_ONCE(shortcut->back_pointer);
 | |
| 		slot = shortcut->parent_slot;
 | |
| 	}
 | |
| 	if (!ptr)
 | |
| 		goto not_this_keyring;
 | |
| 	node = assoc_array_ptr_to_node(ptr);
 | |
| 	slot++;
 | |
| 
 | |
| 	/* If we've ascended to the root (zero backpointer), we must have just
 | |
| 	 * finished processing the leftmost branch rather than the root slots -
 | |
| 	 * so there can't be any more keyrings for us to find.
 | |
| 	 */
 | |
| 	if (node->back_pointer) {
 | |
| 		kdebug("ascend %d", slot);
 | |
| 		goto ascend_to_node;
 | |
| 	}
 | |
| 
 | |
| 	/* The keyring we're looking at was disqualified or didn't contain a
 | |
| 	 * matching key.
 | |
| 	 */
 | |
| not_this_keyring:
 | |
| 	kdebug("not_this_keyring %d", sp);
 | |
| 	if (sp <= 0) {
 | |
| 		kleave(" = false");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Resume the processing of a keyring higher up in the tree */
 | |
| 	sp--;
 | |
| 	keyring = stack[sp].keyring;
 | |
| 	node = stack[sp].node;
 | |
| 	slot = stack[sp].slot + 1;
 | |
| 	kdebug("ascend to %d [%d]", keyring->serial, slot);
 | |
| 	goto ascend_to_node;
 | |
| 
 | |
| 	/* We found a viable match */
 | |
| found:
 | |
| 	key = key_ref_to_ptr(ctx->result);
 | |
| 	key_check(key);
 | |
| 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
 | |
| 		key->last_used_at = ctx->now;
 | |
| 		keyring->last_used_at = ctx->now;
 | |
| 		while (sp > 0)
 | |
| 			stack[--sp].keyring->last_used_at = ctx->now;
 | |
| 	}
 | |
| 	kleave(" = true");
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * keyring_search_aux - Search a keyring tree for a key matching some criteria
 | |
|  * @keyring_ref: A pointer to the keyring with possession indicator.
 | |
|  * @ctx: The keyring search context.
 | |
|  *
 | |
|  * Search the supplied keyring tree for a key that matches the criteria given.
 | |
|  * The root keyring and any linked keyrings must grant Search permission to the
 | |
|  * caller to be searchable and keys can only be found if they too grant Search
 | |
|  * to the caller. The possession flag on the root keyring pointer controls use
 | |
|  * of the possessor bits in permissions checking of the entire tree.  In
 | |
|  * addition, the LSM gets to forbid keyring searches and key matches.
 | |
|  *
 | |
|  * The search is performed as a breadth-then-depth search up to the prescribed
 | |
|  * limit (KEYRING_SEARCH_MAX_DEPTH).
 | |
|  *
 | |
|  * Keys are matched to the type provided and are then filtered by the match
 | |
|  * function, which is given the description to use in any way it sees fit.  The
 | |
|  * match function may use any attributes of a key that it wishes to to
 | |
|  * determine the match.  Normally the match function from the key type would be
 | |
|  * used.
 | |
|  *
 | |
|  * RCU can be used to prevent the keyring key lists from disappearing without
 | |
|  * the need to take lots of locks.
 | |
|  *
 | |
|  * Returns a pointer to the found key and increments the key usage count if
 | |
|  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 | |
|  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 | |
|  * specified keyring wasn't a keyring.
 | |
|  *
 | |
|  * In the case of a successful return, the possession attribute from
 | |
|  * @keyring_ref is propagated to the returned key reference.
 | |
|  */
 | |
| key_ref_t keyring_search_aux(key_ref_t keyring_ref,
 | |
| 			     struct keyring_search_context *ctx)
 | |
| {
 | |
| 	struct key *keyring;
 | |
| 	long err;
 | |
| 
 | |
| 	ctx->iterator = keyring_search_iterator;
 | |
| 	ctx->possessed = is_key_possessed(keyring_ref);
 | |
| 	ctx->result = ERR_PTR(-EAGAIN);
 | |
| 
 | |
| 	keyring = key_ref_to_ptr(keyring_ref);
 | |
| 	key_check(keyring);
 | |
| 
 | |
| 	if (keyring->type != &key_type_keyring)
 | |
| 		return ERR_PTR(-ENOTDIR);
 | |
| 
 | |
| 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
 | |
| 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
 | |
| 		if (err < 0)
 | |
| 			return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ctx->now = ktime_get_real_seconds();
 | |
| 	if (search_nested_keyrings(keyring, ctx))
 | |
| 		__key_get(key_ref_to_ptr(ctx->result));
 | |
| 	rcu_read_unlock();
 | |
| 	return ctx->result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * keyring_search - Search the supplied keyring tree for a matching key
 | |
|  * @keyring: The root of the keyring tree to be searched.
