linux/drivers/usb/gadget/function/u_ether.c
Lorenzo Colitti 63d152149b usb: gadget: u_ether: support configuring interface names.
This patch allows the administrator to configure the interface
name of a function using u_ether (e.g., eem, ncm, rndis).

Currently, all such interfaces, regardless of function type, are
always called usb0, usb1, etc. This makes it very cumbersome to
use more than one such type at a time, because userspace cannnot
easily tell the interfaces apart and apply the right
configuration to each one. Interface renaming in userspace based
on driver doesn't help, because the interfaces all have the same
driver. Without this patch, doing this require hacks/workarounds
such as setting fixed MAC addresses on the functions, and then
renaming by MAC address, or scraping configfs after each
interface is created to find out what it is.

Setting the interface name is done by writing to the same
"ifname" configfs attribute that reports the interface name after
the function is bound. The write must contain an interface
pattern such as "usb%d" (which will cause the net core to pick
the next available interface name starting with "usb").
This patch does not allow writing an exact interface name (as
opposed to a pattern) because if the interface already exists at
bind time, the bind will fail and the whole gadget will fail to
activate. This could be allowed in a future patch.

For compatibility with current userspace, when reading an ifname
that has not currently been set, the result is still "(unnamed
net_device)". Once a write to ifname happens, then reading ifname
will return whatever was last written.

Tested by configuring an rndis function and an ncm function on
the same gadget, and writing "rndis%d" to ifname on the rndis
function and "ncm%d" to ifname on the ncm function. When the
gadget was bound, the rndis interface was rndis0 and the ncm
interface was ncm0.

Signed-off-by: Lorenzo Colitti <lorenzo@google.com>
Link: https://lore.kernel.org/r/20210113234222.3272933-1-lorenzo@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-15 16:08:53 +01:00

1215 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* u_ether.c -- Ethernet-over-USB link layer utilities for Gadget stack
*
* Copyright (C) 2003-2005,2008 David Brownell
* Copyright (C) 2003-2004 Robert Schwebel, Benedikt Spranger
* Copyright (C) 2008 Nokia Corporation
*/
/* #define VERBOSE_DEBUG */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/gfp.h>
#include <linux/device.h>
#include <linux/ctype.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include "u_ether.h"
/*
* This component encapsulates the Ethernet link glue needed to provide
* one (!) network link through the USB gadget stack, normally "usb0".
*
* The control and data models are handled by the function driver which
* connects to this code; such as CDC Ethernet (ECM or EEM),
* "CDC Subset", or RNDIS. That includes all descriptor and endpoint
* management.
*
* Link level addressing is handled by this component using module
* parameters; if no such parameters are provided, random link level
* addresses are used. Each end of the link uses one address. The
* host end address is exported in various ways, and is often recorded
* in configuration databases.
*
* The driver which assembles each configuration using such a link is
* responsible for ensuring that each configuration includes at most one
* instance of is network link. (The network layer provides ways for
* this single "physical" link to be used by multiple virtual links.)
*/
#define UETH__VERSION "29-May-2008"
/* Experiments show that both Linux and Windows hosts allow up to 16k
* frame sizes. Set the max MTU size to 15k+52 to prevent allocating 32k
* blocks and still have efficient handling. */
#define GETHER_MAX_MTU_SIZE 15412
#define GETHER_MAX_ETH_FRAME_LEN (GETHER_MAX_MTU_SIZE + ETH_HLEN)
struct eth_dev {
/* lock is held while accessing port_usb
*/
spinlock_t lock;
struct gether *port_usb;
struct net_device *net;
struct usb_gadget *gadget;
spinlock_t req_lock; /* guard {rx,tx}_reqs */
struct list_head tx_reqs, rx_reqs;
atomic_t tx_qlen;
struct sk_buff_head rx_frames;
unsigned qmult;
unsigned header_len;
struct sk_buff *(*wrap)(struct gether *, struct sk_buff *skb);
int (*unwrap)(struct gether *,
struct sk_buff *skb,
struct sk_buff_head *list);
struct work_struct work;
unsigned long todo;
#define WORK_RX_MEMORY 0
bool zlp;
bool no_skb_reserve;
bool ifname_set;
u8 host_mac[ETH_ALEN];
u8 dev_mac[ETH_ALEN];
};
/*-------------------------------------------------------------------------*/
#define RX_EXTRA 20 /* bytes guarding against rx overflows */
#define DEFAULT_QLEN 2 /* double buffering by default */
/* for dual-speed hardware, use deeper queues at high/super speed */
static inline int qlen(struct usb_gadget *gadget, unsigned qmult)
{
if (gadget_is_dualspeed(gadget) && (gadget->speed == USB_SPEED_HIGH ||
gadget->speed >= USB_SPEED_SUPER))
return qmult * DEFAULT_QLEN;
else
return DEFAULT_QLEN;
}
/*-------------------------------------------------------------------------*/
/* REVISIT there must be a better way than having two sets
* of debug calls ...
