c4dc2497d5
After long time small writing I/O running, we found the occupancy of CPU
is very high and I/O performance has been reduced by about half:
[root@ceph151 internal]# top
top - 15:51:05 up 1 day,2:43, 4 users, load average: 16.89, 15.15, 16.53
Tasks: 2063 total, 4 running, 2059 sleeping, 0 stopped, 0 zombie
%Cpu(s):4.3 us, 17.1 sy 0.0 ni, 66.1 id, 12.0 wa, 0.0 hi, 0.5 si, 0.0 st
KiB Mem : 65450044 total, 24586420 free, 38909008 used, 1954616 buff/cache
KiB Swap: 65667068 total, 65667068 free, 0 used. 25136812 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2023 root 20 0 0 0 0 S 55.1 0.0 0:04.42 kworker/11:191
14126 root 20 0 0 0 0 S 42.9 0.0 0:08.72 kworker/10:3
9292 root 20 0 0 0 0 S 30.4 0.0 1:10.99 kworker/6:1
8553 ceph 20 0 4242492 1.805g 18804 S 30.0 2.9 410:07.04 ceph-osd
12287 root 20 0 0 0 0 S 26.7 0.0 0:28.13 kworker/7:85
31019 root 20 0 0 0 0 S 26.1 0.0 1:30.79 kworker/22:1
1787 root 20 0 0 0 0 R 25.7 0.0 5:18.45 kworker/8:7
32169 root 20 0 0 0 0 S 14.5 0.0 1:01.92 kworker/23:1
21476 root 20 0 0 0 0 S 13.9 0.0 0:05.09 kworker/1:54
2204 root 20 0 0 0 0 S 12.5 0.0 1:25.17 kworker/9:10
16994 root 20 0 0 0 0 S 12.2 0.0 0:06.27 kworker/5:106
15714 root 20 0 0 0 0 R 10.9 0.0 0:01.85 kworker/19:2
9661 ceph 20 0 4246876
1.731g 18800 S 10.6 2.8 403:00.80 ceph-osd
11460 ceph 20 0 4164692 2.206g 18876 S 10.6 3.5 360:27.19 ceph-osd
9960 root 20 0 0 0 0 S 10.2 0.0 0:02.75 kworker/2:139
11699 ceph 20 0 4169244 1.920g 18920 S 10.2 3.1 355:23.67 ceph-osd
6843 ceph 20 0 4197632 1.810g 18900 S 9.6 2.9 380:08.30 ceph-osd
The kernel work consumed a lot of CPU, and I found they are running journal
work, The journal is reclaiming source and flush btree node with surprising
frequency.
Through further analysis, we found that in btree_flush_write(), we try to
get a btree node with the smallest fifo idex to flush by traverse all the
btree nodein c->bucket_hash, after we getting it, since no locker protects
it, this btree node may have been written to cache device by other works,
and if this occurred, we retry to traverse in c->bucket_hash and get
another btree node. When the problem occurrd, the retry times is very high,
and we consume a lot of CPU in looking for a appropriate btree node.
In this patch, we try to record 128 btree nodes with the smallest fifo idex
in heap, and pop one by one when we need to flush btree node. It greatly
reduces the time for the loop to find the appropriate BTREE node, and also
reduce the occupancy of CPU.
[note by mpl: this triggers a checkpatch error because of adjacent,
pre-existing style violations]
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
851 lines
19 KiB
C
851 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* bcache journalling code, for btree insertions
|
|
*
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "btree.h"
|
|
#include "debug.h"
|
|
#include "extents.h"
|
|
|
|
#include <trace/events/bcache.h>
|
|
|
|
/*
|
|
* Journal replay/recovery:
|
|
*
|
|
* This code is all driven from run_cache_set(); we first read the journal
|
|
* entries, do some other stuff, then we mark all the keys in the journal
|
|
* entries (same as garbage collection would), then we replay them - reinserting
|
|
* them into the cache in precisely the same order as they appear in the
|
|
* journal.
|
|
*
|
|
* We only journal keys that go in leaf nodes, which simplifies things quite a
|
|
* bit.