 | |
|  * @type: The type of keyring we want to find.
 | |
|  * @description: The name of the keyring we want to find.
 | |
|  *
 | |
|  * As keyring_search_aux() above, but using the current task's credentials and
 | |
|  * type's default matching function and preferred search method.
 | |
|  */
 | |
| key_ref_t keyring_search(key_ref_t keyring,
 | |
| 			 struct key_type *type,
 | |
| 			 const char *description)
 | |
| {
 | |
| 	struct keyring_search_context ctx = {
 | |
| 		.index_key.type		= type,
 | |
| 		.index_key.description	= description,
 | |
| 		.cred			= current_cred(),
 | |
| 		.match_data.cmp		= key_default_cmp,
 | |
| 		.match_data.raw_data	= description,
 | |
| 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
 | |
| 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
 | |
| 	};
 | |
| 	key_ref_t key;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (type->match_preparse) {
 | |
| 		ret = type->match_preparse(&ctx.match_data);
 | |
| 		if (ret < 0)
 | |
| 			return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	key = keyring_search_aux(keyring, &ctx);
 | |
| 
 | |
| 	if (type->match_free)
 | |
| 		type->match_free(&ctx.match_data);
 | |
| 	return key;
 | |
| }
 | |
| EXPORT_SYMBOL(keyring_search);
 | |
| 
 | |
| static struct key_restriction *keyring_restriction_alloc(
 | |
| 	key_restrict_link_func_t check)
 | |
| {
 | |
| 	struct key_restriction *keyres =
 | |
| 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
 | |
| 
 | |
| 	if (!keyres)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	keyres->check = check;
 | |
| 
 | |
| 	return keyres;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Semaphore to serialise restriction setup to prevent reference count
 | |
|  * cycles through restriction key pointers.
 | |
|  */
 | |
| static DECLARE_RWSEM(keyring_serialise_restrict_sem);
 | |
| 
 | |
| /*
 | |
|  * Check for restriction cycles that would prevent keyring garbage collection.
 | |
|  * keyring_serialise_restrict_sem must be held.
 | |
|  */
 | |
| static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
 | |
| 					     struct key_restriction *keyres)
 | |
| {
 | |
| 	while (keyres && keyres->key &&
 | |
| 	       keyres->key->type == &key_type_keyring) {
 | |
| 		if (keyres->key == dest_keyring)
 | |
| 			return true;
 | |
| 
 | |
| 		keyres = keyres->key->restrict_link;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * keyring_restrict - Look up and apply a restriction to a keyring
 | |
|  *
 | |
|  * @keyring: The keyring to be restricted
 | |
|  * @restriction: The restriction options to apply to the keyring
 | |
|  */
 | |
| int keyring_restrict(key_ref_t keyring_ref, const char *type,
 | |
| 		     const char *restriction)
 | |
| {
 | |
| 	struct key *keyring;
 | |
| 	struct key_type *restrict_type = NULL;
 | |
| 	struct key_restriction *restrict_link;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	keyring = key_ref_to_ptr(keyring_ref);
 | |
| 	key_check(keyring);
 | |
| 
 | |
| 	if (keyring->type != &key_type_keyring)
 | |
| 		return -ENOTDIR;
 | |
| 
 | |
| 	if (!type) {
 | |
| 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
 | |
| 	} else {
 | |
| 		restrict_type = key_type_lookup(type);
 | |
| 
 | |
| 		if (IS_ERR(restrict_type))
 | |
| 			return PTR_ERR(restrict_type);
 | |
| 
 | |
| 		if (!restrict_type->lookup_restriction) {
 | |
| 			ret = -ENOENT;
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		restrict_link = restrict_type->lookup_restriction(restriction);
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ERR(restrict_link)) {
 | |
| 		ret = PTR_ERR(restrict_link);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	down_write(&keyring->sem);
 | |
| 	down_write(&keyring_serialise_restrict_sem);
 | |
| 
 | |
| 	if (keyring->restrict_link)
 | |
| 		ret = -EEXIST;
 | |
| 	else if (keyring_detect_restriction_cycle(keyring, restrict_link))
 | |
| 		ret = -EDEADLK;
 | |
| 	else
 | |
| 		keyring->restrict_link = restrict_link;
 | |
| 
 | |
| 	up_write(&keyring_serialise_restrict_sem);
 | |
| 	up_write(&keyring->sem);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		key_put(restrict_link->key);
 | |
| 		kfree(restrict_link);
 | |
| 	}
 | |
| 
 | |
| error:
 | |
| 	if (restrict_type)
 | |
| 		key_type_put(restrict_type);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(keyring_restrict);
 | |
| 
 | |
| /*
 | |
|  * Search the given keyring for a key that might be updated.
