ce01a1575f
On x86-64, the parametrized selftest code for rseq crashes with a segmentation fault when compiled with -fpie. This happens when the param_test binary is loaded at an address beyond 32-bit on x86-64. The issue is caused by use of a 32-bit register to hold the address of the loop counter variable. Fix this by using a 64-bit register to calculate the address of the loop counter variables as an offset from rip. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> # v4.18 Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Joel Fernandes <joelaf@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Watson <davejwatson@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: linux-kselftest@vger.kernel.org Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Chris Lameter <cl@linux.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Paul Turner <pjt@google.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Maurer <bmaurer@fb.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Shuah Khan (Samsung OSG) <shuah@kernel.org>
1330 lines
30 KiB
C
1330 lines
30 KiB
C
// SPDX-License-Identifier: LGPL-2.1
|
|
#define _GNU_SOURCE
|
|
#include <assert.h>
|
|
#include <pthread.h>
|
|
#include <sched.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <syscall.h>
|
|
#include <unistd.h>
|
|
#include <poll.h>
|
|
#include <sys/types.h>
|
|
#include <signal.h>
|
|
#include <errno.h>
|
|
#include <stddef.h>
|
|
|
|
static inline pid_t gettid(void)
|
|
{
|
|
return syscall(__NR_gettid);
|
|
}
|
|
|
|
#define NR_INJECT 9
|
|
static int loop_cnt[NR_INJECT + 1];
|
|
|
|
static int loop_cnt_1 asm("asm_loop_cnt_1") __attribute__((used));
|
|
static int loop_cnt_2 asm("asm_loop_cnt_2") __attribute__((used));
|
|
static int loop_cnt_3 asm("asm_loop_cnt_3") __attribute__((used));
|
|
static int loop_cnt_4 asm("asm_loop_cnt_4") __attribute__((used));
|
|
static int loop_cnt_5 asm("asm_loop_cnt_5") __attribute__((used));
|
|
static int loop_cnt_6 asm("asm_loop_cnt_6") __attribute__((used));
|
|
|
|
static int opt_modulo, verbose;
|
|
|
|
static int opt_yield, opt_signal, opt_sleep,
|
|
opt_disable_rseq, opt_threads = 200,
|
|
opt_disable_mod = 0, opt_test = 's', opt_mb = 0;
|
|
|
|
#ifndef RSEQ_SKIP_FASTPATH
|
|
static long long opt_reps = 5000;
|
|
#else
|
|
static long long opt_reps = 100;
|
|
#endif
|
|
|
|
static __thread __attribute__((tls_model("initial-exec")))
|
|
unsigned int signals_delivered;
|
|
|
|
#ifndef BENCHMARK
|
|
|
|
static __thread __attribute__((tls_model("initial-exec"), unused))
|
|
unsigned int yield_mod_cnt, nr_abort;
|
|
|
|
#define printf_verbose(fmt, ...) \
|
|
do { \
|
|
if (verbose) \
|
|
printf(fmt, ## __VA_ARGS__); \
|
|
} while (0)
|
|
|
|
#ifdef __i386__
|
|
|
|
#define INJECT_ASM_REG "eax"
|
|
|
|
#define RSEQ_INJECT_CLOBBER \
|
|
, INJECT_ASM_REG
|
|
|
|
#define RSEQ_INJECT_ASM(n) \
|
|
"mov asm_loop_cnt_" #n ", %%" INJECT_ASM_REG "\n\t" \
|
|
"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
|
|
"jz 333f\n\t" \
|
|
"222:\n\t" \
|
|
"dec %%" INJECT_ASM_REG "\n\t" \
|
|
"jnz 222b\n\t" \
|
|
"333:\n\t"
|
|
|
|
#elif defined(__x86_64__)
|
|
|
|
#define INJECT_ASM_REG_P "rax"
|
|
#define INJECT_ASM_REG "eax"
|
|
|
|
#define RSEQ_INJECT_CLOBBER \
|
|
, INJECT_ASM_REG_P \
|
|
, INJECT_ASM_REG
|
|
|
|
#define RSEQ_INJECT_ASM(n) \
|
|
"lea asm_loop_cnt_" #n "(%%rip), %%" INJECT_ASM_REG_P "\n\t" \
|
|
"mov (%%" INJECT_ASM_REG_P "), %%" INJECT_ASM_REG "\n\t" \
|
|
"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
|
|
"jz 333f\n\t" \
|
|
"222:\n\t" \
|
|
"dec %%" INJECT_ASM_REG "\n\t" \
|
|
"jnz 222b\n\t" \
|
|
"333:\n\t"
|
|
|
|
#elif defined(__s390__)
|
|
|
|
#define RSEQ_INJECT_INPUT \
|
|
, [loop_cnt_1]"m"(loop_cnt[1]) \
|
|
, [loop_cnt_2]"m"(loop_cnt[2]) \
|
|
, [loop_cnt_3]"m"(loop_cnt[3]) \