|
|
*/
|
|
|
|
static void journal_read_endio(struct bio *bio)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
closure_put(cl);
|
|
}
|
|
|
|
static int journal_read_bucket(struct cache *ca, struct list_head *list,
|
|
unsigned bucket_index)
|
|
{
|
|
struct journal_device *ja = &ca->journal;
|
|
struct bio *bio = &ja->bio;
|
|
|
|
struct journal_replay *i;
|
|
struct jset *j, *data = ca->set->journal.w[0].data;
|
|
struct closure cl;
|
|
unsigned len, left, offset = 0;
|
|
int ret = 0;
|
|
sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
pr_debug("reading %u", bucket_index);
|
|
|
|
while (offset < ca->sb.bucket_size) {
|
|
reread: left = ca->sb.bucket_size - offset;
|
|
len = min_t(unsigned, left, PAGE_SECTORS << JSET_BITS);
|
|
|
|
bio_reset(bio);
|
|
bio->bi_iter.bi_sector = bucket + offset;
|
|
bio_set_dev(bio, ca->bdev);
|
|
bio->bi_iter.bi_size = len << 9;
|
|
|
|
bio->bi_end_io = journal_read_endio;
|
|
bio->bi_private = &cl;
|
|
bio_set_op_attrs(bio, REQ_OP_READ, 0);
|
|
bch_bio_map(bio, data);
|
|
|
|
closure_bio_submit(bio, &cl);
|
|
closure_sync(&cl);
|
|
|
|
/* This function could be simpler now since we no longer write
|
|
* journal entries that overlap bucket boundaries; this means
|
|
* the start of a bucket will always have a valid journal entry
|
|
* if it has any journal entries at all.
|
|
*/
|
|
|
|
j = data;
|
|
while (len) {
|
|
struct list_head *where;
|
|
size_t blocks, bytes = set_bytes(j);
|
|
|
|
if (j->magic != jset_magic(&ca->sb)) {
|
|
pr_debug("%u: bad magic", bucket_index);
|
|
return ret;
|
|
}
|
|
|
|
if (bytes > left << 9 ||
|
|
bytes > PAGE_SIZE << JSET_BITS) {
|
|
pr_info("%u: too big, %zu bytes, offset %u",
|
|
bucket_index, bytes, offset);
|
|
return ret;
|
|
}
|
|
|
|
if (bytes > len << 9)
|
|
goto reread;
|
|
|
|
if (j->csum != csum_set(j)) {
|
|
pr_info("%u: bad csum, %zu bytes, offset %u",
|
|
bucket_index, bytes, offset);
|
|
return ret;
|
|
}
|
|
|
|
blocks = set_blocks(j, block_bytes(ca->set));
|
|
|
|
while (!list_empty(list)) {
|
|
i = list_first_entry(list,
|
|
struct journal_replay, list);
|
|
if (i->j.seq >= j->last_seq)
|
|
break;
|
|
list_del(&i->list);
|
|
kfree(i);
|
|
}
|
|
|
|
list_for_each_entry_reverse(i, list, list) {
|
|
if (j->seq == i->j.seq)
|
|
goto next_set;
|
|
|
|
if (j->seq < i->j.last_seq)
|
|
goto next_set;
|
|
|
|
if (j->seq > i->j.seq) {
|
|
where = &i->list;
|
|
goto add;
|
|
}
|
|
}
|
|
|
|
where = list;
|
|
add:
|
|
i = kmalloc(offsetof(struct journal_replay, j) +
|
|
bytes, GFP_KERNEL);
|
|
if (!i)
|
|
return -ENOMEM;
|
|
memcpy(&i->j, j, bytes);
|
|
list_add(&i->list, where);
|
|
ret = 1;
|
|
|
|
ja->seq[bucket_index] = j->seq;
|
|
next_set:
|
|
offset += blocks * ca->sb.block_size;
|
|
len -= blocks * ca->sb.block_size;
|
|
j = ((void *) j) + blocks * block_bytes(ca);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bch_journal_read(struct cache_set *c, struct list_head *list)
|
|
{
|
|
#define read_bucket(b) \
|
|
({ \
|
|
int ret = journal_read_bucket(ca, list, b); \
|
|
__set_bit(b, bitmap); \
|
|
if (ret < 0) \
|
|
return ret; \
|
|
ret; \
|
|
})
|
|
|
|
struct cache *ca;
|
|
unsigned iter;
|
|
|
|