*/
#undef DBG
#undef VDBG
#undef ERROR
#undef INFO
#define xprintk(d, level, fmt, args...) \
printk(level "%s: " fmt , (d)->net->name , ## args)
#ifdef DEBUG
#undef DEBUG
#define DBG(dev, fmt, args...) \
xprintk(dev , KERN_DEBUG , fmt , ## args)
#else
#define DBG(dev, fmt, args...) \
do { } while (0)
#endif /* DEBUG */
#ifdef VERBOSE_DEBUG
#define VDBG DBG
#else
#define VDBG(dev, fmt, args...) \
do { } while (0)
#endif /* DEBUG */
#define ERROR(dev, fmt, args...) \
xprintk(dev , KERN_ERR , fmt , ## args)
#define INFO(dev, fmt, args...) \
xprintk(dev , KERN_INFO , fmt , ## args)
/*-------------------------------------------------------------------------*/
/* NETWORK DRIVER HOOKUP (to the layer above this driver) */
static void eth_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *p)
{
struct eth_dev *dev = netdev_priv(net);
strlcpy(p->driver, "g_ether", sizeof(p->driver));
strlcpy(p->version, UETH__VERSION, sizeof(p->version));
strlcpy(p->fw_version, dev->gadget->name, sizeof(p->fw_version));
strlcpy(p->bus_info, dev_name(&dev->gadget->dev), sizeof(p->bus_info));
}
/* REVISIT can also support:
* - WOL (by tracking suspends and issuing remote wakeup)
* - msglevel (implies updated messaging)
* - ... probably more ethtool ops
*/
static const struct ethtool_ops ops = {
.get_drvinfo = eth_get_drvinfo,
.get_link = ethtool_op_get_link,
};
static void defer_kevent(struct eth_dev *dev, int flag)
{
if (test_and_set_bit(flag, &dev->todo))
return;
if (!schedule_work(&dev->work))
ERROR(dev, "kevent %d may have been dropped\n", flag);
else
DBG(dev, "kevent %d scheduled\n", flag);
}
static void rx_complete(struct usb_ep *ep, struct usb_request *req);
static int
rx_submit(struct eth_dev *dev, struct usb_request *req, gfp_t gfp_flags)
{
struct usb_gadget *g = dev->gadget;
struct sk_buff *skb;
int retval = -ENOMEM;
size_t size = 0;
struct usb_ep *out;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb)
out = dev->port_usb->out_ep;
else
out = NULL;
if (!out)
{
spin_unlock_irqrestore(&dev->lock, flags);
return -ENOTCONN;
}
/* Padding up to RX_EXTRA handles minor disagreements with host.
* Normally we use the USB "terminate on short read" convention;
* so allow up to (N*maxpacket), since that memory is normally
* already allocated. Some hardware doesn't deal well with short
* reads (e.g. DMA must be N*maxpacket), so for now don't trim a
* byte off the end (to force hardware errors on overflow).
*
* RNDIS uses internal framing, and explicitly allows senders to
* pad to end-of-packet. That's potentially nice for speed, but
* means receivers can't recover lost synch on their own (because
* new packets don't only start after a short RX).
*/
size += sizeof(struct ethhdr) + dev->net->mtu + RX_EXTRA;
size += dev->port_usb->header_len;
if (g->quirk_ep_out_aligned_size) {
size += out->maxpacket - 1;
size -= size % out->maxpacket;
}
if (dev->port_usb->is_fixed)
size = max_t(size_t, size, dev->port_usb->fixed_out_len);
spin_unlock_irqrestore(&dev->lock, flags);
skb = __netdev_alloc_skb(dev->net, size + NET_IP_ALIGN, gfp_flags);
if (skb == NULL) {
DBG(dev, "no rx skb\n");
goto enomem;
}
/* Some platforms perform better when IP packets are aligned,
* but on at least one, checksumming fails otherwise. Note:
* RNDIS headers involve variable numbers of LE32 values.