|
|
, [loop_cnt_4]"m"(loop_cnt[4]) \
|
|
, [loop_cnt_5]"m"(loop_cnt[5]) \
|
|
, [loop_cnt_6]"m"(loop_cnt[6])
|
|
|
|
#define INJECT_ASM_REG "r12"
|
|
|
|
#define RSEQ_INJECT_CLOBBER \
|
|
, INJECT_ASM_REG
|
|
|
|
#define RSEQ_INJECT_ASM(n) \
|
|
"l %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
|
|
"ltr %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG "\n\t" \
|
|
"je 333f\n\t" \
|
|
"222:\n\t" \
|
|
"ahi %%" INJECT_ASM_REG ", -1\n\t" \
|
|
"jnz 222b\n\t" \
|
|
"333:\n\t"
|
|
|
|
#elif defined(__ARMEL__)
|
|
|
|
#define RSEQ_INJECT_INPUT \
|
|
, [loop_cnt_1]"m"(loop_cnt[1]) \
|
|
, [loop_cnt_2]"m"(loop_cnt[2]) \
|
|
, [loop_cnt_3]"m"(loop_cnt[3]) \
|
|
, [loop_cnt_4]"m"(loop_cnt[4]) \
|
|
, [loop_cnt_5]"m"(loop_cnt[5]) \
|
|
, [loop_cnt_6]"m"(loop_cnt[6])
|
|
|
|
#define INJECT_ASM_REG "r4"
|
|
|
|
#define RSEQ_INJECT_CLOBBER \
|
|
, INJECT_ASM_REG
|
|
|
|
#define RSEQ_INJECT_ASM(n) \
|
|
"ldr " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
|
|
"cmp " INJECT_ASM_REG ", #0\n\t" \
|
|
"beq 333f\n\t" \
|
|
"222:\n\t" \
|
|
"subs " INJECT_ASM_REG ", #1\n\t" \
|
|
"bne 222b\n\t" \
|
|
"333:\n\t"
|
|
|
|
#elif defined(__AARCH64EL__)
|
|
|
|
#define RSEQ_INJECT_INPUT \
|
|
, [loop_cnt_1] "Qo" (loop_cnt[1]) \
|
|
, [loop_cnt_2] "Qo" (loop_cnt[2]) \
|
|
, [loop_cnt_3] "Qo" (loop_cnt[3]) \
|
|
, [loop_cnt_4] "Qo" (loop_cnt[4]) \
|
|
, [loop_cnt_5] "Qo" (loop_cnt[5]) \
|
|
, [loop_cnt_6] "Qo" (loop_cnt[6])
|
|
|
|
#define INJECT_ASM_REG RSEQ_ASM_TMP_REG32
|
|
|
|
#define RSEQ_INJECT_ASM(n) \
|
|
" ldr " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n" \
|
|
" cbz " INJECT_ASM_REG ", 333f\n" \
|
|
"222:\n" \
|
|
" sub " INJECT_ASM_REG ", " INJECT_ASM_REG ", #1\n" \
|
|
" cbnz " INJECT_ASM_REG ", 222b\n" \
|
|
"333:\n"
|
|
|
|
#elif __PPC__
|
|
|
|
#define RSEQ_INJECT_INPUT \
|
|
, [loop_cnt_1]"m"(loop_cnt[1]) \
|
|
, [loop_cnt_2]"m"(loop_cnt[2]) \
|
|
, [loop_cnt_3]"m"(loop_cnt[3]) \
|
|
, [loop_cnt_4]"m"(loop_cnt[4]) \
|
|
, [loop_cnt_5]"m"(loop_cnt[5]) \
|
|
, [loop_cnt_6]"m"(loop_cnt[6])
|
|
|
|
#define INJECT_ASM_REG "r18"
|
|
|
|
#define RSEQ_INJECT_CLOBBER \
|
|
, INJECT_ASM_REG
|
|
|
|
#define RSEQ_INJECT_ASM(n) \
|
|
"lwz %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
|
|
"cmpwi %%" INJECT_ASM_REG ", 0\n\t" \
|
|
"beq 333f\n\t" \
|
|
"222:\n\t" \
|
|
"subic. %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG ", 1\n\t" \
|
|
"bne 222b\n\t" \
|
|
"333:\n\t"
|
|
|
|
#elif defined(__mips__)
|
|
|
|
#define RSEQ_INJECT_INPUT \
|
|
, [loop_cnt_1]"m"(loop_cnt[1]) \
|
|
, [loop_cnt_2]"m"(loop_cnt[2]) \
|
|
, [loop_cnt_3]"m"(loop_cnt[3]) \
|
|
, [loop_cnt_4]"m"(loop_cnt[4]) \
|
|
, [loop_cnt_5]"m"(loop_cnt[5]) \
|
|
, [loop_cnt_6]"m"(loop_cnt[6])
|
|
|
|
#define INJECT_ASM_REG "$5"
|
|
|
|
#define RSEQ_INJECT_CLOBBER \
|
|
, INJECT_ASM_REG
|
|
|
|
#define RSEQ_INJECT_ASM(n) \
|
|
"lw " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
|
|
"beqz " INJECT_ASM_REG ", 333f\n\t" \
|
|
"222:\n\t" \
|
|
"addiu " INJECT_ASM_REG ", -1\n\t" \
|
|
"bnez " INJECT_ASM_REG ", 222b\n\t" \
|
|
"333:\n\t"
|
|
|
|
#else
|
|
#error unsupported target
|
|
#endif
|
|
|
|
#define RSEQ_INJECT_FAILED \
|
|
nr_abort++;
|
|
|
|
#define RSEQ_INJECT_C(n) \
|
|
{ \
|
|
int loc_i, loc_nr_loops = loop_cnt[n]; \
|
|
\
|
|
for (loc_i = 0; loc_i < loc_nr_loops; loc_i++) { \
|
|
rseq_barrier(); \
|
|
} \
|
|
if (loc_nr_loops == -1 && opt_modulo) { \
|
|
if (yield_mod_cnt == opt_modulo - 1) { \
|
|
if (opt_sleep > 0) \
|
|
poll(NULL, 0, opt_sleep); \
|
|
if (opt_yield) \
|
|
sched_yield(); \
|
|
if (opt_signal) \
|
|
raise(SIGUSR1); \
|
|
yield_mod_cnt = 0; \
|
|
} else { \
|
|
yield_mod_cnt++; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
#else
|
|
|
|
#define printf_verbose(fmt, ...)