for_each_cache(ca, c, iter) {
|
|
struct journal_device *ja = &ca->journal;
|
|
DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
|
|
unsigned i, l, r, m;
|
|
uint64_t seq;
|
|
|
|
bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
|
|
pr_debug("%u journal buckets", ca->sb.njournal_buckets);
|
|
|
|
/*
|
|
* Read journal buckets ordered by golden ratio hash to quickly
|
|
* find a sequence of buckets with valid journal entries
|
|
*/
|
|
for (i = 0; i < ca->sb.njournal_buckets; i++) {
|
|
/*
|
|
* We must try the index l with ZERO first for
|
|
* correctness due to the scenario that the journal
|
|
* bucket is circular buffer which might have wrapped
|
|
*/
|
|
l = (i * 2654435769U) % ca->sb.njournal_buckets;
|
|
|
|
if (test_bit(l, bitmap))
|
|
break;
|
|
|
|
if (read_bucket(l))
|
|
goto bsearch;
|
|
}
|
|
|
|
/*
|
|
* If that fails, check all the buckets we haven't checked
|
|
* already
|
|
*/
|
|
pr_debug("falling back to linear search");
|
|
|
|
for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets);
|
|
l < ca->sb.njournal_buckets;
|
|
l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets, l + 1))
|
|
if (read_bucket(l))
|
|
goto bsearch;
|
|
|
|
/* no journal entries on this device? */
|
|
if (l == ca->sb.njournal_buckets)
|
|
continue;
|
|
bsearch:
|
|
BUG_ON(list_empty(list));
|
|
|
|
/* Binary search */
|
|
m = l;
|
|
r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
|
|
pr_debug("starting binary search, l %u r %u", l, r);
|
|
|
|
while (l + 1 < r) {
|
|
seq = list_entry(list->prev, struct journal_replay,
|
|
list)->j.seq;
|
|
|
|
m = (l + r) >> 1;
|
|
read_bucket(m);
|
|
|
|
if (seq != list_entry(list->prev, struct journal_replay,
|
|
list)->j.seq)
|
|
l = m;
|
|
else
|
|
r = m;
|
|
}
|
|
|
|
/*
|
|
* Read buckets in reverse order until we stop finding more
|
|
* journal entries
|
|
*/
|
|
pr_debug("finishing up: m %u njournal_buckets %u",
|
|
m, ca->sb.njournal_buckets);
|
|
l = m;
|
|
|
|
while (1) {
|
|
if (!l--)
|
|
l = ca->sb.njournal_buckets - 1;
|
|
|
|
if (l == m)
|
|
break;
|
|
|
|
if (test_bit(l, bitmap))
|
|
continue;
|
|
|
|
if (!read_bucket(l))
|
|
break;
|
|
}
|
|
|
|
seq = 0;
|
|
|
|
for (i = 0; i < ca->sb.njournal_buckets; i++)
|
|
if (ja->seq[i] > seq) {
|
|
seq = ja->seq[i];
|
|
/*
|
|
* When journal_reclaim() goes to allocate for
|
|
* the first time, it'll use the bucket after
|
|
* ja->cur_idx
|
|
*/
|
|
ja->cur_idx = i;
|
|
ja->last_idx = ja->discard_idx = (i + 1) %
|
|
ca->sb.njournal_buckets;
|
|
|
|
}
|
|
}
|
|
|
|
if (!list_empty(list))
|
|
c->journal.seq = list_entry(list->prev,
|
|
struct journal_replay,
|
|
list)->j.seq;
|
|
|
|
return 0;
|
|
#undef read_bucket
|
|
}
|
|
|
|
void bch_journal_mark(struct cache_set *c, struct list_head *list)
|
|
{
|
|
atomic_t p = { 0 };
|
|
struct bkey *k;
|
|
struct journal_replay *i;
|
|
struct journal *j = &c->journal;
|
|
uint64_t last = j->seq;
|
|
|
|
/*
|
|
* journal.pin should never fill up - we never write a journal
|
|
* entry when it would fill up. But if for some reason it does, we
|
|
* iterate over the list in reverse order so that we can just skip that
|
|
* refcount instead of bugging.