 | |
|  *
 | |
|  * The caller must guarantee that the keyring is a keyring and that the
 | |
|  * permission is granted to modify the keyring as no check is made here.  The
 | |
|  * caller must also hold a lock on the keyring semaphore.
 | |
|  *
 | |
|  * Returns a pointer to the found key with usage count incremented if
 | |
|  * successful and returns NULL if not found.  Revoked and invalidated keys are
 | |
|  * skipped over.
 | |
|  *
 | |
|  * If successful, the possession indicator is propagated from the keyring ref
 | |
|  * to the returned key reference.
 | |
|  */
 | |
| key_ref_t find_key_to_update(key_ref_t keyring_ref,
 | |
| 			     const struct keyring_index_key *index_key)
 | |
| {
 | |
| 	struct key *keyring, *key;
 | |
| 	const void *object;
 | |
| 
 | |
| 	keyring = key_ref_to_ptr(keyring_ref);
 | |
| 
 | |
| 	kenter("{%d},{%s,%s}",
 | |
| 	       keyring->serial, index_key->type->name, index_key->description);
 | |
| 
 | |
| 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
 | |
| 				  index_key);
 | |
| 
 | |
| 	if (object)
 | |
| 		goto found;
 | |
| 
 | |
| 	kleave(" = NULL");
 | |
| 	return NULL;
 | |
| 
 | |
| found:
 | |
| 	key = keyring_ptr_to_key(object);
 | |
| 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
 | |
| 			  (1 << KEY_FLAG_REVOKED))) {
 | |
| 		kleave(" = NULL [x]");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	__key_get(key);
 | |
| 	kleave(" = {%d}", key->serial);
 | |
| 	return make_key_ref(key, is_key_possessed(keyring_ref));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a keyring with the specified name.
 | |
|  *
 | |
|  * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
 | |
|  * user in the current user namespace are considered.  If @uid_keyring is %true,
 | |
|  * the keyring additionally must have been allocated as a user or user session
 | |
|  * keyring; otherwise, it must grant Search permission directly to the caller.
 | |
|  *
 | |
|  * Returns a pointer to the keyring with the keyring's refcount having being
 | |
|  * incremented on success.  -ENOKEY is returned if a key could not be found.
