8c576912e4
Add NAND IRQ mapping for XLP9xx processor. Signed-off-by: Subhendu Sekhar Behera <sbehera@broadcom.com> Signed-off-by: Jayachandran C <jchandra@broadcom.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/10820/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
509 lines
12 KiB
C
509 lines
12 KiB
C
/*
|
|
* Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
|
|
* reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the NetLogic
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
|
|
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/time.h>
|
|
|
|
#include <asm/netlogic/common.h>
|
|
#include <asm/netlogic/haldefs.h>
|
|
#include <asm/netlogic/xlp-hal/iomap.h>
|
|
#include <asm/netlogic/xlp-hal/xlp.h>
|
|
#include <asm/netlogic/xlp-hal/bridge.h>
|
|
#include <asm/netlogic/xlp-hal/pic.h>
|
|
#include <asm/netlogic/xlp-hal/sys.h>
|
|
|
|
/* Main initialization */
|
|
void nlm_node_init(int node)
|
|
{
|
|
struct nlm_soc_info *nodep;
|
|
|
|
nodep = nlm_get_node(node);
|
|
if (node == 0)
|
|
nodep->coremask = 1; /* node 0, boot cpu */
|
|
nodep->sysbase = nlm_get_sys_regbase(node);
|
|
nodep->picbase = nlm_get_pic_regbase(node);
|
|
nodep->ebase = read_c0_ebase() & (~((1 << 12) - 1));
|
|
if (cpu_is_xlp9xx())
|
|
nodep->socbus = xlp9xx_get_socbus(node);
|
|
else
|
|
nodep->socbus = 0;
|
|
spin_lock_init(&nodep->piclock);
|
|
}
|
|
|
|
static int xlp9xx_irq_to_irt(int irq)
|
|
{
|
|
switch (irq) {
|
|
case PIC_GPIO_IRQ:
|
|
return 12;
|
|
case PIC_I2C_0_IRQ:
|
|
return 125;
|
|
case PIC_I2C_1_IRQ:
|
|
return 126;
|
|
case PIC_I2C_2_IRQ:
|
|
return 127;
|
|
case PIC_I2C_3_IRQ:
|
|
return 128;
|
|
case PIC_9XX_XHCI_0_IRQ:
|
|
return 114;
|
|
case PIC_9XX_XHCI_1_IRQ:
|
|
return 115;
|
|
case PIC_9XX_XHCI_2_IRQ:
|
|
return 116;
|
|
case PIC_UART_0_IRQ:
|
|
return 133;
|
|
case PIC_UART_1_IRQ:
|
|
return 134;
|
|
case PIC_SATA_IRQ:
|
|
return 143;
|
|
case PIC_NAND_IRQ:
|
|
return 151;
|
|
case PIC_SPI_IRQ:
|
|
return 152;
|
|
case PIC_MMC_IRQ:
|
|
return 153;
|
|
case PIC_PCIE_LINK_LEGACY_IRQ(0):
|
|
case PIC_PCIE_LINK_LEGACY_IRQ(1):
|
|
case PIC_PCIE_LINK_LEGACY_IRQ(2):
|
|
case PIC_PCIE_LINK_LEGACY_IRQ(3):
|
|
return 191 + irq - PIC_PCIE_LINK_LEGACY_IRQ_BASE;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int xlp_irq_to_irt(int irq)
|
|
{
|
|
uint64_t pcibase;
|
|
int devoff, irt;
|
|
|
|
devoff = 0;
|
|
switch (irq) {
|
|
case PIC_UART_0_IRQ:
|
|
