bba676cc0b
Similar NULL deref was originally fixed by graceful teardown sequence -
https://lore.kernel.org/linux-i2c/1597106560-79693-1-git-send-email-dphadke@linux.microsoft.com
After this, a tasklet was added to take care of FIFO full condition for large i2c
transaction.
https://lore.kernel.org/linux-arm-kernel/20201102035433.6774-1-rayagonda.kokatanur@broadcom.com/
This introduced regression, a new race condition between tasklet enabling
interrupts and client unreg teardown sequence.
Kill tasklet before unreg_slave() masks bits in IE_OFFSET.
Updated teardown sequence -
(1) disable_irq()
(2) Kill tasklet
(3) Mask event enable bits in control reg
(4) Erase slave address (avoid further writes to rx fifo)
(5) Flush tx and rx FIFOs
(6) Clear pending event (interrupt) bits in status reg
(7) Set client pointer to NULL
(8) enable_irq()
--
Unable to handle kernel read from unreadable memory at virtual address 0000000000000320
Mem abort info:
ESR = 0x96000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000009212a000
[0000000000000320] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 96000004 [#1] SMP
CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O
Hardware name: Overlake (DT)
pstate: 40400085 (nZcv daIf +PAN -UAO -TCO BTYPE=--)
pc : bcm_iproc_i2c_slave_isr+0x2b8/0x8e4
lr : bcm_iproc_i2c_slave_isr+0x1c8/0x8e4
sp : ffff800010003e70
x29: ffff800010003e80 x28: ffffda017acdc000
x27: ffffda017b0ae000 x26: ffff800010004000
x25: ffff800010000000 x24: ffffda017af4a168
x23: 0000000000000073 x22: 0000000000000000
x21: 0000000001400000 x20: 0000000001000000
x19: ffff06f09583f880 x18: 00000000fa83b2da
x17: 000000000000b67e x16: 0000000002edb2f3
x15: 00000000000002c7 x14: 00000000000002c7
x13: 0000000000000006 x12: 0000000000000033
x11: 0000000000000000 x10: 0000000001000000
x9 : 0000000003289312 x8 : 0000000003289311
x7 : 02d0cd03a303adbc x6 : 02d18e7f0a4dfc6c
x5 : 02edb2f33f76ea68 x4 : 00000000fa83b2da
x3 : ffffda017af43cd0 x2 : ffff800010003e74
x1 : 0000000001400000 x0 : 0000000000000000
Call trace:
bcm_iproc_i2c_slave_isr+0x2b8/0x8e4
bcm_iproc_i2c_isr+0x178/0x290
__handle_irq_event_percpu+0xd0/0x200
handle_irq_event+0x60/0x1a0
handle_fasteoi_irq+0x130/0x220
__handle_domain_irq+0x8c/0xcc
gic_handle_irq+0xc0/0x120
el1_irq+0xcc/0x180
finish_task_switch+0x100/0x1d8
__schedule+0x61c/0x7a0
schedule_idle+0x28/0x44
do_idle+0x254/0x28c
cpu_startup_entry+0x28/0x2c
rest_init+0xc4/0xd0
arch_call_rest_init+0x14/0x1c
start_kernel+0x33c/0x3b8
Code: f9423260 910013e2 11000509 b9047a69 (f9419009)
---[ end trace 4781455b2a7bec15 ]---
Fixes: 4d658451c9
("i2c: iproc: handle rx fifo full interrupt")
Signed-off-by: Dhananjay Phadke <dphadke@linux.microsoft.com>
Acked-by: Ray Jui <ray.jui@broadcom.com>
Acked-by: Rayagonda Kokatanur <rayagonda.kokatanur@broadcom.com>
Signed-off-by: Wolfram Sang <wsa@kernel.org>
1280 lines
36 KiB
C
1280 lines
36 KiB
C
/*
|
|
* Copyright (C) 2014 Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation version 2.
|
|
*
|
|
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
|
* kind, whether express or implied; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
#define IDM_CTRL_DIRECT_OFFSET 0x00
|
|
#define CFG_OFFSET 0x00
|
|
#define CFG_RESET_SHIFT 31
|
|
#define CFG_EN_SHIFT 30
|
|
#define CFG_SLAVE_ADDR_0_SHIFT 28
|
|
#define CFG_M_RETRY_CNT_SHIFT 16
|
|
#define CFG_M_RETRY_CNT_MASK 0x0f
|
|
|
|
#define TIM_CFG_OFFSET 0x04
|
|
#define TIM_CFG_MODE_400_SHIFT 31
|
|
#define TIM_RAND_SLAVE_STRETCH_SHIFT 24
|
|
#define TIM_RAND_SLAVE_STRETCH_MASK 0x7f
|
|
#define TIM_PERIODIC_SLAVE_STRETCH_SHIFT 16
|
|
#define TIM_PERIODIC_SLAVE_STRETCH_MASK 0x7f
|
|
|
|
#define S_CFG_SMBUS_ADDR_OFFSET 0x08
|
|
#define S_CFG_EN_NIC_SMB_ADDR3_SHIFT 31
|
|
#define S_CFG_NIC_SMB_ADDR3_SHIFT 24
|
|
#define S_CFG_NIC_SMB_ADDR3_MASK 0x7f
|
|
#define S_CFG_EN_NIC_SMB_ADDR2_SHIFT 23
|
|
#define S_CFG_NIC_SMB_ADDR2_SHIFT 16
|
|
#define S_CFG_NIC_SMB_ADDR2_MASK 0x7f