*/
if (likely(!dev->no_skb_reserve))
skb_reserve(skb, NET_IP_ALIGN);
req->buf = skb->data;
req->length = size;
req->complete = rx_complete;
req->context = skb;
retval = usb_ep_queue(out, req, gfp_flags);
if (retval == -ENOMEM)
enomem:
defer_kevent(dev, WORK_RX_MEMORY);
if (retval) {
DBG(dev, "rx submit --> %d\n", retval);
if (skb)
dev_kfree_skb_any(skb);
spin_lock_irqsave(&dev->req_lock, flags);
list_add(&req->list, &dev->rx_reqs);
spin_unlock_irqrestore(&dev->req_lock, flags);
}
return retval;
}
static void rx_complete(struct usb_ep *ep, struct usb_request *req)
{
struct sk_buff *skb = req->context, *skb2;
struct eth_dev *dev = ep->driver_data;
int status = req->status;
switch (status) {
/* normal completion */
case 0:
skb_put(skb, req->actual);
if (dev->unwrap) {
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb) {
status = dev->unwrap(dev->port_usb,
skb,
&dev->rx_frames);
} else {
dev_kfree_skb_any(skb);
status = -ENOTCONN;
}
spin_unlock_irqrestore(&dev->lock, flags);
} else {
skb_queue_tail(&dev->rx_frames, skb);
}
skb = NULL;
skb2 = skb_dequeue(&dev->rx_frames);
while (skb2) {
if (status < 0
|| ETH_HLEN > skb2->len
|| skb2->len > GETHER_MAX_ETH_FRAME_LEN) {
dev->net->stats.rx_errors++;
dev->net->stats.rx_length_errors++;
DBG(dev, "rx length %d\n", skb2->len);
dev_kfree_skb_any(skb2);
goto next_frame;
}
skb2->protocol = eth_type_trans(skb2, dev->net);
dev->net->stats.rx_packets++;
dev->net->stats.rx_bytes += skb2->len;
/* no buffer copies needed, unless hardware can't
* use skb buffers.
*/
status = netif_rx(skb2);
next_frame:
skb2 = skb_dequeue(&dev->rx_frames);
}
break;
/* software-driven interface shutdown */
case -ECONNRESET: /* unlink */
case -ESHUTDOWN: /* disconnect etc */
VDBG(dev, "rx shutdown, code %d\n", status);
goto quiesce;
/* for hardware automagic (such as pxa) */
case -ECONNABORTED: /* endpoint reset */
DBG(dev, "rx %s reset\n", ep->name);
defer_kevent(dev, WORK_RX_MEMORY);
quiesce:
dev_kfree_skb_any(skb);
goto clean;
/* data overrun */
case -EOVERFLOW:
dev->net->stats.rx_over_errors++;
fallthrough;
default:
dev->net->stats.rx_errors++;
DBG(dev, "rx status %d\n", status);
break;
}
if (skb)
dev_kfree_skb_any(skb);
if (!netif_running(dev->net)) {
clean:
spin_lock(&dev->req_lock);
list_add(&req->list, &dev->rx_reqs);
spin_unlock(&dev->req_lock);
req = NULL;
}
if (req)
rx_submit(dev, req, GFP_ATOMIC);
}
static int prealloc(struct list_head *list, struct usb_ep *ep, unsigned n)
{
unsigned i;
struct usb_request *req;
if (!n)
return -ENOMEM;
/* queue/recycle up to N requests */
i = n;
list_for_each_entry(req, list, list) {
if (i-- == 0)
goto extra;
}
while (i--) {
req = usb_ep_alloc_request(ep, GFP_ATOMIC);
if (!req)
return list_empty(list) ? -ENOMEM : 0;
list_add(&req->list, list);
}
return 0;
extra:
/* free extras */
for (;;) {
struct list_head *next;
next = req->list.next;
list_del(&req->list);
usb_ep_free_request(ep, req);
if (next == list)
break;
req = container_of(next, struct usb_request, list);
}
return 0;
}
static int alloc_requests(struct eth_dev *dev, struct gether *link, unsigned n)
{
int status;
spin_lock(&dev->req_lock);
status = prealloc(&dev->tx_reqs, link->in_ep, n);
if (status < 0)
goto fail;
status = prealloc(&dev->rx_reqs, link->out_ep, n);
if (status < 0)
goto fail;
goto done;
fail:
DBG(dev, "can't alloc requests\n");
done:
spin_unlock(&dev->req_lock);
return status;
}
static void rx_fill(struct eth_dev *dev, gfp_t gfp_flags)
{
struct usb_request *req;
unsigned long flags;
/* fill unused rxq slots with some skb */
spin_lock_irqsave(&dev->req_lock, flags);
while (!list_empty(&dev->rx_reqs)) {
req = list_first_entry(&dev->rx_reqs, struct usb_request, list);
list_del_init(&req->list);
spin_unlock_irqrestore(&dev->req_lock, flags);