devoff = XLP_IO_UART0_OFFSET(0);
|
|
break;
|
|
case PIC_UART_1_IRQ:
|
|
devoff = XLP_IO_UART1_OFFSET(0);
|
|
break;
|
|
case PIC_MMC_IRQ:
|
|
devoff = XLP_IO_MMC_OFFSET(0);
|
|
break;
|
|
case PIC_I2C_0_IRQ: /* I2C will be fixed up */
|
|
case PIC_I2C_1_IRQ:
|
|
case PIC_I2C_2_IRQ:
|
|
case PIC_I2C_3_IRQ:
|
|
if (cpu_is_xlpii())
|
|
devoff = XLP2XX_IO_I2C_OFFSET(0);
|
|
else
|
|
devoff = XLP_IO_I2C0_OFFSET(0);
|
|
break;
|
|
case PIC_SATA_IRQ:
|
|
devoff = XLP_IO_SATA_OFFSET(0);
|
|
break;
|
|
case PIC_GPIO_IRQ:
|
|
devoff = XLP_IO_GPIO_OFFSET(0);
|
|
break;
|
|
case PIC_NAND_IRQ:
|
|
devoff = XLP_IO_NAND_OFFSET(0);
|
|
break;
|
|
case PIC_SPI_IRQ:
|
|
devoff = XLP_IO_SPI_OFFSET(0);
|
|
break;
|
|
default:
|
|
if (cpu_is_xlpii()) {
|
|
switch (irq) {
|
|
/* XLP2XX has three XHCI USB controller */
|
|
case PIC_2XX_XHCI_0_IRQ:
|
|
devoff = XLP2XX_IO_USB_XHCI0_OFFSET(0);
|
|
break;
|
|
case PIC_2XX_XHCI_1_IRQ:
|
|
devoff = XLP2XX_IO_USB_XHCI1_OFFSET(0);
|
|
break;
|
|
case PIC_2XX_XHCI_2_IRQ:
|
|
devoff = XLP2XX_IO_USB_XHCI2_OFFSET(0);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (irq) {
|
|
case PIC_EHCI_0_IRQ:
|
|
devoff = XLP_IO_USB_EHCI0_OFFSET(0);
|
|
break;
|
|
case PIC_EHCI_1_IRQ:
|
|
devoff = XLP_IO_USB_EHCI1_OFFSET(0);
|
|
break;
|
|
case PIC_OHCI_0_IRQ:
|
|
devoff = XLP_IO_USB_OHCI0_OFFSET(0);
|
|
break;
|
|
case PIC_OHCI_1_IRQ:
|
|
devoff = XLP_IO_USB_OHCI1_OFFSET(0);
|
|
break;
|
|
case PIC_OHCI_2_IRQ:
|
|
devoff = XLP_IO_USB_OHCI2_OFFSET(0);
|
|
break;
|
|
case PIC_OHCI_3_IRQ:
|
|
devoff = XLP_IO_USB_OHCI3_OFFSET(0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (devoff != 0) {
|
|
uint32_t val;
|
|
|
|
pcibase = nlm_pcicfg_base(devoff);
|
|
val = nlm_read_reg(pcibase, XLP_PCI_IRTINFO_REG);
|
|
if (val == 0xffffffff) {
|
|
irt = -1;
|
|
} else {
|
|
irt = val & 0xffff;
|
|
/* HW weirdness, I2C IRT entry has to be fixed up */
|
|
switch (irq) {
|
|
case PIC_I2C_1_IRQ:
|
|
irt = irt + 1; break;
|
|
case PIC_I2C_2_IRQ:
|
|
irt = irt + 2; break;
|
|
case PIC_I2C_3_IRQ:
|
|
irt = irt + 3; break;
|
|
}
|
|
}
|
|
} else if (irq >= PIC_PCIE_LINK_LEGACY_IRQ(0) &&
|
|
irq <= PIC_PCIE_LINK_LEGACY_IRQ(3)) {
|
|
/* HW bug, PCI IRT entries are bad on early silicon, fix */
|
|
irt = PIC_IRT_PCIE_LINK_INDEX(irq -
|
|
PIC_PCIE_LINK_LEGACY_IRQ_BASE);
|
|
} else {
|
|
irt = -1;
|
|
}
|
|
return irt;
|
|
}
|
|
|
|
int nlm_irq_to_irt(int irq)
|
|
{
|
|
/* return -2 for irqs without 1-1 mapping */