|
|
|
|
#endif /* BENCHMARK */
|
|
|
|
#include "rseq.h"
|
|
|
|
struct percpu_lock_entry {
|
|
intptr_t v;
|
|
} __attribute__((aligned(128)));
|
|
|
|
struct percpu_lock {
|
|
struct percpu_lock_entry c[CPU_SETSIZE];
|
|
};
|
|
|
|
struct test_data_entry {
|
|
intptr_t count;
|
|
} __attribute__((aligned(128)));
|
|
|
|
struct spinlock_test_data {
|
|
struct percpu_lock lock;
|
|
struct test_data_entry c[CPU_SETSIZE];
|
|
};
|
|
|
|
struct spinlock_thread_test_data {
|
|
struct spinlock_test_data *data;
|
|
long long reps;
|
|
int reg;
|
|
};
|
|
|
|
struct inc_test_data {
|
|
struct test_data_entry c[CPU_SETSIZE];
|
|
};
|
|
|
|
struct inc_thread_test_data {
|
|
struct inc_test_data *data;
|
|
long long reps;
|
|
int reg;
|
|
};
|
|
|
|
struct percpu_list_node {
|
|
intptr_t data;
|
|
struct percpu_list_node *next;
|
|
};
|
|
|
|
struct percpu_list_entry {
|
|
struct percpu_list_node *head;
|
|
} __attribute__((aligned(128)));
|
|
|
|
struct percpu_list {
|
|
struct percpu_list_entry c[CPU_SETSIZE];
|
|
};
|
|
|
|
#define BUFFER_ITEM_PER_CPU 100
|
|
|
|
struct percpu_buffer_node {
|
|
intptr_t data;
|
|
};
|
|
|
|
struct percpu_buffer_entry {
|
|
intptr_t offset;
|
|
intptr_t buflen;
|
|
struct percpu_buffer_node **array;
|
|
} __attribute__((aligned(128)));
|
|
|
|
struct percpu_buffer {
|
|
struct percpu_buffer_entry c[CPU_SETSIZE];
|
|
};
|
|
|
|
#define MEMCPY_BUFFER_ITEM_PER_CPU 100
|
|
|
|
struct percpu_memcpy_buffer_node {
|
|
intptr_t data1;
|
|
uint64_t data2;
|
|
};
|
|
|
|
struct percpu_memcpy_buffer_entry {
|
|
intptr_t offset;
|
|
intptr_t buflen;
|
|
struct percpu_memcpy_buffer_node *array;
|
|
} __attribute__((aligned(128)));
|
|
|
|
struct percpu_memcpy_buffer {
|
|
struct percpu_memcpy_buffer_entry c[CPU_SETSIZE];
|
|
};
|
|
|
|
/* A simple percpu spinlock. Grabs lock on current cpu. */
|
|
static int rseq_this_cpu_lock(struct percpu_lock *lock)
|
|
{
|
|
int cpu;
|
|
|
|
for (;;) {
|
|
int ret;
|
|
|
|
cpu = rseq_cpu_start();
|
|
ret = rseq_cmpeqv_storev(&lock->c[cpu].v,
|
|
0, 1, cpu);
|
|
if (rseq_likely(!ret))
|
|
break;
|
|
/* Retry if comparison fails or rseq aborts. */
|
|
}
|
|
/*
|
|
* Acquire semantic when taking lock after control dependency.
|
|
* Matches rseq_smp_store_release().
|
|
*/
|
|
rseq_smp_acquire__after_ctrl_dep();
|
|
return cpu;
|
|
}
|
|
|
|
static void rseq_percpu_unlock(struct percpu_lock *lock, int cpu)
|
|
{
|
|
assert(lock->c[cpu].v == 1);
|
|
/*
|
|
* Release lock, with release semantic. Matches
|
|
* rseq_smp_acquire__after_ctrl_dep().
|
|
*/
|
|
rseq_smp_store_release(&lock->c[cpu].v, 0);
|
|
}
|
|
|
|
void *test_percpu_spinlock_thread(void *arg)
|
|
{
|
|
struct spinlock_thread_test_data *thread_data = arg;
|
|
struct spinlock_test_data *data = thread_data->data;
|
|
long long i, reps;
|
|
|
|
if (!opt_disable_rseq && thread_data->reg &&
|
|
rseq_register_current_thread())
|
|
abort();
|
|
reps = thread_data->reps;
|
|
for (i = 0; i < reps; i++) {
|
|
int cpu = rseq_cpu_start();
|
|
|
|
cpu = rseq_this_cpu_lock(&data->lock);
|
|
data->c[cpu].count++;
|
|
rseq_percpu_unlock(&data->lock, cpu);
|
|
#ifndef BENCHMARK
|
|
if (i != 0 && !(i % (reps / 10)))
|
|
printf_verbose("tid %d: count %lld\n", (int) gettid(), i);
|
|
#endif
|
|
}
|
|
printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
|
|
(int) gettid(), nr_abort, signals_delivered);
|
|
if (!opt_disable_rseq && thread_data->reg &&
|
|
rseq_unregister_current_thread())
|
|
abort();
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* A simple test which implements a sharded counter using a per-cpu
|
|
* lock. Obviously real applications might prefer to simply use a
|
|
* per-cpu increment; however, this is reasonable for a test and the
|
|
* lock can be extended to synchronize more complicated operations.