|
|
*/
|
|
|
|
list_for_each_entry_reverse(i, list, list) {
|
|
BUG_ON(last < i->j.seq);
|
|
i->pin = NULL;
|
|
|
|
while (last-- != i->j.seq)
|
|
if (fifo_free(&j->pin) > 1) {
|
|
fifo_push_front(&j->pin, p);
|
|
atomic_set(&fifo_front(&j->pin), 0);
|
|
}
|
|
|
|
if (fifo_free(&j->pin) > 1) {
|
|
fifo_push_front(&j->pin, p);
|
|
i->pin = &fifo_front(&j->pin);
|
|
atomic_set(i->pin, 1);
|
|
}
|
|
|
|
for (k = i->j.start;
|
|
k < bset_bkey_last(&i->j);
|
|
k = bkey_next(k))
|
|
if (!__bch_extent_invalid(c, k)) {
|
|
unsigned j;
|
|
|
|
for (j = 0; j < KEY_PTRS(k); j++)
|
|
if (ptr_available(c, k, j))
|
|
atomic_inc(&PTR_BUCKET(c, k, j)->pin);
|
|
|
|
bch_initial_mark_key(c, 0, k);
|
|
}
|
|
}
|
|
}
|
|
|
|
int bch_journal_replay(struct cache_set *s, struct list_head *list)
|
|
{
|
|
int ret = 0, keys = 0, entries = 0;
|
|
struct bkey *k;
|
|
struct journal_replay *i =
|
|
list_entry(list->prev, struct journal_replay, list);
|
|
|
|
uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
|
|
struct keylist keylist;
|
|
|
|
list_for_each_entry(i, list, list) {
|
|
BUG_ON(i->pin && atomic_read(i->pin) != 1);
|
|
|
|
cache_set_err_on(n != i->j.seq, s,
|
|
"bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)",
|
|
n, i->j.seq - 1, start, end);
|
|
|
|
for (k = i->j.start;
|
|
k < bset_bkey_last(&i->j);
|
|
k = bkey_next(k)) {
|
|
trace_bcache_journal_replay_key(k);
|
|
|
|
bch_keylist_init_single(&keylist, k);
|
|
|
|
ret = bch_btree_insert(s, &keylist, i->pin, NULL);
|
|
if (ret)
|
|
goto err;
|
|
|
|
BUG_ON(!bch_keylist_empty(&keylist));
|
|
keys++;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
if (i->pin)
|
|
atomic_dec(i->pin);
|
|
n = i->j.seq + 1;
|
|
entries++;
|
|
}
|
|
|
|
pr_info("journal replay done, %i keys in %i entries, seq %llu",
|
|
keys, entries, end);
|
|
err:
|
|
while (!list_empty(list)) {
|
|
i = list_first_entry(list, struct journal_replay, list);
|
|
list_del(&i->list);
|
|
kfree(i);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Journalling */
|
|
#define journal_max_cmp(l, r) \
|
|
(fifo_idx(&c->journal.pin, btree_current_write(l)->journal) < \
|
|
fifo_idx(&(c)->journal.pin, btree_current_write(r)->journal))
|
|
#define journal_min_cmp(l, r) \
|
|
(fifo_idx(&c->journal.pin, btree_current_write(l)->journal) > \
|
|
fifo_idx(&(c)->journal.pin, btree_current_write(r)->journal))
|
|
|
|
static void btree_flush_write(struct cache_set *c)
|
|
{
|
|
/*
|
|
* Try to find the btree node with that references the oldest journal
|
|
* entry, best is our current candidate and is locked if non NULL:
|
|
*/
|
|
struct btree *b;
|
|
int i;
|
|
|
|
atomic_long_inc(&c->flush_write);
|
|
|
|
retry:
|
|
spin_lock(&c->journal.lock);
|
|
if (heap_empty(&c->flush_btree)) {
|
|
for_each_cached_btree(b, c, i)
|
|
if (btree_current_write(b)->journal) {
|
|
if (!heap_full(&c->flush_btree))
|
|
heap_add(&c->flush_btree, b,
|
|
journal_max_cmp);
|
|
else if (journal_max_cmp(b,
|
|
heap_peek(&c->flush_btree))) {
|
|