|
|
if (irq >= PIC_PCIE_LINK_MSI_IRQ(0) && irq <= PIC_PCIE_LINK_MSI_IRQ(3))
|
|
return -2;
|
|
if (irq >= PIC_PCIE_MSIX_IRQ(0) && irq <= PIC_PCIE_MSIX_IRQ(3))
|
|
return -2;
|
|
|
|
if (cpu_is_xlp9xx())
|
|
return xlp9xx_irq_to_irt(irq);
|
|
else
|
|
return xlp_irq_to_irt(irq);
|
|
}
|
|
|
|
static unsigned int nlm_xlp2_get_core_frequency(int node, int core)
|
|
{
|
|
unsigned int pll_post_div, ctrl_val0, ctrl_val1, denom;
|
|
uint64_t num, sysbase, clockbase;
|
|
|
|
if (cpu_is_xlp9xx()) {
|
|
clockbase = nlm_get_clock_regbase(node);
|
|
ctrl_val0 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_CPU_PLL_CTRL0(core));
|
|
ctrl_val1 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_CPU_PLL_CTRL1(core));
|
|
} else {
|
|
sysbase = nlm_get_node(node)->sysbase;
|
|
ctrl_val0 = nlm_read_sys_reg(sysbase,
|
|
SYS_CPU_PLL_CTRL0(core));
|
|
ctrl_val1 = nlm_read_sys_reg(sysbase,
|
|
SYS_CPU_PLL_CTRL1(core));
|
|
}
|
|
|
|
/* Find PLL post divider value */
|
|
switch ((ctrl_val0 >> 24) & 0x7) {
|
|
case 1:
|
|
pll_post_div = 2;
|
|
break;
|
|
case 3:
|
|
pll_post_div = 4;
|
|
break;
|
|
case 7:
|
|
pll_post_div = 8;
|
|
break;
|
|
case 6:
|
|
pll_post_div = 16;
|
|
break;
|
|
case 0:
|
|
default:
|
|
pll_post_div = 1;
|
|
break;
|
|
}
|
|
|
|
num = 1000000ULL * (400 * 3 + 100 * (ctrl_val1 & 0x3f));
|
|
denom = 3 * pll_post_div;
|
|
do_div(num, denom);
|
|
|
|
return (unsigned int)num;
|
|
}
|
|
|
|
static unsigned int nlm_xlp_get_core_frequency(int node, int core)
|
|
{
|
|
unsigned int pll_divf, pll_divr, dfs_div, ext_div;
|
|
unsigned int rstval, dfsval, denom;
|
|
uint64_t num, sysbase;
|
|
|
|
sysbase = nlm_get_node(node)->sysbase;
|
|
rstval = nlm_read_sys_reg(sysbase, SYS_POWER_ON_RESET_CFG);
|
|
dfsval = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIV_VALUE);
|
|
pll_divf = ((rstval >> 10) & 0x7f) + 1;
|
|
pll_divr = ((rstval >> 8) & 0x3) + 1;
|
|
ext_div = ((rstval >> 30) & 0x3) + 1;
|
|
dfs_div = ((dfsval >> (core * 4)) & 0xf) + 1;
|
|
|
|
num = 800000000ULL * pll_divf;
|
|
denom = 3 * pll_divr * ext_div * dfs_div;
|
|
do_div(num, denom);
|
|
|
|
return (unsigned int)num;
|
|
}
|
|
|
|
unsigned int nlm_get_core_frequency(int node, int core)
|
|
{
|
|
if (cpu_is_xlpii())
|
|
return nlm_xlp2_get_core_frequency(node, core);
|
|
else
|
|
return nlm_xlp_get_core_frequency(node, core);
|
|
}
|
|
|
|
/*
|
|
* Calculate PIC frequency from PLL registers.