|
|
*/
|
|
void test_percpu_spinlock(void)
|
|
{
|
|
const int num_threads = opt_threads;
|
|
int i, ret;
|
|
uint64_t sum;
|
|
pthread_t test_threads[num_threads];
|
|
struct spinlock_test_data data;
|
|
struct spinlock_thread_test_data thread_data[num_threads];
|
|
|
|
memset(&data, 0, sizeof(data));
|
|
for (i = 0; i < num_threads; i++) {
|
|
thread_data[i].reps = opt_reps;
|
|
if (opt_disable_mod <= 0 || (i % opt_disable_mod))
|
|
thread_data[i].reg = 1;
|
|
else
|
|
thread_data[i].reg = 0;
|
|
thread_data[i].data = &data;
|
|
ret = pthread_create(&test_threads[i], NULL,
|
|
test_percpu_spinlock_thread,
|
|
&thread_data[i]);
|
|
if (ret) {
|
|
errno = ret;
|
|
perror("pthread_create");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_threads; i++) {
|
|
ret = pthread_join(test_threads[i], NULL);
|
|
if (ret) {
|
|
errno = ret;
|
|
perror("pthread_join");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
sum = 0;
|
|
for (i = 0; i < CPU_SETSIZE; i++)
|
|
sum += data.c[i].count;
|
|
|
|
assert(sum == (uint64_t)opt_reps * num_threads);
|
|
}
|
|
|
|
void *test_percpu_inc_thread(void *arg)
|
|
{
|
|
struct inc_thread_test_data *thread_data = arg;
|
|
struct inc_test_data *data = thread_data->data;
|
|
long long i, reps;
|
|
|
|
if (!opt_disable_rseq && thread_data->reg &&
|
|
rseq_register_current_thread())
|
|
abort();
|
|
reps = thread_data->reps;
|
|
for (i = 0; i < reps; i++) {
|
|
int ret;
|
|
|
|
do {
|
|
int cpu;
|
|
|
|
cpu = rseq_cpu_start();
|
|
ret = rseq_addv(&data->c[cpu].count, 1, cpu);
|
|
} while (rseq_unlikely(ret));
|
|
#ifndef BENCHMARK
|
|
if (i != 0 && !(i % (reps / 10)))
|
|
printf_verbose("tid %d: count %lld\n", (int) gettid(), i);
|
|
#endif
|
|
}
|
|
printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
|
|
(int) gettid(), nr_abort, signals_delivered);
|
|
if (!opt_disable_rseq && thread_data->reg &&
|
|
rseq_unregister_current_thread())
|
|
abort();
|
|
return NULL;
|
|
}
|
|
|
|
void test_percpu_inc(void)
|
|
{
|
|
const int num_threads = opt_threads;
|
|
int i, ret;
|
|
uint64_t sum;
|
|
pthread_t test_threads[num_threads];
|
|
struct inc_test_data data;
|
|
struct inc_thread_test_data thread_data[num_threads];
|
|
|
|
memset(&data, 0, sizeof(data));
|
|
for (i = 0; i < num_threads; i++) {
|
|
thread_data[i].reps = opt_reps;
|
|
if (opt_disable_mod <= 0 || (i % opt_disable_mod))
|
|
thread_data[i].reg = 1;
|
|
else
|
|
thread_data[i].reg = 0;
|
|
thread_data[i].data = &data;
|
|
ret = pthread_create(&test_threads[i], NULL,
|
|
test_percpu_inc_thread,
|
|
&thread_data[i]);
|
|
if (ret) {
|
|
errno = ret;
|
|
perror("pthread_create");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_threads; i++) {
|
|
ret = pthread_join(test_threads[i], NULL);
|
|
if (ret) {
|
|
errno = ret;
|
|
perror("pthread_join");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
sum = 0;
|
|
for (i = 0; i < CPU_SETSIZE; i++)
|
|
sum += data.c[i].count;
|
|
|
|
assert(sum == (uint64_t)opt_reps * num_threads);
|
|
}
|
|
|
|
void this_cpu_list_push(struct percpu_list *list,
|
|
struct percpu_list_node *node,
|
|
int *_cpu)
|
|
{
|
|
int cpu;
|
|
|
|
for (;;) {
|
|
intptr_t *targetptr, newval, expect;
|
|
int ret;
|
|
|
|
cpu = rseq_cpu_start();
|
|
/* Load list->c[cpu].head with single-copy atomicity. */
|
|
expect = (intptr_t)RSEQ_READ_ONCE(list->c[cpu].head);
|
|
newval = (intptr_t)node;
|
|
targetptr = (intptr_t *)&list->c[cpu].head;
|
|
node->next = (struct percpu_list_node *)expect;
|
|
ret = rseq_cmpeqv_storev(targetptr, expect, newval, cpu);
|
|
if (rseq_likely(!ret))
|
|
break;
|
|
/* Retry if comparison fails or rseq aborts. */
|
|
}
|
|
if (_cpu)
|
|
*_cpu = cpu;
|
|
}
|
|
|
|
/*
|
|
* Unlike a traditional lock-less linked list; the availability of a
|
|
* rseq primitive allows us to implement pop without concerns over
|
|
* ABA-type races.
|
|
*/
|
|
struct percpu_list_node *this_cpu_list_pop(struct percpu_list *list,
|
|
int *_cpu)
|
|
{
|
|
struct percpu_list_node *node = NULL;
|
|
int cpu;
|
|
|
|
for (;;) {
|
|
struct percpu_list_node *head;
|
|
intptr_t *targetptr, expectnot, *load;
|
|
off_t offset;
|
|
int ret;
|
|
|
|
cpu = rseq_cpu_start();
|
|
targetptr = (intptr_t *)&list->c[cpu].head;
|
|
expectnot = (intptr_t)NULL;
|
|
offset = offsetof(struct percpu_list_node, next);
|
|
load = (intptr_t *)&head;
|
|
ret = rseq_cmpnev_storeoffp_load(targetptr, expectnot,
|
|
offset, load, cpu);
|
|
if (rseq_likely(!ret)) {
|
|
node = head;
|
|
break;
|
|
}
|
|
if (ret > 0)
|
|
break;
|
|
/* Retry if rseq aborts. */
|
|
}
|
|
if (_cpu)
|
|
*_cpu = cpu;
|
|
return node;
|
|
}
|
|
|
|
/*
|
|
* __percpu_list_pop is not safe against concurrent accesses. Should
|
|
* only be used on lists that are not concurrently modified.