|
|
#define S_CFG_EN_NIC_SMB_ADDR1_SHIFT 15
|
|
#define S_CFG_NIC_SMB_ADDR1_SHIFT 8
|
|
#define S_CFG_NIC_SMB_ADDR1_MASK 0x7f
|
|
#define S_CFG_EN_NIC_SMB_ADDR0_SHIFT 7
|
|
#define S_CFG_NIC_SMB_ADDR0_SHIFT 0
|
|
#define S_CFG_NIC_SMB_ADDR0_MASK 0x7f
|
|
|
|
#define M_FIFO_CTRL_OFFSET 0x0c
|
|
#define M_FIFO_RX_FLUSH_SHIFT 31
|
|
#define M_FIFO_TX_FLUSH_SHIFT 30
|
|
#define M_FIFO_RX_CNT_SHIFT 16
|
|
#define M_FIFO_RX_CNT_MASK 0x7f
|
|
#define M_FIFO_RX_THLD_SHIFT 8
|
|
#define M_FIFO_RX_THLD_MASK 0x3f
|
|
|
|
#define S_FIFO_CTRL_OFFSET 0x10
|
|
#define S_FIFO_RX_FLUSH_SHIFT 31
|
|
#define S_FIFO_TX_FLUSH_SHIFT 30
|
|
#define S_FIFO_RX_CNT_SHIFT 16
|
|
#define S_FIFO_RX_CNT_MASK 0x7f
|
|
#define S_FIFO_RX_THLD_SHIFT 8
|
|
#define S_FIFO_RX_THLD_MASK 0x3f
|
|
|
|
#define M_CMD_OFFSET 0x30
|
|
#define M_CMD_START_BUSY_SHIFT 31
|
|
#define M_CMD_STATUS_SHIFT 25
|
|
#define M_CMD_STATUS_MASK 0x07
|
|
#define M_CMD_STATUS_SUCCESS 0x0
|
|
#define M_CMD_STATUS_LOST_ARB 0x1
|
|
#define M_CMD_STATUS_NACK_ADDR 0x2
|
|
#define M_CMD_STATUS_NACK_DATA 0x3
|
|
#define M_CMD_STATUS_TIMEOUT 0x4
|
|
#define M_CMD_STATUS_FIFO_UNDERRUN 0x5
|
|
#define M_CMD_STATUS_RX_FIFO_FULL 0x6
|
|
#define M_CMD_PROTOCOL_SHIFT 9
|
|
#define M_CMD_PROTOCOL_MASK 0xf
|
|
#define M_CMD_PROTOCOL_QUICK 0x0
|
|
#define M_CMD_PROTOCOL_BLK_WR 0x7
|
|
#define M_CMD_PROTOCOL_BLK_RD 0x8
|
|
#define M_CMD_PROTOCOL_PROCESS 0xa
|
|
#define M_CMD_PEC_SHIFT 8
|
|
#define M_CMD_RD_CNT_SHIFT 0
|
|
#define M_CMD_RD_CNT_MASK 0xff
|
|
|
|
#define S_CMD_OFFSET 0x34
|
|
#define S_CMD_START_BUSY_SHIFT 31
|
|
#define S_CMD_STATUS_SHIFT 23
|
|
#define S_CMD_STATUS_MASK 0x07
|
|
#define S_CMD_STATUS_SUCCESS 0x0
|
|
#define S_CMD_STATUS_TIMEOUT 0x5
|
|
#define S_CMD_STATUS_MASTER_ABORT 0x7
|
|
|
|
#define IE_OFFSET 0x38
|
|
#define IE_M_RX_FIFO_FULL_SHIFT 31
|
|
#define IE_M_RX_THLD_SHIFT 30
|
|
#define IE_M_START_BUSY_SHIFT 28
|
|
#define IE_M_TX_UNDERRUN_SHIFT 27
|
|
#define IE_S_RX_FIFO_FULL_SHIFT 26
|
|
#define IE_S_RX_THLD_SHIFT 25
|
|
#define IE_S_RX_EVENT_SHIFT 24
|
|
#define IE_S_START_BUSY_SHIFT 23
|
|
#define IE_S_TX_UNDERRUN_SHIFT 22
|
|
#define IE_S_RD_EVENT_SHIFT 21
|
|
|
|
#define IS_OFFSET 0x3c
|
|
#define IS_M_RX_FIFO_FULL_SHIFT 31
|
|
#define IS_M_RX_THLD_SHIFT 30
|
|
#define IS_M_START_BUSY_SHIFT 28
|
|
#define IS_M_TX_UNDERRUN_SHIFT 27
|
|
#define IS_S_RX_FIFO_FULL_SHIFT 26
|
|
#define IS_S_RX_THLD_SHIFT 25
|
|
#define IS_S_RX_EVENT_SHIFT 24
|
|
#define IS_S_START_BUSY_SHIFT 23
|
|
#define IS_S_TX_UNDERRUN_SHIFT 22
|
|
#define IS_S_RD_EVENT_SHIFT 21
|
|
|
|
#define M_TX_OFFSET 0x40
|
|
#define M_TX_WR_STATUS_SHIFT 31
|
|
#define M_TX_DATA_SHIFT 0
|
|
#define M_TX_DATA_MASK 0xff
|
|
|
|
#define M_RX_OFFSET 0x44
|
|
#define M_RX_STATUS_SHIFT 30
|
|
#define M_RX_STATUS_MASK 0x03
|
|
#define M_RX_PEC_ERR_SHIFT 29
|
|
#define M_RX_DATA_SHIFT 0
|
|
#define M_RX_DATA_MASK 0xff
|
|
|
|
#define S_TX_OFFSET 0x48
|
|
#define S_TX_WR_STATUS_SHIFT 31
|
|
#define S_TX_DATA_SHIFT 0
|
|
#define S_TX_DATA_MASK 0xff
|
|
|
|
#define S_RX_OFFSET 0x4c
|
|
#define S_RX_STATUS_SHIFT 30
|
|
#define S_RX_STATUS_MASK 0x03
|
|
#define S_RX_PEC_ERR_SHIFT 29
|
|
#define S_RX_DATA_SHIFT 0
|
|
#define S_RX_DATA_MASK 0xff
|
|
|
|
#define I2C_TIMEOUT_MSEC 50000
|
|
#define M_TX_RX_FIFO_SIZE 64
|
|
#define M_RX_FIFO_MAX_THLD_VALUE (M_TX_RX_FIFO_SIZE - 1)
|
|
|
|
#define M_RX_MAX_READ_LEN 255
|
|
#define M_RX_FIFO_THLD_VALUE 50
|
|
|
|
#define IE_M_ALL_INTERRUPT_SHIFT 27
|
|
#define IE_M_ALL_INTERRUPT_MASK 0x1e
|
|
|
|
#define SLAVE_READ_WRITE_BIT_MASK 0x1
|
|
#define SLAVE_READ_WRITE_BIT_SHIFT 0x1
|
|
#define SLAVE_MAX_SIZE_TRANSACTION 64
|
|
#define SLAVE_CLOCK_STRETCH_TIME 25
|
|
|
|
#define IE_S_ALL_INTERRUPT_SHIFT 21
|
|
#define IE_S_ALL_INTERRUPT_MASK 0x3f
|
|
/*
|
|
* It takes ~18us to reading 10bytes of data, hence to keep tasklet
|
|
* running for less time, max slave read per tasklet is set to 10 bytes.