 | |
|  */
 | |
| struct key *find_keyring_by_name(const char *name, bool uid_keyring)
 | |
| {
 | |
| 	struct key *keyring;
 | |
| 	int bucket;
 | |
| 
 | |
| 	if (!name)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	bucket = keyring_hash(name);
 | |
| 
 | |
| 	read_lock(&keyring_name_lock);
 | |
| 
 | |
| 	if (keyring_name_hash[bucket].next) {
 | |
| 		/* search this hash bucket for a keyring with a matching name
 | |
| 		 * that's readable and that hasn't been revoked */
 | |
| 		list_for_each_entry(keyring,
 | |
| 				    &keyring_name_hash[bucket],
 | |
| 				    name_link
 | |
| 				    ) {
 | |
| 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
 | |
| 				continue;
 | |
| 
 | |
| 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
 | |
| 				continue;
 | |
| 
 | |
| 			if (strcmp(keyring->description, name) != 0)
 | |
| 				continue;
 | |
| 
 | |
| 			if (uid_keyring) {
 | |
| 				if (!test_bit(KEY_FLAG_UID_KEYRING,
 | |
| 					      &keyring->flags))
 | |
| 					continue;
 | |
| 			} else {
 | |
| 				if (key_permission(make_key_ref(keyring, 0),
 | |
| 						   KEY_NEED_SEARCH) < 0)
 | |
| 					continue;
 | |
| 			}
 | |
| 
 | |
| 			/* we've got a match but we might end up racing with
 | |
| 			 * key_cleanup() if the keyring is currently 'dead'
 | |
| 			 * (ie. it has a zero usage count) */
 | |
| 			if (!refcount_inc_not_zero(&keyring->usage))
 | |
| 				continue;
 | |
| 			keyring->last_used_at = ktime_get_real_seconds();
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	keyring = ERR_PTR(-ENOKEY);
 | |
| out:
 | |
| 	read_unlock(&keyring_name_lock);
 | |
| 	return keyring;
 | |
| }
 | |
| 
 | |
| static int keyring_detect_cycle_iterator(const void *object,
 | |
| 					 void *iterator_data)
 | |
| {
 | |
| 	struct keyring_search_context *ctx = iterator_data;
 | |
| 	const struct key *key = keyring_ptr_to_key(object);
 | |
| 
 | |
| 	kenter("{%d}", key->serial);
 | |
| 
 | |
| 	/* We might get a keyring with matching index-key that is nonetheless a
 | |
| 	 * different keyring. */
 | |
| 	if (key != ctx->match_data.raw_data)
 | |
| 		return 0;
 | |
| 
 | |
| 	ctx->result = ERR_PTR(-EDEADLK);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See if a cycle will will be created by inserting acyclic tree B in acyclic
 | |
|  * tree A at the topmost level (ie: as a direct child of A).
 | |
|  *
 | |
|  * Since we are adding B to A at the top level, checking for cycles should just
 | |
|  * be a matter of seeing if node A is somewhere in tree B.
 | |
|  */
 | |
| static int keyring_detect_cycle(struct key *A, struct key *B)
 | |
| {
 | |
| 	struct keyring_search_context ctx = {
 | |
| 		.index_key		= A->index_key,
 | |
| 		.match_data.raw_data	= A,
 | |
| 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
 | |
| 		.iterator		= keyring_detect_cycle_iterator,
 | |
| 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
 | |
| 					   KEYRING_SEARCH_NO_UPDATE_TIME |
 | |
| 					   KEYRING_SEARCH_NO_CHECK_PERM |
 | |
| 					   KEYRING_SEARCH_DETECT_TOO_DEEP),
 | |
| 	};
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	search_nested_keyrings(B, &ctx);
 | |
| 	rcu_read_unlock();
 | |
| 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Preallocate memory so that a key can be linked into to a keyring.
 | |
|  */
 | |
| int __key_link_begin(struct key *keyring,
 | |
| 		     const struct keyring_index_key *index_key,
 | |
| 		     struct assoc_array_edit **_edit)
 | |
| 	__acquires(&keyring->sem)
 | |
| 	__acquires(&keyring_serialise_link_sem)
 | |
| {
 | |
| 	struct assoc_array_edit *edit;
 | |
| 	int ret;
 | |
| 
 | |
| 	kenter("%d,%s,%s,",
 | |
| 	       keyring->serial, index_key->type->name, index_key->description);
 | |
| 
 | |
| 	BUG_ON(index_key->desc_len == 0);
 | |
| 
 | |
| 	if (keyring->type != &key_type_keyring)
 | |
| 		return -ENOTDIR;
 | |
| 
 | |
| 	down_write(&keyring->sem);
 | |
| 
 | |
| 	ret = -EKEYREVOKED;
 | |
| 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
 | |
| 		goto error_krsem;
 | |
| 
 | |
| 	/* serialise link/link calls to prevent parallel calls causing a cycle
 | |
| 	 * when linking two keyring in opposite orders */
 | |
| 	if (index_key->type == &key_type_keyring)
 | |
| 		down_write(&keyring_serialise_link_sem);
 | |
| 
 | |
| 	/* Create an edit script that will insert/replace the key in the
 | |
| 	 * keyring tree.