c->flush_btree.data[0] = b;
|
|
heap_sift(&c->flush_btree, 0,
|
|
journal_max_cmp);
|
|
}
|
|
}
|
|
|
|
for (i = c->flush_btree.used / 2 - 1; i >= 0; --i)
|
|
heap_sift(&c->flush_btree, i, journal_min_cmp);
|
|
}
|
|
|
|
b = NULL;
|
|
heap_pop(&c->flush_btree, b, journal_min_cmp);
|
|
spin_unlock(&c->journal.lock);
|
|
|
|
if (b) {
|
|
mutex_lock(&b->write_lock);
|
|
if (!btree_current_write(b)->journal) {
|
|
mutex_unlock(&b->write_lock);
|
|
/* We raced */
|
|
atomic_long_inc(&c->retry_flush_write);
|
|
goto retry;
|
|
}
|
|
|
|
__bch_btree_node_write(b, NULL);
|
|
mutex_unlock(&b->write_lock);
|
|
}
|
|
}
|
|
|
|
#define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1)
|
|
|
|
static void journal_discard_endio(struct bio *bio)
|
|
{
|
|
struct journal_device *ja =
|
|
container_of(bio, struct journal_device, discard_bio);
|
|
struct cache *ca = container_of(ja, struct cache, journal);
|
|
|
|
atomic_set(&ja->discard_in_flight, DISCARD_DONE);
|
|
|
|
closure_wake_up(&ca->set->journal.wait);
|
|
closure_put(&ca->set->cl);
|
|
}
|
|
|
|
static void journal_discard_work(struct work_struct *work)
|
|
{
|
|
struct journal_device *ja =
|
|
container_of(work, struct journal_device, discard_work);
|
|
|
|
submit_bio(&ja->discard_bio);
|
|
}
|
|
|
|
static void do_journal_discard(struct cache *ca)
|
|
{
|
|
struct journal_device *ja = &ca->journal;
|
|
struct bio *bio = &ja->discard_bio;
|
|
|
|
if (!ca->discard) {
|
|
ja->discard_idx = ja->last_idx;
|
|
return;
|
|
}
|
|
|
|
switch (atomic_read(&ja->discard_in_flight)) {
|
|
case DISCARD_IN_FLIGHT:
|
|
return;
|
|
|
|
case DISCARD_DONE:
|
|
ja->discard_idx = (ja->discard_idx + 1) %
|
|
ca->sb.njournal_buckets;
|
|
|
|
atomic_set(&ja->discard_in_flight, DISCARD_READY);
|
|
/* fallthrough */
|
|
|
|
case DISCARD_READY:
|
|
if (ja->discard_idx == ja->last_idx)
|
|
return;
|
|
|
|
atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
|
|
|
|
bio_init(bio, bio->bi_inline_vecs, 1);
|
|
bio_set_op_attrs(bio, REQ_OP_DISCARD, 0);
|
|
bio->bi_iter.bi_sector = bucket_to_sector(ca->set,
|
|
ca->sb.d[ja->discard_idx]);
|
|
bio_set_dev(bio, ca->bdev);
|
|
bio->bi_iter.bi_size = bucket_bytes(ca);
|
|
bio->bi_end_io = journal_discard_endio;
|
|
|
|
closure_get(&ca->set->cl);
|
|
INIT_WORK(&ja->discard_work, journal_discard_work);
|
|
schedule_work(&ja->discard_work);
|
|
}
|
|
}
|
|
|
|
static void journal_reclaim(struct cache_set *c)
|
|
{
|
|
struct bkey *k = &c->journal.key;
|
|
struct cache *ca;
|
|
uint64_t last_seq;
|
|
unsigned iter, n = 0;
|
|
atomic_t p;
|
|
|
|
atomic_long_inc(&c->reclaim);
|
|
|
|
while (!atomic_read(&fifo_front(&c->journal.pin)))
|
|
fifo_pop(&c->journal.pin, p);
|
|
|
|
last_seq = last_seq(&c->journal);
|
|
|
|
/* Update last_idx */
|
|
|
|
for_each_cache(ca, c, iter) {
|
|
struct journal_device *ja = &ca->journal;
|
|
|
|
while (ja->last_idx != ja->cur_idx &&
|
|
ja->seq[ja->last_idx] < last_seq)
|
|
ja->last_idx = (ja->last_idx + 1) %
|
|
ca->sb.njournal_buckets;
|
|
}
|