if (rx_submit(dev, req, gfp_flags) < 0) {
defer_kevent(dev, WORK_RX_MEMORY);
return;
}
spin_lock_irqsave(&dev->req_lock, flags);
}
spin_unlock_irqrestore(&dev->req_lock, flags);
}
static void eth_work(struct work_struct *work)
{
struct eth_dev *dev = container_of(work, struct eth_dev, work);
if (test_and_clear_bit(WORK_RX_MEMORY, &dev->todo)) {
if (netif_running(dev->net))
rx_fill(dev, GFP_KERNEL);
}
if (dev->todo)
DBG(dev, "work done, flags = 0x%lx\n", dev->todo);
}
static void tx_complete(struct usb_ep *ep, struct usb_request *req)
{
struct sk_buff *skb = req->context;
struct eth_dev *dev = ep->driver_data;
switch (req->status) {
default:
dev->net->stats.tx_errors++;
VDBG(dev, "tx err %d\n", req->status);
fallthrough;
case -ECONNRESET: /* unlink */
case -ESHUTDOWN: /* disconnect etc */
dev_kfree_skb_any(skb);
break;
case 0:
dev->net->stats.tx_bytes += skb->len;
dev_consume_skb_any(skb);
}
dev->net->stats.tx_packets++;
spin_lock(&dev->req_lock);
list_add(&req->list, &dev->tx_reqs);
spin_unlock(&dev->req_lock);
atomic_dec(&dev->tx_qlen);
if (netif_carrier_ok(dev->net))
netif_wake_queue(dev->net);
}
static inline int is_promisc(u16 cdc_filter)
{
return cdc_filter & USB_CDC_PACKET_TYPE_PROMISCUOUS;
}
static netdev_tx_t eth_start_xmit(struct sk_buff *skb,
struct net_device *net)
{
struct eth_dev *dev = netdev_priv(net);
int length = 0;
int retval;
struct usb_request *req = NULL;
unsigned long flags;
struct usb_ep *in;
u16 cdc_filter;
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb) {
in = dev->port_usb->in_ep;
cdc_filter = dev->port_usb->cdc_filter;
} else {
in = NULL;
cdc_filter = 0;
}
spin_unlock_irqrestore(&dev->lock, flags);
if (skb && !in) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* apply outgoing CDC or RNDIS filters */
if (skb && !is_promisc(cdc_filter)) {
u8 *dest = skb->data;
if (is_multicast_ether_addr(dest)) {
u16 type;
/* ignores USB_CDC_PACKET_TYPE_MULTICAST and host
* SET_ETHERNET_MULTICAST_FILTERS requests
*/
if (is_broadcast_ether_addr(dest))
type = USB_CDC_PACKET_TYPE_BROADCAST;
else
type = USB_CDC_PACKET_TYPE_ALL_MULTICAST;
if (!(cdc_filter & type)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
}
/* ignores USB_CDC_PACKET_TYPE_DIRECTED */
}
spin_lock_irqsave(&dev->req_lock, flags);
/*
* this freelist can be empty if an interrupt triggered disconnect()
* and reconfigured the gadget (shutting down this queue) after the
* network stack decided to xmit but before we got the spinlock.
*/
if (list_empty(&dev->tx_reqs)) {
spin_unlock_irqrestore(&dev->req_lock, flags);
return NETDEV_TX_BUSY;
}
req = list_first_entry(&dev->tx_reqs, struct usb_request, list);
list_del(&req->list);
/* temporarily stop TX queue when the freelist empties */
if (list_empty(&dev->tx_reqs))
netif_stop_queue(net);
spin_unlock_irqrestore(&dev->req_lock, flags);
/* no buffer copies needed, unless the network stack did it
* or the hardware can't use skb buffers.
* or there's not enough space for extra headers we need
*/
if (dev->wrap) {
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb)
skb = dev->wrap(dev->port_usb, skb);
spin_unlock_irqrestore(&dev->lock, flags);
if (!skb) {
/* Multi frame CDC protocols may store the frame for
* later which is not a dropped frame.
*/
if (dev->port_usb &&
dev->port_usb->supports_multi_frame)
goto multiframe;
goto drop;
}
}
length = skb->len;
req->buf = skb->data;
req->context = skb;
req->complete = tx_complete;
/* NCM requires no zlp if transfer is dwNtbInMaxSize */
if (dev->port_usb &&
dev->port_usb->is_fixed &&
length == dev->port_usb->fixed_in_len &&
(length % in->maxpacket) == 0)
req->zero = 0;
else
req->zero = 1;
/* use zlp framing on tx for strict CDC-Ether conformance,
* though any robust network rx path ignores extra padding.