 | |
| 	 */
 | |
| 	edit = assoc_array_insert(&keyring->keys,
 | |
| 				  &keyring_assoc_array_ops,
 | |
| 				  index_key,
 | |
| 				  NULL);
 | |
| 	if (IS_ERR(edit)) {
 | |
| 		ret = PTR_ERR(edit);
 | |
| 		goto error_sem;
 | |
| 	}
 | |
| 
 | |
| 	/* If we're not replacing a link in-place then we're going to need some
 | |
| 	 * extra quota.
 | |
| 	 */
 | |
| 	if (!edit->dead_leaf) {
 | |
| 		ret = key_payload_reserve(keyring,
 | |
| 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
 | |
| 		if (ret < 0)
 | |
| 			goto error_cancel;
 | |
| 	}
 | |
| 
 | |
| 	*_edit = edit;
 | |
| 	kleave(" = 0");
 | |
| 	return 0;
 | |
| 
 | |
| error_cancel:
 | |
| 	assoc_array_cancel_edit(edit);
 | |
| error_sem:
 | |
| 	if (index_key->type == &key_type_keyring)
 | |
| 		up_write(&keyring_serialise_link_sem);
 | |
| error_krsem:
 | |
| 	up_write(&keyring->sem);
 | |
| 	kleave(" = %d", ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check already instantiated keys aren't going to be a problem.
 | |
|  *
 | |
|  * The caller must have called __key_link_begin(). Don't need to call this for
 | |
|  * keys that were created since __key_link_begin() was called.
 | |
|  */
 | |
| int __key_link_check_live_key(struct key *keyring, struct key *key)
 | |
| {
 | |
| 	if (key->type == &key_type_keyring)
 | |
| 		/* check that we aren't going to create a cycle by linking one
 | |
| 		 * keyring to another */
 | |
| 		return keyring_detect_cycle(keyring, key);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Link a key into to a keyring.
 | |
|  *
 | |
|  * Must be called with __key_link_begin() having being called.  Discards any
 | |
|  * already extant link to matching key if there is one, so that each keyring
 | |
|  * holds at most one link to any given key of a particular type+description
 | |
|  * combination.
 | |
|  */
 | |
| void __key_link(struct key *key, struct assoc_array_edit **_edit)
 | |
| {
 | |
| 	__key_get(key);
 | |
| 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
 | |
| 	assoc_array_apply_edit(*_edit);
 | |
| 	*_edit = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finish linking a key into to a keyring.
 | |
|  *
 | |
|  * Must be called with __key_link_begin() having being called.
 | |
|  */
 | |
| void __key_link_end(struct key *keyring,
 | |
| 		    const struct keyring_index_key *index_key,
 | |
| 		    struct assoc_array_edit *edit)
 | |
| 	__releases(&keyring->sem)
 | |
| 	__releases(&keyring_serialise_link_sem)
 | |
| {
 | |
| 	BUG_ON(index_key->type == NULL);
 | |
| 	kenter("%d,%s,", keyring->serial, index_key->type->name);
 | |
| 
 | |
| 	if (index_key->type == &key_type_keyring)
 | |
| 		up_write(&keyring_serialise_link_sem);
 | |
| 
 | |
| 	if (edit) {
 | |
| 		if (!edit->dead_leaf) {
 | |
| 			key_payload_reserve(keyring,
 | |
| 				keyring->datalen - KEYQUOTA_LINK_BYTES);
 | |
| 		}
 | |
| 		assoc_array_cancel_edit(edit);
 | |
| 	}
 | |
| 	up_write(&keyring->sem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check addition of keys to restricted keyrings.
 | |
|  */
 | |
| static int __key_link_check_restriction(struct key *keyring, struct key *key)
 | |
| {
 | |
| 	if (!keyring->restrict_link || !keyring->restrict_link->check)
 | |
| 		return 0;
 | |
| 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
 | |
| 					     keyring->restrict_link->key);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * key_link - Link a key to a keyring
 | |
|  * @keyring: The keyring to make the link in.
 | |
|  * @key: The key to link to.
 | |
|  *
 | |
|  * Make a link in a keyring to a key, such that the keyring holds a reference
 | |
|  * on that key and the key can potentially be found by searching that keyring.
 | |
|  *
 | |
|  * This function will write-lock the keyring's semaphore and will consume some
 | |
|  * of the user's key data quota to hold the link.