|
|
* freq_out = (ref_freq/2 * (6 + ctrl2[7:0]) + ctrl2[20:8]/2^13) /
|
|
* ((2^ctrl0[7:5]) * Table(ctrl0[26:24]))
|
|
*/
|
|
static unsigned int nlm_xlp2_get_pic_frequency(int node)
|
|
{
|
|
u32 ctrl_val0, ctrl_val2, vco_post_div, pll_post_div, cpu_xlp9xx;
|
|
u32 mdiv, fdiv, pll_out_freq_den, reg_select, ref_div, pic_div;
|
|
u64 sysbase, pll_out_freq_num, ref_clk_select, clockbase, ref_clk;
|
|
|
|
sysbase = nlm_get_node(node)->sysbase;
|
|
clockbase = nlm_get_clock_regbase(node);
|
|
cpu_xlp9xx = cpu_is_xlp9xx();
|
|
|
|
/* Find ref_clk_base */
|
|
if (cpu_xlp9xx)
|
|
ref_clk_select = (nlm_read_sys_reg(sysbase,
|
|
SYS_9XX_POWER_ON_RESET_CFG) >> 18) & 0x3;
|
|
else
|
|
ref_clk_select = (nlm_read_sys_reg(sysbase,
|
|
SYS_POWER_ON_RESET_CFG) >> 18) & 0x3;
|
|
switch (ref_clk_select) {
|
|
case 0:
|
|
ref_clk = 200000000ULL;
|
|
ref_div = 3;
|
|
break;
|
|
case 1:
|
|
ref_clk = 100000000ULL;
|
|
ref_div = 1;
|
|
break;
|
|
case 2:
|
|
ref_clk = 125000000ULL;
|
|
ref_div = 1;
|
|
break;
|
|
case 3:
|
|
ref_clk = 400000000ULL;
|
|
ref_div = 3;
|
|
break;
|
|
}
|
|
|
|
/* Find the clock source PLL device for PIC */
|
|
if (cpu_xlp9xx) {
|
|
reg_select = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_CLK_DEV_SEL_REG) & 0x3;
|
|
switch (reg_select) {
|
|
case 0:
|
|
ctrl_val0 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL0);
|
|
ctrl_val2 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL2);
|
|
break;
|
|
case 1:
|
|
ctrl_val0 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL0_DEVX(0));
|
|
ctrl_val2 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL2_DEVX(0));
|
|
break;
|
|
case 2:
|
|
ctrl_val0 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL0_DEVX(1));
|
|
ctrl_val2 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL2_DEVX(1));
|
|
break;
|
|
case 3:
|
|
ctrl_val0 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL0_DEVX(2));
|
|
ctrl_val2 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL2_DEVX(2));
|
|
break;
|
|
}
|
|
} else {
|
|
reg_select = (nlm_read_sys_reg(sysbase,
|
|
SYS_CLK_DEV_SEL_REG) >> 22) & 0x3;
|
|
switch (reg_select) {
|
|
case 0:
|
|
ctrl_val0 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL0);
|
|
ctrl_val2 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL2);
|
|
break;
|
|
case 1:
|
|
ctrl_val0 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL0_DEVX(0));
|
|
ctrl_val2 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL2_DEVX(0));
|
|
break;
|
|
case 2:
|
|
ctrl_val0 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL0_DEVX(1));
|
|
ctrl_val2 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL2_DEVX(1));
|
|
break;
|
|
case 3:
|
|
ctrl_val0 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL0_DEVX(2));
|
|