* and some hardware doesn't like to write zlps.
*/
if (req->zero && !dev->zlp && (length % in->maxpacket) == 0)
length++;
req->length = length;
retval = usb_ep_queue(in, req, GFP_ATOMIC);
switch (retval) {
default:
DBG(dev, "tx queue err %d\n", retval);
break;
case 0:
netif_trans_update(net);
atomic_inc(&dev->tx_qlen);
}
if (retval) {
dev_kfree_skb_any(skb);
drop:
dev->net->stats.tx_dropped++;
multiframe:
spin_lock_irqsave(&dev->req_lock, flags);
if (list_empty(&dev->tx_reqs))
netif_start_queue(net);
list_add(&req->list, &dev->tx_reqs);
spin_unlock_irqrestore(&dev->req_lock, flags);
}
return NETDEV_TX_OK;
}
/*-------------------------------------------------------------------------*/
static void eth_start(struct eth_dev *dev, gfp_t gfp_flags)
{
DBG(dev, "%s\n", __func__);
/* fill the rx queue */
rx_fill(dev, gfp_flags);
/* and open the tx floodgates */
atomic_set(&dev->tx_qlen, 0);
netif_wake_queue(dev->net);
}
static int eth_open(struct net_device *net)
{
struct eth_dev *dev = netdev_priv(net);
struct gether *link;
DBG(dev, "%s\n", __func__);
if (netif_carrier_ok(dev->net))
eth_start(dev, GFP_KERNEL);
spin_lock_irq(&dev->lock);
link = dev->port_usb;
if (link && link->open)
link->open(link);
spin_unlock_irq(&dev->lock);
return 0;
}
static int eth_stop(struct net_device *net)
{
struct eth_dev *dev = netdev_priv(net);
unsigned long flags;
VDBG(dev, "%s\n", __func__);
netif_stop_queue(net);
DBG(dev, "stop stats: rx/tx %ld/%ld, errs %ld/%ld\n",
dev->net->stats.rx_packets, dev->net->stats.tx_packets,
dev->net->stats.rx_errors, dev->net->stats.tx_errors
);
/* ensure there are no more active requests */
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb) {
struct gether *link = dev->port_usb;
const struct usb_endpoint_descriptor *in;
const struct usb_endpoint_descriptor *out;
if (link->close)
link->close(link);
/* NOTE: we have no abort-queue primitive we could use
* to cancel all pending I/O. Instead, we disable then
* reenable the endpoints ... this idiom may leave toggle
* wrong, but that's a self-correcting error.
*
* REVISIT: we *COULD* just let the transfers complete at
* their own pace; the network stack can handle old packets.
* For the moment we leave this here, since it works.
*/
in = link->in_ep->desc;
out = link->out_ep->desc;
usb_ep_disable(link->in_ep);
usb_ep_disable(link->out_ep);
if (netif_carrier_ok(net)) {
DBG(dev, "host still using in/out endpoints\n");
link->in_ep->desc = in;
link->out_ep->desc = out;
usb_ep_enable(link->in_ep);
usb_ep_enable(link->out_ep);
}
}
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
}
/*-------------------------------------------------------------------------*/
static int get_ether_addr(const char *str, u8 *dev_addr)
{
if (str) {
unsigned i;
for (i = 0; i < 6; i++) {
unsigned char num;
if ((*str == '.') || (*str == ':'))
str++;
num = hex_to_bin(*str++) << 4;
num |= hex_to_bin(*str++);
dev_addr [i] = num;
}
if (is_valid_ether_addr(dev_addr))
return 0;
}
eth_random_addr(dev_addr);
return 1;
}
static int get_ether_addr_str(u8 dev_addr[ETH_ALEN], char *str, int len)
{
if (len < 18)
return -EINVAL;
snprintf(str, len, "%pM", dev_addr);
return 18;
}
static const struct net_device_ops eth_netdev_ops = {
.ndo_open = eth_open,
.ndo_stop = eth_stop,
.ndo_start_xmit = eth_start_xmit,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static struct device_type gadget_type = {
.name = "gadget",
};
/*
* gether_setup_name - initialize one ethernet-over-usb link
* @g: gadget to associated with these links
* @ethaddr: NULL, or a buffer in which the ethernet address of the
* host side of the link is recorded
* @netname: name for network device (for example, "usb")
* Context: may sleep
*
* This sets up the single network link that may be exported by a
* gadget driver using this framework. The link layer addresses are
* set up using module parameters.
*
* Returns an eth_dev pointer on success, or an ERR_PTR on failure.