 | |
|  *
 | |
|  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
 | |
|  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
 | |
|  * full, -EDQUOT if there is insufficient key data quota remaining to add
 | |
|  * another link or -ENOMEM if there's insufficient memory.
 | |
|  *
 | |
|  * It is assumed that the caller has checked that it is permitted for a link to
 | |
|  * be made (the keyring should have Write permission and the key Link
 | |
|  * permission).
 | |
|  */
 | |
| int key_link(struct key *keyring, struct key *key)
 | |
| {
 | |
| 	struct assoc_array_edit *edit;
 | |
| 	int ret;
 | |
| 
 | |
| 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
 | |
| 
 | |
| 	key_check(keyring);
 | |
| 	key_check(key);
 | |
| 
 | |
| 	ret = __key_link_begin(keyring, &key->index_key, &edit);
 | |
| 	if (ret == 0) {
 | |
| 		kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
 | |
| 		ret = __key_link_check_restriction(keyring, key);
 | |
| 		if (ret == 0)
 | |
| 			ret = __key_link_check_live_key(keyring, key);
 | |
| 		if (ret == 0)
 | |
| 			__key_link(key, &edit);
 | |
| 		__key_link_end(keyring, &key->index_key, edit);
 | |
| 	}
 | |
| 
 | |
| 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(key_link);
 | |
| 
 | |
| /**
 | |
|  * key_unlink - Unlink the first link to a key from a keyring.
 | |
|  * @keyring: The keyring to remove the link from.
 | |
|  * @key: The key the link is to.
 | |
|  *
 | |
|  * Remove a link from a keyring to a key.
 | |
|  *
 | |
|  * This function will write-lock the keyring's semaphore.
 | |
|  *
 | |
|  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
 | |
|  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
 | |
|  * memory.
 | |
|  *
 | |
|  * It is assumed that the caller has checked that it is permitted for a link to
 | |
|  * be removed (the keyring should have Write permission; no permissions are
 | |
|  * required on the key).
 | |
|  */
 | |
| int key_unlink(struct key *keyring, struct key *key)
 | |
| {
 | |
| 	struct assoc_array_edit *edit;
 | |
| 	int ret;
 | |
| 
 | |
| 	key_check(keyring);
 | |
| 	key_check(key);
 | |
| 
 | |
| 	if (keyring->type != &key_type_keyring)
 | |
| 		return -ENOTDIR;
 | |
| 
 | |
| 	down_write(&keyring->sem);
 | |
| 
 | |
| 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
 | |
| 				  &key->index_key);
 | |
| 	if (IS_ERR(edit)) {
 | |
| 		ret = PTR_ERR(edit);
 | |
| 		goto error;
 | |
| 	}
 | |
| 	ret = -ENOENT;
 | |
| 	if (edit == NULL)
 | |
| 		goto error;
 | |
| 
 | |
| 	assoc_array_apply_edit(edit);
 | |
| 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
 | |
| 	ret = 0;
 | |
| 
 | |
| error:
 | |
| 	up_write(&keyring->sem);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(key_unlink);
 | |
| 
 | |
| /**
 | |
|  * keyring_clear - Clear a keyring
 | |
|  * @keyring: The keyring to clear.
 | |
|  *
 | |
|  * Clear the contents of the specified keyring.
 | |
|  *
 | |
|  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
 | |
|  */
 | |
| int keyring_clear(struct key *keyring)
 | |
| {
 | |
| 	struct assoc_array_edit *edit;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (keyring->type != &key_type_keyring)
 | |
| 		return -ENOTDIR;
 | |
| 
 | |
| 	down_write(&keyring->sem);
 | |
| 
 | |
| 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
 | |
| 	if (IS_ERR(edit)) {
 | |
| 		ret = PTR_ERR(edit);
 | |
| 	} else {
 | |
| 		if (edit)
 | |
| 			assoc_array_apply_edit(edit);
 | |
| 		key_payload_reserve(keyring, 0);
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	up_write(&keyring->sem);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(keyring_clear);
 | |
| 
 | |
| /*
 | |
|  * Dispose of the links from a revoked keyring.
 | |
|  *
 | |
|  * This is called with the key sem write-locked.