|
|
*/
|
|
#define MAX_SLAVE_RX_PER_INT 10
|
|
|
|
enum i2c_slave_read_status {
|
|
I2C_SLAVE_RX_FIFO_EMPTY = 0,
|
|
I2C_SLAVE_RX_START,
|
|
I2C_SLAVE_RX_DATA,
|
|
I2C_SLAVE_RX_END,
|
|
};
|
|
|
|
enum bus_speed_index {
|
|
I2C_SPD_100K = 0,
|
|
I2C_SPD_400K,
|
|
};
|
|
|
|
enum bcm_iproc_i2c_type {
|
|
IPROC_I2C,
|
|
IPROC_I2C_NIC
|
|
};
|
|
|
|
struct bcm_iproc_i2c_dev {
|
|
struct device *device;
|
|
enum bcm_iproc_i2c_type type;
|
|
int irq;
|
|
|
|
void __iomem *base;
|
|
void __iomem *idm_base;
|
|
|
|
u32 ape_addr_mask;
|
|
|
|
/* lock for indirect access through IDM */
|
|
spinlock_t idm_lock;
|
|
|
|
struct i2c_adapter adapter;
|
|
unsigned int bus_speed;
|
|
|
|
struct completion done;
|
|
int xfer_is_done;
|
|
|
|
struct i2c_msg *msg;
|
|
|
|
struct i2c_client *slave;
|
|
|
|
/* bytes that have been transferred */
|
|
unsigned int tx_bytes;
|
|
/* bytes that have been read */
|
|
unsigned int rx_bytes;
|
|
unsigned int thld_bytes;
|
|
|
|
bool slave_rx_only;
|
|
bool rx_start_rcvd;
|
|
bool slave_read_complete;
|
|
u32 tx_underrun;
|
|
u32 slave_int_mask;
|
|
struct tasklet_struct slave_rx_tasklet;
|
|
};
|
|
|
|
/* tasklet to process slave rx data */
|
|
static void slave_rx_tasklet_fn(unsigned long);
|
|
|
|
/*
|
|
* Can be expanded in the future if more interrupt status bits are utilized
|
|
*/
|
|
#define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
|
|
| BIT(IS_M_RX_THLD_SHIFT))
|
|
|
|
#define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
|
|
| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
|
|
| BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
|
|
| BIT(IS_S_RX_THLD_SHIFT))
|
|
|
|
static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
|
|
static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
|
|
static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
|
|
bool enable);
|
|
|
|
static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
|
|
u32 offset)
|
|
{
|
|
u32 val;
|
|
|
|
if (iproc_i2c->idm_base) {
|
|
spin_lock(&iproc_i2c->idm_lock);
|
|
writel(iproc_i2c->ape_addr_mask,
|
|
iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
|
|
val = readl(iproc_i2c->base + offset);
|
|
spin_unlock(&iproc_i2c->idm_lock);
|
|
} else {
|
|
val = readl(iproc_i2c->base + offset);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
|
|
u32 offset, u32 val)
|
|
{
|
|
if (iproc_i2c->idm_base) {
|
|
spin_lock(&iproc_i2c->idm_lock);
|
|
writel(iproc_i2c->ape_addr_mask,
|
|
iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
|
|
writel(val, iproc_i2c->base + offset);
|
|
spin_unlock(&iproc_i2c->idm_lock);
|
|
} else {
|
|
writel(val, iproc_i2c->base + offset);
|
|
}
|
|
}
|
|
|
|
static void bcm_iproc_i2c_slave_init(
|
|
struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
|
|
{
|
|
u32 val;
|
|
|
|
iproc_i2c->tx_underrun = 0;
|
|
if (need_reset) {
|
|
/* put controller in reset */
|
|
val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
|
|
val |= BIT(CFG_RESET_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
|
|
|
|
/* wait 100 usec per spec */
|
|
udelay(100);
|
|
|
|
/* bring controller out of reset */
|
|
val &= ~(BIT(CFG_RESET_SHIFT));
|
|
iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
|
|
}
|
|
|
|
/* flush TX/RX FIFOs */
|
|
val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
|
|
iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
|
|
|
|
/* Maximum slave stretch time */
|
|
val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
|
|
val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
|
|
val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
|
|
|
|
/* Configure the slave address */
|
|
val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
|
|
val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
|
|
val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
|
|
val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
|
|
|
|
/* clear all pending slave interrupts */
|
|
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
|
|
|
|
/* Enable interrupt register to indicate a valid byte in receive fifo */
|
|
val = BIT(IE_S_RX_EVENT_SHIFT);
|
|
/* Enable interrupt register to indicate Slave Rx FIFO Full */
|
|
val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
|
|
/* Enable interrupt register to indicate a Master read transaction */
|
|
val |= BIT(IE_S_RD_EVENT_SHIFT);
|
|
/* Enable interrupt register for the Slave BUSY command */
|
|
val |= BIT(IE_S_START_BUSY_SHIFT);
|
|
iproc_i2c->slave_int_mask = val;
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
|
|
}
|
|
|
|
static void bcm_iproc_i2c_check_slave_status(
|
|
struct bcm_iproc_i2c_dev *iproc_i2c)
|
|
{
|
|
u32 val;
|
|
|
|
val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
|
|
/* status is valid only when START_BUSY is cleared after it was set */
|
|
if (val & BIT(S_CMD_START_BUSY_SHIFT))
|
|
return;
|
|
|
|
val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
|
|
if (val == S_CMD_STATUS_TIMEOUT || val == S_CMD_STATUS_MASTER_ABORT) {
|
|
dev_err(iproc_i2c->device, (val == S_CMD_STATUS_TIMEOUT) ?