*/
struct eth_dev *gether_setup_name(struct usb_gadget *g,
const char *dev_addr, const char *host_addr,
u8 ethaddr[ETH_ALEN], unsigned qmult, const char *netname)
{
struct eth_dev *dev;
struct net_device *net;
int status;
net = alloc_etherdev(sizeof *dev);
if (!net)
return ERR_PTR(-ENOMEM);
dev = netdev_priv(net);
spin_lock_init(&dev->lock);
spin_lock_init(&dev->req_lock);
INIT_WORK(&dev->work, eth_work);
INIT_LIST_HEAD(&dev->tx_reqs);
INIT_LIST_HEAD(&dev->rx_reqs);
skb_queue_head_init(&dev->rx_frames);
/* network device setup */
dev->net = net;
dev->qmult = qmult;
snprintf(net->name, sizeof(net->name), "%s%%d", netname);
if (get_ether_addr(dev_addr, net->dev_addr))
dev_warn(&g->dev,
"using random %s ethernet address\n", "self");
if (get_ether_addr(host_addr, dev->host_mac))
dev_warn(&g->dev,
"using random %s ethernet address\n", "host");
if (ethaddr)
memcpy(ethaddr, dev->host_mac, ETH_ALEN);
net->netdev_ops = &eth_netdev_ops;
net->ethtool_ops = &ops;
/* MTU range: 14 - 15412 */
net->min_mtu = ETH_HLEN;
net->max_mtu = GETHER_MAX_MTU_SIZE;
dev->gadget = g;
SET_NETDEV_DEV(net, &g->dev);
SET_NETDEV_DEVTYPE(net, &gadget_type);
status = register_netdev(net);
if (status < 0) {
dev_dbg(&g->dev, "register_netdev failed, %d\n", status);
free_netdev(net);
dev = ERR_PTR(status);
} else {
INFO(dev, "MAC %pM\n", net->dev_addr);
INFO(dev, "HOST MAC %pM\n", dev->host_mac);
/*
* two kinds of host-initiated state changes:
* - iff DATA transfer is active, carrier is "on"
* - tx queueing enabled if open *and* carrier is "on"
*/
netif_carrier_off(net);
}
return dev;
}
EXPORT_SYMBOL_GPL(gether_setup_name);
struct net_device *gether_setup_name_default(const char *netname)
{
struct net_device *net;
struct eth_dev *dev;
net = alloc_etherdev(sizeof(*dev));
if (!net)
return ERR_PTR(-ENOMEM);
dev = netdev_priv(net);
spin_lock_init(&dev->lock);
spin_lock_init(&dev->req_lock);
INIT_WORK(&dev->work, eth_work);
INIT_LIST_HEAD(&dev->tx_reqs);
INIT_LIST_HEAD(&dev->rx_reqs);
skb_queue_head_init(&dev->rx_frames);
/* network device setup */
dev->net = net;
dev->qmult = QMULT_DEFAULT;
snprintf(net->name, sizeof(net->name), "%s%%d", netname);
eth_random_addr(dev->dev_mac);
pr_warn("using random %s ethernet address\n", "self");
eth_random_addr(dev->host_mac);
pr_warn("using random %s ethernet address\n", "host");
net->netdev_ops = &eth_netdev_ops;
net->ethtool_ops = &ops;
SET_NETDEV_DEVTYPE(net, &gadget_type);
/* MTU range: 14 - 15412 */
net->min_mtu = ETH_HLEN;
net->max_mtu = GETHER_MAX_MTU_SIZE;
return net;
}
EXPORT_SYMBOL_GPL(gether_setup_name_default);
int gether_register_netdev(struct net_device *net)
{
struct eth_dev *dev;
struct usb_gadget *g;
struct sockaddr sa;
int status;
if (!net->dev.parent)
return -EINVAL;
dev = netdev_priv(net);
g = dev->gadget;
status = register_netdev(net);
if (status < 0) {
dev_dbg(&g->dev, "register_netdev failed, %d\n", status);
return status;
} else {
INFO(dev, "HOST MAC %pM\n", dev->host_mac);
/* two kinds of host-initiated state changes:
* - iff DATA transfer is active, carrier is "on"
* - tx queueing enabled if open *and* carrier is "on"
*/
netif_carrier_off(net);
}
sa.sa_family = net->type;
memcpy(sa.sa_data, dev->dev_mac, ETH_ALEN);
rtnl_lock();
status = dev_set_mac_address(net, &sa, NULL);
rtnl_unlock();
if (status)
pr_warn("cannot set self ethernet address: %d\n", status);