|
|
*/
|
|
struct percpu_list_node *__percpu_list_pop(struct percpu_list *list, int cpu)
|
|
{
|
|
struct percpu_list_node *node;
|
|
|
|
node = list->c[cpu].head;
|
|
if (!node)
|
|
return NULL;
|
|
list->c[cpu].head = node->next;
|
|
return node;
|
|
}
|
|
|
|
void *test_percpu_list_thread(void *arg)
|
|
{
|
|
long long i, reps;
|
|
struct percpu_list *list = (struct percpu_list *)arg;
|
|
|
|
if (!opt_disable_rseq && rseq_register_current_thread())
|
|
abort();
|
|
|
|
reps = opt_reps;
|
|
for (i = 0; i < reps; i++) {
|
|
struct percpu_list_node *node;
|
|
|
|
node = this_cpu_list_pop(list, NULL);
|
|
if (opt_yield)
|
|
sched_yield(); /* encourage shuffling */
|
|
if (node)
|
|
this_cpu_list_push(list, node, NULL);
|
|
}
|
|
|
|
printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
|
|
(int) gettid(), nr_abort, signals_delivered);
|
|
if (!opt_disable_rseq && rseq_unregister_current_thread())
|
|
abort();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Simultaneous modification to a per-cpu linked list from many threads. */
|
|
void test_percpu_list(void)
|
|
{
|
|
const int num_threads = opt_threads;
|
|
int i, j, ret;
|
|
uint64_t sum = 0, expected_sum = 0;
|
|
struct percpu_list list;
|
|
pthread_t test_threads[num_threads];
|
|
cpu_set_t allowed_cpus;
|
|
|
|
memset(&list, 0, sizeof(list));
|
|
|
|
/* Generate list entries for every usable cpu. */
|
|
sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
|
|
for (i = 0; i < CPU_SETSIZE; i++) {
|
|
if (!CPU_ISSET(i, &allowed_cpus))
|
|
continue;
|
|
for (j = 1; j <= 100; j++) {
|
|
struct percpu_list_node *node;
|
|
|
|
expected_sum += j;
|
|
|
|
node = malloc(sizeof(*node));
|
|
assert(node);
|
|
node->data = j;
|
|
node->next = list.c[i].head;
|
|
list.c[i].head = node;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_threads; i++) {
|
|
ret = pthread_create(&test_threads[i], NULL,
|
|
test_percpu_list_thread, &list);
|
|
if (ret) {
|
|
errno = ret;
|
|
perror("pthread_create");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_threads; i++) {
|
|
ret = pthread_join(test_threads[i], NULL);
|
|
if (ret) {
|
|
errno = ret;
|
|
perror("pthread_join");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < CPU_SETSIZE; i++) {
|
|
struct percpu_list_node *node;
|
|
|
|
if (!CPU_ISSET(i, &allowed_cpus))
|
|
continue;
|
|
|
|
while ((node = __percpu_list_pop(&list, i))) {
|
|
sum += node->data;
|
|
free(node);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* All entries should now be accounted for (unless some external
|
|
* actor is interfering with our allowed affinity while this
|
|
* test is running).
|
|
*/
|
|
assert(sum == expected_sum);
|
|
}
|
|
|
|
bool this_cpu_buffer_push(struct percpu_buffer *buffer,
|
|
struct percpu_buffer_node *node,
|
|
int *_cpu)
|
|
{
|
|
bool result = false;
|
|
int cpu;
|
|
|
|
for (;;) {
|
|
intptr_t *targetptr_spec, newval_spec;
|
|
intptr_t *targetptr_final, newval_final;
|
|
intptr_t offset;
|
|
int ret;
|
|
|
|
cpu = rseq_cpu_start();
|
|
offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
|
|
if (offset == buffer->c[cpu].buflen)
|
|
break;
|
|
newval_spec = (intptr_t)node;
|
|
targetptr_spec = (intptr_t *)&buffer->c[cpu].array[offset];
|
|
newval_final = offset + 1;
|
|
targetptr_final = &buffer->c[cpu].offset;
|
|
if (opt_mb)
|
|
ret = rseq_cmpeqv_trystorev_storev_release(
|
|
targetptr_final, offset, targetptr_spec,
|
|
newval_spec, newval_final, cpu);
|
|
else
|
|
ret = rseq_cmpeqv_trystorev_storev(targetptr_final,
|
|
offset, targetptr_spec, newval_spec,
|
|
newval_final, cpu);
|
|
if (rseq_likely(!ret)) {
|
|
result = true;
|
|
break;
|
|
}
|
|
/* Retry if comparison fails or rseq aborts. */
|
|
}
|
|
if (_cpu)
|
|
*_cpu = cpu;
|
|
return result;
|
|
}
|
|
|
|
struct percpu_buffer_node *this_cpu_buffer_pop(struct percpu_buffer *buffer,
|
|
int *_cpu)
|
|
{
|
|
struct percpu_buffer_node *head;
|
|
int cpu;
|
|
|
|
for (;;) {
|
|
intptr_t *targetptr, newval;
|
|
intptr_t offset;
|
|
int ret;
|
|
|
|
cpu = rseq_cpu_start();
|
|
/* Load offset with single-copy atomicity. */
|
|
offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
|
|
if (offset == 0) {
|
|
head = NULL;
|
|
break;
|
|
}
|
|
head = RSEQ_READ_ONCE(buffer->c[cpu].array[offset - 1]);
|
|
newval = offset - 1;
|
|
targetptr = (intptr_t *)&buffer->c[cpu].offset;
|
|
ret = rseq_cmpeqv_cmpeqv_storev(targetptr, offset,
|
|
(intptr_t *)&buffer->c[cpu].array[offset - 1],
|
|
(intptr_t)head, newval, cpu);
|
|
if (rseq_likely(!ret))
|
|
break;
|
|
/* Retry if comparison fails or rseq aborts. */
|
|
}
|
|
if (_cpu)
|
|
*_cpu = cpu;
|
|
return head;
|
|
}
|
|
|
|
/*
|
|
* __percpu_buffer_pop is not safe against concurrent accesses. Should
|
|
* only be used on buffers that are not concurrently modified.