 | |
|  */
 | |
| static void keyring_revoke(struct key *keyring)
 | |
| {
 | |
| 	struct assoc_array_edit *edit;
 | |
| 
 | |
| 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
 | |
| 	if (!IS_ERR(edit)) {
 | |
| 		if (edit)
 | |
| 			assoc_array_apply_edit(edit);
 | |
| 		key_payload_reserve(keyring, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool keyring_gc_select_iterator(void *object, void *iterator_data)
 | |
| {
 | |
| 	struct key *key = keyring_ptr_to_key(object);
 | |
| 	time64_t *limit = iterator_data;
 | |
| 
 | |
| 	if (key_is_dead(key, *limit))
 | |
| 		return false;
 | |
| 	key_get(key);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int keyring_gc_check_iterator(const void *object, void *iterator_data)
 | |
| {
 | |
| 	const struct key *key = keyring_ptr_to_key(object);
 | |
| 	time64_t *limit = iterator_data;
 | |
| 
 | |
| 	key_check(key);
 | |
| 	return key_is_dead(key, *limit);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Garbage collect pointers from a keyring.
 | |
|  *
 | |
|  * Not called with any locks held.  The keyring's key struct will not be
 | |
|  * deallocated under us as only our caller may deallocate it.
 | |
|  */
 | |
| void keyring_gc(struct key *keyring, time64_t limit)
 | |
| {
 | |
| 	int result;
 | |
| 
 | |
| 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
 | |
| 
 | |
| 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 | |
| 			      (1 << KEY_FLAG_REVOKED)))
 | |
| 		goto dont_gc;
 | |
| 
 | |
| 	/* scan the keyring looking for dead keys */
 | |
| 	rcu_read_lock();
 | |
| 	result = assoc_array_iterate(&keyring->keys,
 | |
| 				     keyring_gc_check_iterator, &limit);
 | |
| 	rcu_read_unlock();
 | |
| 	if (result == true)
 | |
| 		goto do_gc;
 | |
| 
 | |
| dont_gc:
 | |
| 	kleave(" [no gc]");
 | |
| 	return;
 | |
| 
 | |
| do_gc:
 | |
| 	down_write(&keyring->sem);
 | |
| 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
 | |
| 		       keyring_gc_select_iterator, &limit);
 | |
| 	up_write(&keyring->sem);
 | |
| 	kleave(" [gc]");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Garbage collect restriction pointers from a keyring.
 | |
|  *
 | |
|  * Keyring restrictions are associated with a key type, and must be cleaned
 | |
|  * up if the key type is unregistered. The restriction is altered to always
 | |
|  * reject additional keys so a keyring cannot be opened up by unregistering
 | |
|  * a key type.
 | |
|  *
 | |
|  * Not called with any keyring locks held. The keyring's key struct will not
 | |
|  * be deallocated under us as only our caller may deallocate it.
 | |
|  *
 | |
|  * The caller is required to hold key_types_sem and dead_type->sem. This is
 | |
|  * fulfilled by key_gc_keytype() holding the locks on behalf of
 | |
|  * key_garbage_collector(), which it invokes on a workqueue.
 | |
|  */
 | |
| void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
 | |
| {
 | |
| 	struct key_restriction *keyres;
 | |
| 
 | |
| 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
 | |
| 
 | |
| 	/*
 | |
| 	 * keyring->restrict_link is only assigned at key allocation time
 | |
| 	 * or with the key type locked, so the only values that could be
 | |
| 	 * concurrently assigned to keyring->restrict_link are for key
 | |
| 	 * types other than dead_type. Given this, it's ok to check
 | |
| 	 * the key type before acquiring keyring->sem.
 | |
| 	 */
 | |
| 	if (!dead_type || !keyring->restrict_link ||
 | |
| 	    keyring->restrict_link->keytype != dead_type) {
 | |
| 		kleave(" [no restriction gc]");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Lock the keyring to ensure that a link is not in progress */
 | |
| 	down_write(&keyring->sem);
 | |
| 
 | |
| 	keyres = keyring->restrict_link;
 | |
| 
 | |
| 	keyres->check = restrict_link_reject;
 | |
| 
 | |
| 	key_put(keyres->key);
 | |
| 	keyres->key = NULL;
 | |
| 	keyres->keytype = NULL;
 | |
| 
 | |
| 	up_write(&keyring->sem);
 | |
| 
 | |
| 	kleave(" [restriction gc]");
 | |
| }
 |