else
INFO(dev, "MAC %pM\n", dev->dev_mac);
return status;
}
EXPORT_SYMBOL_GPL(gether_register_netdev);
void gether_set_gadget(struct net_device *net, struct usb_gadget *g)
{
struct eth_dev *dev;
dev = netdev_priv(net);
dev->gadget = g;
SET_NETDEV_DEV(net, &g->dev);
}
EXPORT_SYMBOL_GPL(gether_set_gadget);
int gether_set_dev_addr(struct net_device *net, const char *dev_addr)
{
struct eth_dev *dev;
u8 new_addr[ETH_ALEN];
dev = netdev_priv(net);
if (get_ether_addr(dev_addr, new_addr))
return -EINVAL;
memcpy(dev->dev_mac, new_addr, ETH_ALEN);
return 0;
}
EXPORT_SYMBOL_GPL(gether_set_dev_addr);
int gether_get_dev_addr(struct net_device *net, char *dev_addr, int len)
{
struct eth_dev *dev;
int ret;
dev = netdev_priv(net);
ret = get_ether_addr_str(dev->dev_mac, dev_addr, len);
if (ret + 1 < len) {
dev_addr[ret++] = '\n';
dev_addr[ret] = '\0';
}
return ret;
}
EXPORT_SYMBOL_GPL(gether_get_dev_addr);
int gether_set_host_addr(struct net_device *net, const char *host_addr)
{
struct eth_dev *dev;
u8 new_addr[ETH_ALEN];
dev = netdev_priv(net);
if (get_ether_addr(host_addr, new_addr))
return -EINVAL;
memcpy(dev->host_mac, new_addr, ETH_ALEN);
return 0;
}
EXPORT_SYMBOL_GPL(gether_set_host_addr);
int gether_get_host_addr(struct net_device *net, char *host_addr, int len)
{
struct eth_dev *dev;
int ret;
dev = netdev_priv(net);
ret = get_ether_addr_str(dev->host_mac, host_addr, len);
if (ret + 1 < len) {
host_addr[ret++] = '\n';
host_addr[ret] = '\0';
}
return ret;
}
EXPORT_SYMBOL_GPL(gether_get_host_addr);
int gether_get_host_addr_cdc(struct net_device *net, char *host_addr, int len)
{
struct eth_dev *dev;
if (len < 13)
return -EINVAL;
dev = netdev_priv(net);
snprintf(host_addr, len, "%pm", dev->host_mac);
return strlen(host_addr);
}
EXPORT_SYMBOL_GPL(gether_get_host_addr_cdc);
void gether_get_host_addr_u8(struct net_device *net, u8 host_mac[ETH_ALEN])
{
struct eth_dev *dev;
dev = netdev_priv(net);
memcpy(host_mac, dev->host_mac, ETH_ALEN);
}
EXPORT_SYMBOL_GPL(gether_get_host_addr_u8);
void gether_set_qmult(struct net_device *net, unsigned qmult)
{
struct eth_dev *dev;
dev = netdev_priv(net);
dev->qmult = qmult;
}
EXPORT_SYMBOL_GPL(gether_set_qmult);
unsigned gether_get_qmult(struct net_device *net)
{
struct eth_dev *dev;
dev = netdev_priv(net);
return dev->qmult;
}
EXPORT_SYMBOL_GPL(gether_get_qmult);
int gether_get_ifname(struct net_device *net, char *name, int len)
{
struct eth_dev *dev = netdev_priv(net);
int ret;
rtnl_lock();
ret = scnprintf(name, len, "%s\n",
dev->ifname_set ? net->name : netdev_name(net));
rtnl_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(gether_get_ifname);
int gether_set_ifname(struct net_device *net, const char *name, int len)
{
struct eth_dev *dev = netdev_priv(net);
char tmp[IFNAMSIZ];
const char *p;
if (name[len - 1] == '\n')
len--;
if (len >= sizeof(tmp))
return -E2BIG;
strscpy(tmp, name, len + 1);
if (!dev_valid_name(tmp))
return -EINVAL;
/* Require exactly one %d, so binding will not fail with EEXIST. */
p = strchr(name, '%');
if (!p || p[1] != 'd' || strchr(p + 2, '%'))
return -EINVAL;
strncpy(net->name, tmp, sizeof(net->name));
dev->ifname_set = true;
return 0;
}
EXPORT_SYMBOL_GPL(gether_set_ifname);
/*
* gether_cleanup - remove Ethernet-over-USB device
* Context: may sleep
*
* This is called to free all resources allocated by @gether_setup().