|
|
|
for_each_cache(ca, c, iter)
|
|
do_journal_discard(ca);
|
|
|
|
if (c->journal.blocks_free)
|
|
goto out;
|
|
|
|
/*
|
|
* Allocate:
|
|
* XXX: Sort by free journal space
|
|
*/
|
|
|
|
for_each_cache(ca, c, iter) {
|
|
struct journal_device *ja = &ca->journal;
|
|
unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
|
|
|
|
/* No space available on this device */
|
|
if (next == ja->discard_idx)
|
|
continue;
|
|
|
|
ja->cur_idx = next;
|
|
k->ptr[n++] = MAKE_PTR(0,
|
|
bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
|
|
ca->sb.nr_this_dev);
|
|
}
|
|
|
|
bkey_init(k);
|
|
SET_KEY_PTRS(k, n);
|
|
|
|
if (n)
|
|
c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
|
|
out:
|
|
if (!journal_full(&c->journal))
|
|
__closure_wake_up(&c->journal.wait);
|
|
}
|
|
|
|
void bch_journal_next(struct journal *j)
|
|
{
|
|
atomic_t p = { 1 };
|
|
|
|
j->cur = (j->cur == j->w)
|
|
? &j->w[1]
|
|
: &j->w[0];
|
|
|
|
/*
|
|
* The fifo_push() needs to happen at the same time as j->seq is
|
|
* incremented for last_seq() to be calculated correctly
|
|
*/
|
|
BUG_ON(!fifo_push(&j->pin, p));
|
|
atomic_set(&fifo_back(&j->pin), 1);
|
|
|
|
j->cur->data->seq = ++j->seq;
|
|
j->cur->dirty = false;
|
|
j->cur->need_write = false;
|
|
j->cur->data->keys = 0;
|
|
|
|
if (fifo_full(&j->pin))
|
|
pr_debug("journal_pin full (%zu)", fifo_used(&j->pin));
|
|
}
|
|
|
|
static void journal_write_endio(struct bio *bio)
|
|
{
|
|
struct journal_write *w = bio->bi_private;
|
|
|
|
cache_set_err_on(bio->bi_status, w->c, "journal io error");
|
|
closure_put(&w->c->journal.io);
|
|
}
|
|
|
|
static void journal_write(struct closure *);
|
|
|
|
static void journal_write_done(struct closure *cl)
|
|
{
|
|
struct journal *j = container_of(cl, struct journal, io);
|
|
struct journal_write *w = (j->cur == j->w)
|
|
? &j->w[1]
|
|
: &j->w[0];
|
|
|
|
__closure_wake_up(&w->wait);
|
|
continue_at_nobarrier(cl, journal_write, system_wq);
|
|
}
|
|
|
|
static void journal_write_unlock(struct closure *cl)
|
|
{
|
|
struct cache_set *c = container_of(cl, struct cache_set, journal.io);
|
|
|
|
c->journal.io_in_flight = 0;
|
|
spin_unlock(&c->journal.lock);
|
|
}
|
|
|
|
static void journal_write_unlocked(struct closure *cl)
|
|
__releases(c->journal.lock)
|
|
{
|
|
struct cache_set *c = container_of(cl, struct cache_set, journal.io);
|
|
struct cache *ca;
|
|
struct journal_write *w = c->journal.cur;
|
|
struct bkey *k = &c->journal.key;
|
|
unsigned i, sectors = set_blocks(w->data, block_bytes(c)) *
|
|
c->sb.block_size;
|
|
|
|
struct bio *bio;
|
|
struct bio_list list;
|
|
bio_list_init(&list);
|
|
|
|
if (!w->need_write) {
|
|
closure_return_with_destructor(cl, journal_write_unlock);
|
|
return;
|
|
} else if (journal_full(&c->journal)) {
|
|
journal_reclaim(c);
|
|
spin_unlock(&c->journal.lock);
|
|
|
|
btree_flush_write(c);
|
|
continue_at(cl, journal_write, system_wq);
|
|
return;
|
|
}
|
|
|
|
c->journal.blocks_free -= set_blocks(w->data, block_bytes(c));