ctrl_val2 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL2_DEVX(2));
|
|
break;
|
|
}
|
|
}
|
|
|
|
vco_post_div = (ctrl_val0 >> 5) & 0x7;
|
|
pll_post_div = (ctrl_val0 >> 24) & 0x7;
|
|
mdiv = ctrl_val2 & 0xff;
|
|
fdiv = (ctrl_val2 >> 8) & 0x1fff;
|
|
|
|
/* Find PLL post divider value */
|
|
switch (pll_post_div) {
|
|
case 1:
|
|
pll_post_div = 2;
|
|
break;
|
|
case 3:
|
|
pll_post_div = 4;
|
|
break;
|
|
case 7:
|
|
pll_post_div = 8;
|
|
break;
|
|
case 6:
|
|
pll_post_div = 16;
|
|
break;
|
|
case 0:
|
|
default:
|
|
pll_post_div = 1;
|
|
break;
|
|
}
|
|
|
|
fdiv = fdiv/(1 << 13);
|
|
pll_out_freq_num = ((ref_clk >> 1) * (6 + mdiv)) + fdiv;
|
|
pll_out_freq_den = (1 << vco_post_div) * pll_post_div * ref_div;
|
|
|
|
if (pll_out_freq_den > 0)
|
|
do_div(pll_out_freq_num, pll_out_freq_den);
|
|
|
|
/* PIC post divider, which happens after PLL */
|
|
if (cpu_xlp9xx)
|
|
pic_div = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_CLK_DEV_DIV_REG) & 0x3;
|
|
else
|
|
pic_div = (nlm_read_sys_reg(sysbase,
|
|
SYS_CLK_DEV_DIV_REG) >> 22) & 0x3;
|
|
do_div(pll_out_freq_num, 1 << pic_div);
|
|
|
|
return pll_out_freq_num;
|
|
}
|
|
|
|
unsigned int nlm_get_pic_frequency(int node)
|
|
{
|
|
if (cpu_is_xlpii())
|
|
return nlm_xlp2_get_pic_frequency(node);
|
|
else
|
|
return 133333333;
|
|
}
|
|
|
|
unsigned int nlm_get_cpu_frequency(void)
|
|
{
|
|
return nlm_get_core_frequency(0, 0);
|
|
}
|
|
|
|
/*
|
|
* Fills upto 8 pairs of entries containing the DRAM map of a node
|
|
* if node < 0, get dram map for all nodes
|
|
*/
|
|
int nlm_get_dram_map(int node, uint64_t *dram_map, int nentries)
|
|
{
|
|
uint64_t bridgebase, base, lim;
|
|
uint32_t val;
|
|
unsigned int barreg, limreg, xlatreg;
|
|
int i, n, rv;
|
|
|
|
/* Look only at mapping on Node 0, we don't handle crazy configs */
|
|
bridgebase = nlm_get_bridge_regbase(0);
|
|
rv = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
if (rv + 1 >= nentries)
|
|
break;
|
|
if (cpu_is_xlp9xx()) {
|
|
barreg = BRIDGE_9XX_DRAM_BAR(i);
|
|
limreg = BRIDGE_9XX_DRAM_LIMIT(i);
|
|
xlatreg = BRIDGE_9XX_DRAM_NODE_TRANSLN(i);
|
|
} else {
|
|
barreg = BRIDGE_DRAM_BAR(i);
|
|
limreg = BRIDGE_DRAM_LIMIT(i);
|
|
xlatreg = BRIDGE_DRAM_NODE_TRANSLN(i);
|
|
}
|
|
if (node >= 0) {
|
|
/* node specified, get node mapping of BAR */
|
|
val = nlm_read_bridge_reg(bridgebase, xlatreg);
|
|
n = (val >> 1) & 0x3;
|
|
if (n != node)
|
|
continue;
|
|
}
|
|
val = nlm_read_bridge_reg(bridgebase, barreg);
|
|
val = (val >> 12) & 0xfffff;
|
|
base = (uint64_t) val << 20;
|
|
val = nlm_read_bridge_reg(bridgebase, limreg);
|
|
val = (val >> 12) & 0xfffff;
|
|
if (val == 0) /* BAR not used */
|
|
continue;
|
|
lim = ((uint64_t)val + 1) << 20;
|
|
dram_map[rv] = base;
|
|
dram_map[rv + 1] = lim;
|
|
rv += 2;
|
|
}
|
|
return rv;
|
|
}
|