|
|
"slave random stretch time timeout\n" :
|
|
"Master aborted read transaction\n");
|
|
/* re-initialize i2c for recovery */
|
|
bcm_iproc_i2c_enable_disable(iproc_i2c, false);
|
|
bcm_iproc_i2c_slave_init(iproc_i2c, true);
|
|
bcm_iproc_i2c_enable_disable(iproc_i2c, true);
|
|
}
|
|
}
|
|
|
|
static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
|
|
{
|
|
u8 rx_data, rx_status;
|
|
u32 rx_bytes = 0;
|
|
u32 val;
|
|
|
|
while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
|
|
val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
|
|
rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
|
|
rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
|
|
|
|
if (rx_status == I2C_SLAVE_RX_START) {
|
|
/* Start of SMBUS Master write */
|
|
i2c_slave_event(iproc_i2c->slave,
|
|
I2C_SLAVE_WRITE_REQUESTED, &rx_data);
|
|
iproc_i2c->rx_start_rcvd = true;
|
|
iproc_i2c->slave_read_complete = false;
|
|
} else if (rx_status == I2C_SLAVE_RX_DATA &&
|
|
iproc_i2c->rx_start_rcvd) {
|
|
/* Middle of SMBUS Master write */
|
|
i2c_slave_event(iproc_i2c->slave,
|
|
I2C_SLAVE_WRITE_RECEIVED, &rx_data);
|
|
} else if (rx_status == I2C_SLAVE_RX_END &&
|
|
iproc_i2c->rx_start_rcvd) {
|
|
/* End of SMBUS Master write */
|
|
if (iproc_i2c->slave_rx_only)
|
|
i2c_slave_event(iproc_i2c->slave,
|
|
I2C_SLAVE_WRITE_RECEIVED,
|
|
&rx_data);
|
|
|
|
i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
|
|
&rx_data);
|
|
} else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
|
|
iproc_i2c->rx_start_rcvd = false;
|
|
iproc_i2c->slave_read_complete = true;
|
|
break;
|
|
}
|
|
|
|
rx_bytes++;
|
|
}
|
|
}
|
|
|
|
static void slave_rx_tasklet_fn(unsigned long data)
|
|
{
|
|
struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
|
|
u32 int_clr;
|
|
|
|
bcm_iproc_i2c_slave_read(iproc_i2c);
|
|
|
|
/* clear pending IS_S_RX_EVENT_SHIFT interrupt */
|
|
int_clr = BIT(IS_S_RX_EVENT_SHIFT);
|
|
|
|
if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
|
|
/*
|
|
* In case of single byte master-read request,
|
|
* IS_S_TX_UNDERRUN_SHIFT event is generated before
|
|
* IS_S_START_BUSY_SHIFT event. Hence start slave data send
|
|
* from first IS_S_TX_UNDERRUN_SHIFT event.
|
|
*
|
|
* This means don't send any data from slave when
|
|
* IS_S_RD_EVENT_SHIFT event is generated else it will increment
|
|
* eeprom or other backend slave driver read pointer twice.
|
|
*/
|
|
iproc_i2c->tx_underrun = 0;
|
|
iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
|
|
|
|
/* clear IS_S_RD_EVENT_SHIFT interrupt */
|
|
int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
|
|
}
|
|
|
|
/* clear slave interrupt */
|
|
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
|
|
/* enable slave interrupts */
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
|
|
}
|
|
|
|
static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
|
|
u32 status)
|
|
{
|
|
u32 val;
|
|
u8 value;
|
|
|
|
/*
|
|
* Slave events in case of master-write, master-write-read and,
|
|
* master-read
|
|
*
|
|
* Master-write : only IS_S_RX_EVENT_SHIFT event
|
|
* Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
|
|
* events
|
|
* Master-read : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
|
|
* events or only IS_S_RD_EVENT_SHIFT
|
|
*
|
|
* iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
|
|
* (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
|
|
* full. This can happen if Master issues write requests of more than
|
|
* 64 bytes.
|
|
*/
|
|
if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
|
|
status & BIT(IS_S_RD_EVENT_SHIFT) ||
|
|
status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
|
|
/* disable slave interrupts */
|
|
val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
|
|
val &= ~iproc_i2c->slave_int_mask;
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
|
|
|
|
if (status & BIT(IS_S_RD_EVENT_SHIFT))
|
|
/* Master-write-read request */
|
|
iproc_i2c->slave_rx_only = false;
|
|
else
|
|
/* Master-write request only */
|
|
iproc_i2c->slave_rx_only = true;
|
|
|
|
/* schedule tasklet to read data later */
|
|
tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
|
|
|
|
/*
|
|
* clear only IS_S_RX_EVENT_SHIFT and
|
|
* IS_S_RX_FIFO_FULL_SHIFT interrupt.