*/
void gether_cleanup(struct eth_dev *dev)
{
if (!dev)
return;
unregister_netdev(dev->net);
flush_work(&dev->work);
free_netdev(dev->net);
}
EXPORT_SYMBOL_GPL(gether_cleanup);
/**
* gether_connect - notify network layer that USB link is active
* @link: the USB link, set up with endpoints, descriptors matching
* current device speed, and any framing wrapper(s) set up.
* Context: irqs blocked
*
* This is called to activate endpoints and let the network layer know
* the connection is active ("carrier detect"). It may cause the I/O
* queues to open and start letting network packets flow, but will in
* any case activate the endpoints so that they respond properly to the
* USB host.
*
* Verify net_device pointer returned using IS_ERR(). If it doesn't
* indicate some error code (negative errno), ep->driver_data values
* have been overwritten.
*/
struct net_device *gether_connect(struct gether *link)
{
struct eth_dev *dev = link->ioport;
int result = 0;
if (!dev)
return ERR_PTR(-EINVAL);
link->in_ep->driver_data = dev;
result = usb_ep_enable(link->in_ep);
if (result != 0) {
DBG(dev, "enable %s --> %d\n",
link->in_ep->name, result);
goto fail0;
}
link->out_ep->driver_data = dev;
result = usb_ep_enable(link->out_ep);
if (result != 0) {
DBG(dev, "enable %s --> %d\n",
link->out_ep->name, result);
goto fail1;
}
if (result == 0)
result = alloc_requests(dev, link, qlen(dev->gadget,
dev->qmult));
if (result == 0) {
dev->zlp = link->is_zlp_ok;
dev->no_skb_reserve = gadget_avoids_skb_reserve(dev->gadget);
DBG(dev, "qlen %d\n", qlen(dev->gadget, dev->qmult));
dev->header_len = link->header_len;
dev->unwrap = link->unwrap;
dev->wrap = link->wrap;
spin_lock(&dev->lock);
dev->port_usb = link;
if (netif_running(dev->net)) {
if (link->open)
link->open(link);
} else {
if (link->close)
link->close(link);
}
spin_unlock(&dev->lock);
netif_carrier_on(dev->net);
if (netif_running(dev->net))
eth_start(dev, GFP_ATOMIC);
/* on error, disable any endpoints */
} else {
(void) usb_ep_disable(link->out_ep);
fail1:
(void) usb_ep_disable(link->in_ep);
}
fail0:
/* caller is responsible for cleanup on error */
if (result < 0)
return ERR_PTR(result);
return dev->net;
}
EXPORT_SYMBOL_GPL(gether_connect);
/**
* gether_disconnect - notify network layer that USB link is inactive
* @link: the USB link, on which gether_connect() was called
* Context: irqs blocked
*
* This is called to deactivate endpoints and let the network layer know
* the connection went inactive ("no carrier").
*
* On return, the state is as if gether_connect() had never been called.
* The endpoints are inactive, and accordingly without active USB I/O.
* Pointers to endpoint descriptors and endpoint private data are nulled.
*/
void gether_disconnect(struct gether *link)
{
struct eth_dev *dev = link->ioport;
struct usb_request *req;
WARN_ON(!dev);
if (!dev)
return;
DBG(dev, "%s\n", __func__);
netif_stop_queue(dev->net);
netif_carrier_off(dev->net);
/* disable endpoints, forcing (synchronous) completion
* of all pending i/o. then free the request objects
* and forget about the endpoints.
*/
usb_ep_disable(link->in_ep);
spin_lock(&dev->req_lock);
while (!list_empty(&dev->tx_reqs)) {
req = list_first_entry(&dev->tx_reqs, struct usb_request, list);
list_del(&req->list);
spin_unlock(&dev->req_lock);
usb_ep_free_request(link->in_ep, req);
spin_lock(&dev->req_lock);
}
spin_unlock(&dev->req_lock);
link->in_ep->desc = NULL;
usb_ep_disable(link->out_ep);
spin_lock(&dev->req_lock);
while (!list_empty(&dev->rx_reqs)) {
req = list_first_entry(&dev->rx_reqs, struct usb_request, list);
list_del(&req->list);
spin_unlock(&dev->req_lock);
usb_ep_free_request(link->out_ep, req);
spin_lock(&dev->req_lock);
}
spin_unlock(&dev->req_lock);
link->out_ep->desc = NULL;
/* finish forgetting about this USB link episode */
dev->header_len = 0;
dev->unwrap = NULL;
dev->wrap = NULL;
spin_lock(&dev->lock);
dev->port_usb = NULL;
spin_unlock(&dev->lock);
}
EXPORT_SYMBOL_GPL(gether_disconnect);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Brownell");