|
|
*/
|
|
struct percpu_buffer_node *__percpu_buffer_pop(struct percpu_buffer *buffer,
|
|
int cpu)
|
|
{
|
|
struct percpu_buffer_node *head;
|
|
intptr_t offset;
|
|
|
|
offset = buffer->c[cpu].offset;
|
|
if (offset == 0)
|
|
return NULL;
|
|
head = buffer->c[cpu].array[offset - 1];
|
|
buffer->c[cpu].offset = offset - 1;
|
|
return head;
|
|
}
|
|
|
|
void *test_percpu_buffer_thread(void *arg)
|
|
{
|
|
long long i, reps;
|
|
struct percpu_buffer *buffer = (struct percpu_buffer *)arg;
|
|
|
|
if (!opt_disable_rseq && rseq_register_current_thread())
|
|
abort();
|
|
|
|
reps = opt_reps;
|
|
for (i = 0; i < reps; i++) {
|
|
struct percpu_buffer_node *node;
|
|
|
|
node = this_cpu_buffer_pop(buffer, NULL);
|
|
if (opt_yield)
|
|
sched_yield(); /* encourage shuffling */
|
|
if (node) {
|
|
if (!this_cpu_buffer_push(buffer, node, NULL)) {
|
|
/* Should increase buffer size. */
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
|
|
(int) gettid(), nr_abort, signals_delivered);
|
|
if (!opt_disable_rseq && rseq_unregister_current_thread())
|
|
abort();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Simultaneous modification to a per-cpu buffer from many threads. */
|
|
void test_percpu_buffer(void)
|
|
{
|
|
const int num_threads = opt_threads;
|
|
int i, j, ret;
|
|
uint64_t sum = 0, expected_sum = 0;
|
|
struct percpu_buffer buffer;
|
|
pthread_t test_threads[num_threads];
|
|
cpu_set_t allowed_cpus;
|
|
|
|
memset(&buffer, 0, sizeof(buffer));
|
|
|
|
/* Generate list entries for every usable cpu. */
|
|
sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
|
|
for (i = 0; i < CPU_SETSIZE; i++) {
|
|
if (!CPU_ISSET(i, &allowed_cpus))
|
|
continue;
|
|
/* Worse-case is every item in same CPU. */
|
|
buffer.c[i].array =
|
|
malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
|
|
BUFFER_ITEM_PER_CPU);
|
|
assert(buffer.c[i].array);
|
|
buffer.c[i].buflen = CPU_SETSIZE * BUFFER_ITEM_PER_CPU;
|
|
for (j = 1; j <= BUFFER_ITEM_PER_CPU; j++) {
|
|
struct percpu_buffer_node *node;
|
|
|
|
expected_sum += j;
|
|
|
|
/*
|
|
* We could theoretically put the word-sized
|
|
* "data" directly in the buffer. However, we
|
|
* want to model objects that would not fit
|
|
* within a single word, so allocate an object
|
|
* for each node.
|
|
*/
|
|
node = malloc(sizeof(*node));
|
|
assert(node);
|
|
node->data = j;
|
|
buffer.c[i].array[j - 1] = node;
|
|
buffer.c[i].offset++;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_threads; i++) {
|
|
ret = pthread_create(&test_threads[i], NULL,
|
|
test_percpu_buffer_thread, &buffer);
|
|
if (ret) {
|
|
errno = ret;
|
|
perror("pthread_create");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_threads; i++) {
|
|
ret = pthread_join(test_threads[i], NULL);
|
|
if (ret) {
|
|
errno = ret;
|
|
perror("pthread_join");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < CPU_SETSIZE; i++) {
|
|
struct percpu_buffer_node *node;
|
|
|
|
if (!CPU_ISSET(i, &allowed_cpus))
|
|
continue;
|
|
|
|
while ((node = __percpu_buffer_pop(&buffer, i))) {
|
|
sum += node->data;
|
|
free(node);
|
|
}
|
|
free(buffer.c[i].array);
|
|
}
|
|
|
|
/*
|
|
* All entries should now be accounted for (unless some external
|
|
* actor is interfering with our allowed affinity while this
|
|
* test is running).
|
|
*/
|
|
assert(sum == expected_sum);
|
|
}
|
|
|
|
bool this_cpu_memcpy_buffer_push(struct percpu_memcpy_buffer *buffer,
|
|
struct percpu_memcpy_buffer_node item,
|
|
int *_cpu)
|
|
{
|
|
bool result = false;
|
|
int cpu;
|
|
|
|
for (;;) {
|
|
intptr_t *targetptr_final, newval_final, offset;
|
|
char *destptr, *srcptr;
|
|
size_t copylen;
|
|
int ret;
|
|
|
|
cpu = rseq_cpu_start();
|
|
/* Load offset with single-copy atomicity. */
|
|
offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
|
|
if (offset == buffer->c[cpu].buflen)
|
|
break;
|
|
destptr = (char *)&buffer->c[cpu].array[offset];
|
|
srcptr = (char *)&item;
|
|
/* copylen must be <= 4kB. */
|
|
copylen = sizeof(item);
|
|
newval_final = offset + 1;
|
|
targetptr_final = &buffer->c[cpu].offset;
|
|
if (opt_mb)
|
|
ret = rseq_cmpeqv_trymemcpy_storev_release(
|
|
targetptr_final, offset,
|
|
destptr, srcptr, copylen,
|
|
newval_final, cpu);
|
|
else
|
|
ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
|
|
offset, destptr, srcptr, copylen,
|
|
newval_final, cpu);
|
|
if (rseq_likely(!ret)) {
|
|
result = true;
|
|
break;
|
|
}
|
|
/* Retry if comparison fails or rseq aborts. */
|
|
}
|
|
if (_cpu)
|
|
*_cpu = cpu;
|
|
return result;
|
|
}
|
|
|
|
bool this_cpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
|
|
struct percpu_memcpy_buffer_node *item,
|
|
int *_cpu)
|
|
{
|
|
bool result = false;
|
|
int cpu;
|
|
|
|
for (;;) {
|
|
intptr_t *targetptr_final, newval_final, offset;
|
|
char *destptr, *srcptr;
|
|
size_t copylen;
|
|
int ret;
|
|
|
|
cpu = rseq_cpu_start();
|
|
/* Load offset with single-copy atomicity. */
|
|
offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
|
|
if (offset == 0)
|
|
break;
|
|
destptr = (char *)item;
|
|
srcptr = (char *)&buffer->c[cpu].array[offset - 1];
|
|
/* copylen must be <= 4kB. */
|
|
copylen = sizeof(*item);
|
|
newval_final = offset - 1;
|
|
targetptr_final = &buffer->c[cpu].offset;
|
|
ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
|
|
offset, destptr, srcptr, copylen,
|
|
newval_final, cpu);
|
|
if (rseq_likely(!ret)) {
|
|
result = true;
|
|
break;
|
|
}
|
|
/* Retry if comparison fails or rseq aborts. */
|
|
}
|
|
if (_cpu)
|
|
*_cpu = cpu;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* __percpu_memcpy_buffer_pop is not safe against concurrent accesses. Should
|
|
* only be used on buffers that are not concurrently modified.