|
|
*/
|
|
val = BIT(IS_S_RX_EVENT_SHIFT);
|
|
if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT))
|
|
val |= BIT(IS_S_RX_FIFO_FULL_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
|
|
}
|
|
|
|
if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
|
|
iproc_i2c->tx_underrun++;
|
|
if (iproc_i2c->tx_underrun == 1)
|
|
/* Start of SMBUS for Master Read */
|
|
i2c_slave_event(iproc_i2c->slave,
|
|
I2C_SLAVE_READ_REQUESTED,
|
|
&value);
|
|
else
|
|
/* Master read other than start */
|
|
i2c_slave_event(iproc_i2c->slave,
|
|
I2C_SLAVE_READ_PROCESSED,
|
|
&value);
|
|
|
|
iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
|
|
/* start transfer */
|
|
val = BIT(S_CMD_START_BUSY_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
|
|
|
|
/* clear interrupt */
|
|
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
|
|
BIT(IS_S_TX_UNDERRUN_SHIFT));
|
|
}
|
|
|
|
/* Stop received from master in case of master read transaction */
|
|
if (status & BIT(IS_S_START_BUSY_SHIFT)) {
|
|
/*
|
|
* Disable interrupt for TX FIFO becomes empty and
|
|
* less than PKT_LENGTH bytes were output on the SMBUS
|
|
*/
|
|
iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
|
|
iproc_i2c->slave_int_mask);
|
|
|
|
/* End of SMBUS for Master Read */
|
|
val = BIT(S_TX_WR_STATUS_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
|
|
|
|
val = BIT(S_CMD_START_BUSY_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
|
|
|
|
/* flush TX FIFOs */
|
|
val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
|
|
val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
|
|
iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
|
|
|
|
i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
|
|
|
|
/* clear interrupt */
|
|
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
|
|
BIT(IS_S_START_BUSY_SHIFT));
|
|
}
|
|
|
|
/* check slave transmit status only if slave is transmitting */
|
|
if (!iproc_i2c->slave_rx_only)
|
|
bcm_iproc_i2c_check_slave_status(iproc_i2c);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
|
|
{
|
|
struct i2c_msg *msg = iproc_i2c->msg;
|
|
uint32_t val;
|
|
|
|
/* Read valid data from RX FIFO */
|
|
while (iproc_i2c->rx_bytes < msg->len) {
|
|
val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
|
|
|
|
/* rx fifo empty */
|
|
if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
|
|
break;
|
|
|
|
msg->buf[iproc_i2c->rx_bytes] =
|
|
(val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
|
|
iproc_i2c->rx_bytes++;
|
|
}
|
|
}
|
|
|
|
static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
|
|
{
|
|
struct i2c_msg *msg = iproc_i2c->msg;
|
|
unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
|
|
unsigned int i;
|
|
u32 val;
|
|
|
|
/* can only fill up to the FIFO size */
|
|
tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
|
|
for (i = 0; i < tx_bytes; i++) {
|
|
/* start from where we left over */
|
|
unsigned int idx = iproc_i2c->tx_bytes + i;
|
|
|
|
val = msg->buf[idx];
|
|
|
|
/* mark the last byte */
|
|
if (idx == msg->len - 1) {
|
|
val |= BIT(M_TX_WR_STATUS_SHIFT);
|
|
|
|
if (iproc_i2c->irq) {
|
|
u32 tmp;
|
|
|
|
/*
|
|
* Since this is the last byte, we should now
|
|
* disable TX FIFO underrun interrupt
|
|
*/
|
|
tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
|
|
tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
|
|
tmp);
|
|
}
|
|
}
|
|
|
|
/* load data into TX FIFO */
|
|
iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
|
|
}
|
|
|
|
/* update number of transferred bytes */
|
|
iproc_i2c->tx_bytes += tx_bytes;
|
|
}
|
|
|
|
static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
|
|
{
|
|
struct i2c_msg *msg = iproc_i2c->msg;
|
|
u32 bytes_left, val;
|
|
|
|
bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
|
|
bytes_left = msg->len - iproc_i2c->rx_bytes;
|
|
if (bytes_left == 0) {
|
|
if (iproc_i2c->irq) {
|
|
/* finished reading all data, disable rx thld event */
|
|
val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
|
|
val &= ~BIT(IS_M_RX_THLD_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
|
|
}
|
|
} else if (bytes_left < iproc_i2c->thld_bytes) {
|
|
/* set bytes left as threshold */
|
|
val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
|
|
val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
|
|
val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
|
|
iproc_i2c->thld_bytes = bytes_left;
|
|
}
|
|
/*
|
|
* bytes_left >= iproc_i2c->thld_bytes,
|
|
* hence no need to change the THRESHOLD SET.