|
|
|
|
w->data->btree_level = c->root->level;
|
|
|
|
bkey_copy(&w->data->btree_root, &c->root->key);
|
|
bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
|
|
|
|
for_each_cache(ca, c, i)
|
|
w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
|
|
|
|
w->data->magic = jset_magic(&c->sb);
|
|
w->data->version = BCACHE_JSET_VERSION;
|
|
w->data->last_seq = last_seq(&c->journal);
|
|
w->data->csum = csum_set(w->data);
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++) {
|
|
ca = PTR_CACHE(c, k, i);
|
|
bio = &ca->journal.bio;
|
|
|
|
atomic_long_add(sectors, &ca->meta_sectors_written);
|
|
|
|
bio_reset(bio);
|
|
bio->bi_iter.bi_sector = PTR_OFFSET(k, i);
|
|
bio_set_dev(bio, ca->bdev);
|
|
bio->bi_iter.bi_size = sectors << 9;
|
|
|
|
bio->bi_end_io = journal_write_endio;
|
|
bio->bi_private = w;
|
|
bio_set_op_attrs(bio, REQ_OP_WRITE,
|
|
REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA);
|
|
bch_bio_map(bio, w->data);
|
|
|
|
trace_bcache_journal_write(bio);
|
|
bio_list_add(&list, bio);
|
|
|
|
SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
|
|
|
|
ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
|
|
}
|
|
|
|
atomic_dec_bug(&fifo_back(&c->journal.pin));
|
|
bch_journal_next(&c->journal);
|
|
journal_reclaim(c);
|
|
|
|
spin_unlock(&c->journal.lock);
|
|
|
|
while ((bio = bio_list_pop(&list)))
|
|
closure_bio_submit(bio, cl);
|
|
|
|
continue_at(cl, journal_write_done, NULL);
|
|
}
|
|
|
|
static void journal_write(struct closure *cl)
|
|
{
|
|
struct cache_set *c = container_of(cl, struct cache_set, journal.io);
|
|
|
|
spin_lock(&c->journal.lock);
|
|
journal_write_unlocked(cl);
|
|
}
|
|
|
|
static void journal_try_write(struct cache_set *c)
|
|
__releases(c->journal.lock)
|
|
{
|
|
struct closure *cl = &c->journal.io;
|
|
struct journal_write *w = c->journal.cur;
|
|
|
|
w->need_write = true;
|
|
|
|
if (!c->journal.io_in_flight) {
|
|
c->journal.io_in_flight = 1;
|
|
closure_call(cl, journal_write_unlocked, NULL, &c->cl);
|
|
} else {
|
|
spin_unlock(&c->journal.lock);
|
|
}
|
|
}
|
|
|
|
static struct journal_write *journal_wait_for_write(struct cache_set *c,
|
|
unsigned nkeys)
|
|
{
|
|
size_t sectors;
|
|
struct closure cl;
|
|
bool wait = false;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
spin_lock(&c->journal.lock);
|
|
|
|
while (1) {
|
|
struct journal_write *w = c->journal.cur;
|
|
|
|
sectors = __set_blocks(w->data, w->data->keys + nkeys,
|
|
block_bytes(c)) * c->sb.block_size;
|
|
|
|
if (sectors <= min_t(size_t,
|
|
c->journal.blocks_free * c->sb.block_size,
|
|
PAGE_SECTORS << JSET_BITS))
|
|
return w;
|
|
|
|
if (wait)
|
|
closure_wait(&c->journal.wait, &cl);
|
|
|
|
if (!journal_full(&c->journal)) {
|
|
if (wait)
|
|
trace_bcache_journal_entry_full(c);
|
|
|
|
/*
|
|
* XXX: If we were inserting so many keys that they
|
|
* won't fit in an _empty_ journal write, we'll
|
|
* deadlock. For now, handle this in
|
|
* bch_keylist_realloc() - but something to think about.