|
|
*/
|
|
bool __percpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
|
|
struct percpu_memcpy_buffer_node *item,
|
|
int cpu)
|
|
{
|
|
intptr_t offset;
|
|
|
|
offset = buffer->c[cpu].offset;
|
|
if (offset == 0)
|
|
return false;
|
|
memcpy(item, &buffer->c[cpu].array[offset - 1], sizeof(*item));
|
|
buffer->c[cpu].offset = offset - 1;
|
|
return true;
|
|
}
|
|
|
|
void *test_percpu_memcpy_buffer_thread(void *arg)
|
|
{
|
|
long long i, reps;
|
|
struct percpu_memcpy_buffer *buffer = (struct percpu_memcpy_buffer *)arg;
|
|
|
|
if (!opt_disable_rseq && rseq_register_current_thread())
|
|
abort();
|
|
|
|
reps = opt_reps;
|
|
for (i = 0; i < reps; i++) {
|
|
struct percpu_memcpy_buffer_node item;
|
|
bool result;
|
|
|
|
result = this_cpu_memcpy_buffer_pop(buffer, &item, NULL);
|
|
if (opt_yield)
|
|
sched_yield(); /* encourage shuffling */
|
|
if (result) {
|
|
if (!this_cpu_memcpy_buffer_push(buffer, item, NULL)) {
|
|
/* Should increase buffer size. */
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
|
|
(int) gettid(), nr_abort, signals_delivered);
|
|
if (!opt_disable_rseq && rseq_unregister_current_thread())
|
|
abort();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Simultaneous modification to a per-cpu buffer from many threads. */
|
|
void test_percpu_memcpy_buffer(void)
|
|
{
|
|
const int num_threads = opt_threads;
|
|
int i, j, ret;
|
|
uint64_t sum = 0, expected_sum = 0;
|
|
struct percpu_memcpy_buffer buffer;
|
|
pthread_t test_threads[num_threads];
|
|
cpu_set_t allowed_cpus;
|
|
|
|
memset(&buffer, 0, sizeof(buffer));
|
|
|
|
/* Generate list entries for every usable cpu. */
|
|
sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
|
|
for (i = 0; i < CPU_SETSIZE; i++) {
|
|
if (!CPU_ISSET(i, &allowed_cpus))
|
|
continue;
|
|
/* Worse-case is every item in same CPU. */
|
|
buffer.c[i].array =
|
|
malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
|
|
MEMCPY_BUFFER_ITEM_PER_CPU);
|
|
assert(buffer.c[i].array);
|
|
buffer.c[i].buflen = CPU_SETSIZE * MEMCPY_BUFFER_ITEM_PER_CPU;
|
|
for (j = 1; j <= MEMCPY_BUFFER_ITEM_PER_CPU; j++) {
|
|
expected_sum += 2 * j + 1;
|
|
|
|
/*
|
|
* We could theoretically put the word-sized
|
|
* "data" directly in the buffer. However, we
|
|
* want to model objects that would not fit
|
|
* within a single word, so allocate an object
|
|
* for each node.
|
|
*/
|
|
buffer.c[i].array[j - 1].data1 = j;
|
|
buffer.c[i].array[j - 1].data2 = j + 1;
|
|
buffer.c[i].offset++;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_threads; i++) {
|
|
ret = pthread_create(&test_threads[i], NULL,
|
|
test_percpu_memcpy_buffer_thread,
|
|
&buffer);
|
|
if (ret) {
|
|
errno = ret;
|
|
perror("pthread_create");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_threads; i++) {
|
|
ret = pthread_join(test_threads[i], NULL);
|
|
if (ret) {
|
|
errno = ret;
|
|
perror("pthread_join");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < CPU_SETSIZE; i++) {
|
|
struct percpu_memcpy_buffer_node item;
|
|
|
|
if (!CPU_ISSET(i, &allowed_cpus))
|
|
continue;
|
|
|
|
while (__percpu_memcpy_buffer_pop(&buffer, &item, i)) {
|
|
sum += item.data1;
|
|
sum += item.data2;
|
|
}
|
|
free(buffer.c[i].array);
|
|
}
|
|
|
|
/*
|
|
* All entries should now be accounted for (unless some external
|
|
* actor is interfering with our allowed affinity while this
|
|
* test is running).