|
|
* It will remain as iproc_i2c->thld_bytes itself
|
|
*/
|
|
}
|
|
|
|
static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
|
|
u32 status)
|
|
{
|
|
/* TX FIFO is empty and we have more data to send */
|
|
if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
|
|
bcm_iproc_i2c_send(iproc_i2c);
|
|
|
|
/* RX FIFO threshold is reached and data needs to be read out */
|
|
if (status & BIT(IS_M_RX_THLD_SHIFT))
|
|
bcm_iproc_i2c_read(iproc_i2c);
|
|
|
|
/* transfer is done */
|
|
if (status & BIT(IS_M_START_BUSY_SHIFT)) {
|
|
iproc_i2c->xfer_is_done = 1;
|
|
if (iproc_i2c->irq)
|
|
complete(&iproc_i2c->done);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
|
|
{
|
|
struct bcm_iproc_i2c_dev *iproc_i2c = data;
|
|
u32 slave_status;
|
|
u32 status;
|
|
bool ret;
|
|
|
|
status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
|
|
/* process only slave interrupt which are enabled */
|
|
slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
|
|
ISR_MASK_SLAVE;
|
|
|
|
if (slave_status) {
|
|
ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
|
|
if (ret)
|
|
return IRQ_HANDLED;
|
|
else
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
status &= ISR_MASK;
|
|
if (!status)
|
|
return IRQ_NONE;
|
|
|
|
/* process all master based events */
|
|
bcm_iproc_i2c_process_m_event(iproc_i2c, status);
|
|
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
|
|
{
|
|
u32 val;
|
|
|
|
/* put controller in reset */
|
|
val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
|
|
val |= BIT(CFG_RESET_SHIFT);
|
|
val &= ~(BIT(CFG_EN_SHIFT));
|
|
iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
|
|
|
|
/* wait 100 usec per spec */
|
|
udelay(100);
|
|
|
|
/* bring controller out of reset */
|
|
val &= ~(BIT(CFG_RESET_SHIFT));
|
|
iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
|
|
|
|
/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
|
|
val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
|
|
iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
|
|
/* disable all interrupts */
|
|
val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
|
|
val &= ~(IE_M_ALL_INTERRUPT_MASK <<
|
|
IE_M_ALL_INTERRUPT_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
|
|
|
|
/* clear all pending interrupts */
|
|
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
|
|
bool enable)
|
|
{
|
|
u32 val;
|
|
|
|
val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
|
|
if (enable)
|
|
val |= BIT(CFG_EN_SHIFT);
|
|
else
|
|
val &= ~BIT(CFG_EN_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
|
|
}
|
|
|
|
static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
|
|
struct i2c_msg *msg)
|
|
{
|
|
u32 val;
|
|
|
|
val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
|
|
val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
|
|
|
|
switch (val) {
|
|
case M_CMD_STATUS_SUCCESS:
|
|
return 0;
|
|
|
|
case M_CMD_STATUS_LOST_ARB:
|
|
dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
|
|
return -EAGAIN;
|
|
|
|
case M_CMD_STATUS_NACK_ADDR:
|
|
dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
|
|
return -ENXIO;
|
|
|
|
case M_CMD_STATUS_NACK_DATA:
|
|
dev_dbg(iproc_i2c->device, "NAK data\n");
|
|
return -ENXIO;
|
|
|
|
case M_CMD_STATUS_TIMEOUT:
|
|
dev_dbg(iproc_i2c->device, "bus timeout\n");
|
|
return -ETIMEDOUT;
|
|
|
|
case M_CMD_STATUS_FIFO_UNDERRUN:
|
|
dev_dbg(iproc_i2c->device, "FIFO under-run\n");
|
|
return -ENXIO;
|
|
|
|
case M_CMD_STATUS_RX_FIFO_FULL:
|
|
dev_dbg(iproc_i2c->device, "RX FIFO full\n");
|
|
return -ETIMEDOUT;
|
|
|
|
default:
|
|
dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
|
|
|
|
/* re-initialize i2c for recovery */
|
|
bcm_iproc_i2c_enable_disable(iproc_i2c, false);
|
|
bcm_iproc_i2c_init(iproc_i2c);
|
|
bcm_iproc_i2c_enable_disable(iproc_i2c, true);
|
|
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
|
|
struct i2c_msg *msg,
|
|
u32 cmd)
|
|
{
|
|
unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
|
|
u32 val, status;
|
|
int ret;
|
|
|
|
iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
|
|
|
|
if (iproc_i2c->irq) {
|
|
time_left = wait_for_completion_timeout(&iproc_i2c->done,
|
|
time_left);
|
|
/* disable all interrupts */
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
|
|
/* read it back to flush the write */
|
|
iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
|
|
/* make sure the interrupt handler isn't running */
|
|
synchronize_irq(iproc_i2c->irq);
|
|
|
|
} else { /* polling mode */
|
|
unsigned long timeout = jiffies + time_left;
|
|
|
|
do {
|
|
status = iproc_i2c_rd_reg(iproc_i2c,
|
|
IS_OFFSET) & ISR_MASK;
|
|
bcm_iproc_i2c_process_m_event(iproc_i2c, status);
|
|
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
|
|
|
|
if (time_after(jiffies, timeout)) {
|
|
time_left = 0;
|
|
break;
|
|
}
|
|
|
|
cpu_relax();
|
|
cond_resched();
|
|
} while (!iproc_i2c->xfer_is_done);
|
|
}
|
|
|
|
if (!time_left && !iproc_i2c->xfer_is_done) {
|
|
dev_err(iproc_i2c->device, "transaction timed out\n");
|
|
|
|
/* flush both TX/RX FIFOs */
|
|
val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
|
|
if (ret) {
|
|
/* flush both TX/RX FIFOs */
|
|
val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If 'process_call' is true, then this is a multi-msg transfer that requires
|
|
* a repeated start between the messages.
|
|
* More specifically, it must be a write (reg) followed by a read (data).
|
|
* The i2c quirks are set to enforce this rule.