|
|
*/
|
|
BUG_ON(!w->data->keys);
|
|
|
|
journal_try_write(c); /* unlocks */
|
|
} else {
|
|
if (wait)
|
|
trace_bcache_journal_full(c);
|
|
|
|
journal_reclaim(c);
|
|
spin_unlock(&c->journal.lock);
|
|
|
|
btree_flush_write(c);
|
|
}
|
|
|
|
closure_sync(&cl);
|
|
spin_lock(&c->journal.lock);
|
|
wait = true;
|
|
}
|
|
}
|
|
|
|
static void journal_write_work(struct work_struct *work)
|
|
{
|
|
struct cache_set *c = container_of(to_delayed_work(work),
|
|
struct cache_set,
|
|
journal.work);
|
|
spin_lock(&c->journal.lock);
|
|
if (c->journal.cur->dirty)
|
|
journal_try_write(c);
|
|
else
|
|
spin_unlock(&c->journal.lock);
|
|
}
|
|
|
|
/*
|
|
* Entry point to the journalling code - bio_insert() and btree_invalidate()
|
|
* pass bch_journal() a list of keys to be journalled, and then
|
|
* bch_journal() hands those same keys off to btree_insert_async()
|
|
*/
|
|
|
|
atomic_t *bch_journal(struct cache_set *c,
|
|
struct keylist *keys,
|
|
struct closure *parent)
|
|
{
|
|
struct journal_write *w;
|
|
atomic_t *ret;
|
|
|
|
if (!CACHE_SYNC(&c->sb))
|
|
return NULL;
|
|
|
|
w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
|
|
|
|
memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
|
|
w->data->keys += bch_keylist_nkeys(keys);
|
|
|
|
ret = &fifo_back(&c->journal.pin);
|
|
atomic_inc(ret);
|
|
|
|
if (parent) {
|
|
closure_wait(&w->wait, parent);
|
|
journal_try_write(c);
|
|
} else if (!w->dirty) {
|
|
w->dirty = true;
|
|
schedule_delayed_work(&c->journal.work,
|
|
msecs_to_jiffies(c->journal_delay_ms));
|
|
spin_unlock(&c->journal.lock);
|
|
} else {
|
|
spin_unlock(&c->journal.lock);
|
|
}
|
|
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch_journal_meta(struct cache_set *c, struct closure *cl)
|
|
{
|
|
struct keylist keys;
|
|
atomic_t *ref;
|
|
|
|
bch_keylist_init(&keys);
|
|
|
|
ref = bch_journal(c, &keys, cl);
|
|
if (ref)
|
|
atomic_dec_bug(ref);
|
|
}
|
|
|
|
void bch_journal_free(struct cache_set *c)
|
|
{
|
|
free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
|
|
free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
|
|
free_fifo(&c->journal.pin);
|
|
}
|
|
|
|
int bch_journal_alloc(struct cache_set *c)
|
|
{
|
|
struct journal *j = &c->journal;
|
|
|
|
spin_lock_init(&j->lock);
|
|
INIT_DELAYED_WORK(&j->work, journal_write_work);
|
|
|
|
c->journal_delay_ms = 100;
|
|
|
|
j->w[0].c = c;
|
|
j->w[1].c = c;
|
|
|
|
if (!(init_heap(&c->flush_btree, 128, GFP_KERNEL)) ||
|
|
!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
|
|
!(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) ||
|
|
!(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|