|
|
*/
|
|
assert(sum == expected_sum);
|
|
}
|
|
|
|
static void test_signal_interrupt_handler(int signo)
|
|
{
|
|
signals_delivered++;
|
|
}
|
|
|
|
static int set_signal_handler(void)
|
|
{
|
|
int ret = 0;
|
|
struct sigaction sa;
|
|
sigset_t sigset;
|
|
|
|
ret = sigemptyset(&sigset);
|
|
if (ret < 0) {
|
|
perror("sigemptyset");
|
|
return ret;
|
|
}
|
|
|
|
sa.sa_handler = test_signal_interrupt_handler;
|
|
sa.sa_mask = sigset;
|
|
sa.sa_flags = 0;
|
|
ret = sigaction(SIGUSR1, &sa, NULL);
|
|
if (ret < 0) {
|
|
perror("sigaction");
|
|
return ret;
|
|
}
|
|
|
|
printf_verbose("Signal handler set for SIGUSR1\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void show_usage(int argc, char **argv)
|
|
{
|
|
printf("Usage : %s <OPTIONS>\n",
|
|
argv[0]);
|
|
printf("OPTIONS:\n");
|
|
printf(" [-1 loops] Number of loops for delay injection 1\n");
|
|
printf(" [-2 loops] Number of loops for delay injection 2\n");
|
|
printf(" [-3 loops] Number of loops for delay injection 3\n");
|
|
printf(" [-4 loops] Number of loops for delay injection 4\n");
|
|
printf(" [-5 loops] Number of loops for delay injection 5\n");
|
|
printf(" [-6 loops] Number of loops for delay injection 6\n");
|
|
printf(" [-7 loops] Number of loops for delay injection 7 (-1 to enable -m)\n");
|
|
printf(" [-8 loops] Number of loops for delay injection 8 (-1 to enable -m)\n");
|
|
printf(" [-9 loops] Number of loops for delay injection 9 (-1 to enable -m)\n");
|
|
printf(" [-m N] Yield/sleep/kill every modulo N (default 0: disabled) (>= 0)\n");
|
|
printf(" [-y] Yield\n");
|
|
printf(" [-k] Kill thread with signal\n");
|
|
printf(" [-s S] S: =0: disabled (default), >0: sleep time (ms)\n");
|
|
printf(" [-t N] Number of threads (default 200)\n");
|
|
printf(" [-r N] Number of repetitions per thread (default 5000)\n");
|
|
printf(" [-d] Disable rseq system call (no initialization)\n");
|
|
printf(" [-D M] Disable rseq for each M threads\n");
|
|
printf(" [-T test] Choose test: (s)pinlock, (l)ist, (b)uffer, (m)emcpy, (i)ncrement\n");
|
|
printf(" [-M] Push into buffer and memcpy buffer with memory barriers.\n");
|
|
printf(" [-v] Verbose output.\n");
|
|
printf(" [-h] Show this help.\n");
|
|
printf("\n");
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < argc; i++) {
|
|
if (argv[i][0] != '-')
|
|
continue;
|
|
switch (argv[i][1]) {
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
if (argc < i + 2) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
loop_cnt[argv[i][1] - '0'] = atol(argv[i + 1]);
|
|
i++;
|
|
break;
|
|
case 'm':
|
|
if (argc < i + 2) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
opt_modulo = atol(argv[i + 1]);
|
|
if (opt_modulo < 0) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
i++;
|
|
break;
|
|
case 's':
|
|
if (argc < i + 2) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
opt_sleep = atol(argv[i + 1]);
|
|
if (opt_sleep < 0) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
i++;
|
|
break;
|
|
case 'y':
|
|
opt_yield = 1;
|
|
break;
|
|
case 'k':
|
|
opt_signal = 1;
|
|
break;
|
|
case 'd':
|
|
opt_disable_rseq = 1;
|
|
break;
|
|
case 'D':
|
|
if (argc < i + 2) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
opt_disable_mod = atol(argv[i + 1]);
|
|
if (opt_disable_mod < 0) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
i++;
|
|
break;
|
|
case 't':
|
|
if (argc < i + 2) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
opt_threads = atol(argv[i + 1]);
|
|
if (opt_threads < 0) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
i++;
|
|
break;
|
|
case 'r':
|
|
if (argc < i + 2) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
opt_reps = atoll(argv[i + 1]);
|
|
if (opt_reps < 0) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
i++;
|
|
break;
|
|
case 'h':
|
|
show_usage(argc, argv);
|
|
goto end;
|
|
case 'T':
|
|
if (argc < i + 2) {
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
opt_test = *argv[i + 1];
|
|
switch (opt_test) {
|
|
case 's':
|
|
case 'l':
|
|
case 'i':
|
|
case 'b':
|
|
case 'm':
|
|
break;
|
|
default:
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
i++;
|
|
break;
|
|
case 'v':
|
|
verbose = 1;
|
|
break;
|
|
case 'M':
|
|
opt_mb = 1;
|
|
break;
|
|
default:
|
|
show_usage(argc, argv);
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
loop_cnt_1 = loop_cnt[1];
|
|
loop_cnt_2 = loop_cnt[2];
|
|
loop_cnt_3 = loop_cnt[3];
|
|
loop_cnt_4 = loop_cnt[4];
|
|
loop_cnt_5 = loop_cnt[5];
|
|
loop_cnt_6 = loop_cnt[6];
|
|
|
|
if (set_signal_handler())
|
|
goto error;
|
|
|
|
if (!opt_disable_rseq && rseq_register_current_thread())
|
|
goto error;
|
|
switch (opt_test) {
|
|
case 's':
|
|
printf_verbose("spinlock\n");
|
|
test_percpu_spinlock();
|
|
break;
|
|
case 'l':
|
|
printf_verbose("linked list\n");
|
|
test_percpu_list();
|
|
break;
|
|
case 'b':
|
|
printf_verbose("buffer\n");
|
|
test_percpu_buffer();
|
|
break;
|
|
case 'm':
|
|
printf_verbose("memcpy buffer\n");
|
|
test_percpu_memcpy_buffer();
|
|
break;
|
|
case 'i':
|
|
printf_verbose("counter increment\n");
|
|
test_percpu_inc();
|
|
break;
|
|
}
|
|
if (!opt_disable_rseq && rseq_unregister_current_thread())
|
|
abort();
|
|
end:
|
|
return 0;
|
|
|
|
error:
|
|
return -1;
|
|
}
|