|
|
*/
|
|
static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
|
|
struct i2c_msg *msgs, bool process_call)
|
|
{
|
|
int i;
|
|
u8 addr;
|
|
u32 val, tmp, val_intr_en;
|
|
unsigned int tx_bytes;
|
|
struct i2c_msg *msg = &msgs[0];
|
|
|
|
/* check if bus is busy */
|
|
if (!!(iproc_i2c_rd_reg(iproc_i2c,
|
|
M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
|
|
dev_warn(iproc_i2c->device, "bus is busy\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
iproc_i2c->msg = msg;
|
|
|
|
/* format and load slave address into the TX FIFO */
|
|
addr = i2c_8bit_addr_from_msg(msg);
|
|
iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
|
|
|
|
/*
|
|
* For a write transaction, load data into the TX FIFO. Only allow
|
|
* loading up to TX FIFO size - 1 bytes of data since the first byte
|
|
* has been used up by the slave address
|
|
*/
|
|
tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
|
|
if (!(msg->flags & I2C_M_RD)) {
|
|
for (i = 0; i < tx_bytes; i++) {
|
|
val = msg->buf[i];
|
|
|
|
/* mark the last byte */
|
|
if (!process_call && (i == msg->len - 1))
|
|
val |= BIT(M_TX_WR_STATUS_SHIFT);
|
|
|
|
iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
|
|
}
|
|
iproc_i2c->tx_bytes = tx_bytes;
|
|
}
|
|
|
|
/* Process the read message if this is process call */
|
|
if (process_call) {
|
|
msg++;
|
|
iproc_i2c->msg = msg; /* point to second msg */
|
|
|
|
/*
|
|
* The last byte to be sent out should be a slave
|
|
* address with read operation
|
|
*/
|
|
addr = i2c_8bit_addr_from_msg(msg);
|
|
/* mark it the last byte out */
|
|
val = addr | BIT(M_TX_WR_STATUS_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
|
|
}
|
|
|
|
/* mark as incomplete before starting the transaction */
|
|
if (iproc_i2c->irq)
|
|
reinit_completion(&iproc_i2c->done);
|
|
|
|
iproc_i2c->xfer_is_done = 0;
|
|
|
|
/*
|
|
* Enable the "start busy" interrupt, which will be triggered after the
|
|
* transaction is done, i.e., the internal start_busy bit, transitions
|
|
* from 1 to 0.
|
|
*/
|
|
val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
|
|
|
|
/*
|
|
* If TX data size is larger than the TX FIFO, need to enable TX
|
|
* underrun interrupt, which will be triggerred when the TX FIFO is
|
|
* empty. When that happens we can then pump more data into the FIFO
|
|
*/
|
|
if (!process_call && !(msg->flags & I2C_M_RD) &&
|
|
msg->len > iproc_i2c->tx_bytes)
|
|
val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
|
|
|
|
/*
|
|
* Now we can activate the transfer. For a read operation, specify the
|
|
* number of bytes to read
|
|
*/
|
|
val = BIT(M_CMD_START_BUSY_SHIFT);
|
|
|
|
if (msg->len == 0) {
|
|
/* SMBUS QUICK Command (Read/Write) */
|
|
val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
|
|
} else if (msg->flags & I2C_M_RD) {
|
|
u32 protocol;
|
|
|
|
iproc_i2c->rx_bytes = 0;
|
|
if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
|
|
iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
|
|
else
|
|
iproc_i2c->thld_bytes = msg->len;
|
|
|
|
/* set threshold value */
|
|
tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
|
|
tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
|
|
tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
|
|
iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
|
|
|
|
/* enable the RX threshold interrupt */
|
|
val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
|
|
|
|
protocol = process_call ?
|
|
M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
|
|
|
|
val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
|
|
(msg->len << M_CMD_RD_CNT_SHIFT);
|
|
} else {
|
|
val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
|
|
}
|
|
|
|
if (iproc_i2c->irq)
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
|
|
|
|
return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
|
|
}
|
|
|
|
static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
|
|
struct i2c_msg msgs[], int num)
|
|
{
|
|
struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
|
|
bool process_call = false;
|
|
int ret;
|
|
|
|
if (num == 2) {
|
|
/* Repeated start, use process call */
|
|
process_call = true;
|
|
if (msgs[1].flags & I2C_M_NOSTART) {
|
|
dev_err(iproc_i2c->device, "Invalid repeated start\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
|
|
if (ret) {
|
|
dev_dbg(iproc_i2c->device, "xfer failed\n");
|
|
return ret;
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
|
|
{
|
|
u32 val;
|
|
|
|
val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
|
|
|
|
if (adap->algo->reg_slave)
|
|
val |= I2C_FUNC_SLAVE;
|
|
|
|
return val;
|
|
}
|
|
|
|
static struct i2c_algorithm bcm_iproc_algo = {
|
|
.master_xfer = bcm_iproc_i2c_xfer,
|
|
.functionality = bcm_iproc_i2c_functionality,
|
|
.reg_slave = bcm_iproc_i2c_reg_slave,
|
|
.unreg_slave = bcm_iproc_i2c_unreg_slave,
|
|
};
|
|
|
|
static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
|
|
.flags = I2C_AQ_COMB_WRITE_THEN_READ,
|
|
.max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
|
|
.max_read_len = M_RX_MAX_READ_LEN,
|
|
};
|
|
|
|
static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
|
|
{
|
|
unsigned int bus_speed;
|
|
u32 val;
|
|
int ret = of_property_read_u32(iproc_i2c->device->of_node,
|
|
"clock-frequency", &bus_speed);
|
|
if (ret < 0) {
|
|
dev_info(iproc_i2c->device,
|
|
"unable to interpret clock-frequency DT property\n");
|
|
bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
|
|
}
|
|
|
|
if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
|
|
dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
|
|
bus_speed);
|
|
dev_err(iproc_i2c->device,
|
|
"valid speeds are 100khz and 400khz\n");
|
|
return -EINVAL;
|
|
} else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
|
|
bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
|
|
} else {
|
|
bus_speed = I2C_MAX_FAST_MODE_FREQ;
|
|
}
|
|
|
|
iproc_i2c->bus_speed = bus_speed;
|
|
val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
|
|
val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
|
|
val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
|
|
iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
|
|
|
|
dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_iproc_i2c_probe(struct platform_device *pdev)
|
|
{
|
|
int irq, ret = 0;
|
|
struct bcm_iproc_i2c_dev *iproc_i2c;
|
|
struct i2c_adapter *adap;
|
|
struct resource *res;
|
|
|
|
iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
|
|
GFP_KERNEL);
|
|
if (!iproc_i2c)
|
|
return -ENOMEM;
|
|
|
|
platform_set_drvdata(pdev, iproc_i2c);
|
|
iproc_i2c->device = &pdev->dev;
|
|
iproc_i2c->type =
|
|
(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
|
|
init_completion(&iproc_i2c->done);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
|
|
if (IS_ERR(iproc_i2c->base))
|
|
return PTR_ERR(iproc_i2c->base);
|
|
|
|
if (iproc_i2c->type == IPROC_I2C_NIC) {
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
|
|
iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
|
|
res);
|
|
if (IS_ERR(iproc_i2c->idm_base))
|
|
return PTR_ERR(iproc_i2c->idm_base);
|
|
|
|
ret = of_property_read_u32(iproc_i2c->device->of_node,
|
|
"brcm,ape-hsls-addr-mask",
|
|
&iproc_i2c->ape_addr_mask);
|
|
if (ret < 0) {
|
|
dev_err(iproc_i2c->device,
|
|
"'brcm,ape-hsls-addr-mask' missing\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_init(&iproc_i2c->idm_lock);
|
|
|
|
/* no slave support */
|
|
bcm_iproc_algo.reg_slave = NULL;
|
|
bcm_iproc_algo.unreg_slave = NULL;
|
|
}
|
|
|
|
ret = bcm_iproc_i2c_init(iproc_i2c);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
|
|
if (ret)
|
|
return ret;
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq > 0) {
|
|
ret = devm_request_irq(iproc_i2c->device, irq,
|
|
bcm_iproc_i2c_isr, 0, pdev->name,
|
|
iproc_i2c);
|
|
if (ret < 0) {
|
|
dev_err(iproc_i2c->device,
|
|
"unable to request irq %i\n", irq);
|
|
return ret;
|
|
}
|
|
|
|
iproc_i2c->irq = irq;
|
|
} else {
|
|
dev_warn(iproc_i2c->device,
|
|
"no irq resource, falling back to poll mode\n");
|
|
}
|
|
|
|
bcm_iproc_i2c_enable_disable(iproc_i2c, true);
|
|
|
|
adap = &iproc_i2c->adapter;
|
|
i2c_set_adapdata(adap, iproc_i2c);
|
|
snprintf(adap->name, sizeof(adap->name),
|
|
"Broadcom iProc (%s)",
|
|
of_node_full_name(iproc_i2c->device->of_node));
|
|
adap->algo = &bcm_iproc_algo;
|
|
adap->quirks = &bcm_iproc_i2c_quirks;
|
|
adap->dev.parent = &pdev->dev;
|
|
adap->dev.of_node = pdev->dev.of_node;
|
|
|
|
return i2c_add_adapter(adap);
|
|
}
|
|
|
|
static int bcm_iproc_i2c_remove(struct platform_device *pdev)
|
|
{
|
|
struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
|
|
|
|
if (iproc_i2c->irq) {
|
|
/*
|
|
* Make sure there's no pending interrupt when we remove the
|
|
* adapter
|
|
*/
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
|
|
iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
|
|
synchronize_irq(iproc_i2c->irq);
|
|
}
|
|
|
|
i2c_del_adapter(&iproc_i2c->adapter);
|
|
bcm_iproc_i2c_enable_disable(iproc_i2c, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
|
|
static int bcm_iproc_i2c_suspend(struct device *dev)
|
|
{
|
|
struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
|
|
|
|
if (iproc_i2c->irq) {
|
|
/*
|
|
* Make sure there's no pending interrupt when we go into
|
|
* suspend
|
|
*/
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
|
|
iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
|
|
synchronize_irq(iproc_i2c->irq);
|
|
}
|
|
|
|
/* now disable the controller */
|
|
bcm_iproc_i2c_enable_disable(iproc_i2c, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_iproc_i2c_resume(struct device *dev)
|
|
{
|
|
struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
|
|
int ret;
|
|
u32 val;
|
|
|
|
/*
|
|
* Power domain could have been shut off completely in system deep
|
|
* sleep, so re-initialize the block here
|
|
*/
|
|
ret = bcm_iproc_i2c_init(iproc_i2c);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* configure to the desired bus speed */
|
|
val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
|
|
val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
|
|
val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
|
|
iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
|
|
|
|
bcm_iproc_i2c_enable_disable(iproc_i2c, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
|
|
.suspend_late = &bcm_iproc_i2c_suspend,
|
|
.resume_early = &bcm_iproc_i2c_resume
|
|
};
|
|
|
|
#define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
|
|
#else
|
|
#define BCM_IPROC_I2C_PM_OPS NULL
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
|
|
static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
|
|
{
|
|
struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
|
|
|
|
if (iproc_i2c->slave)
|
|
return -EBUSY;
|
|
|
|
if (slave->flags & I2C_CLIENT_TEN)
|
|
return -EAFNOSUPPORT;
|
|
|
|
iproc_i2c->slave = slave;
|
|
|
|
tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
|
|
(unsigned long)iproc_i2c);
|
|
|
|
bcm_iproc_i2c_slave_init(iproc_i2c, false);
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
|
|
{
|
|
u32 tmp;
|
|
struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
|
|
|
|
if (!iproc_i2c->slave)
|
|
return -EINVAL;
|
|
|
|
disable_irq(iproc_i2c->irq);
|
|
|
|
tasklet_kill(&iproc_i2c->slave_rx_tasklet);
|
|
|
|
/* disable all slave interrupts */
|
|
tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
|
|
tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
|
|
IE_S_ALL_INTERRUPT_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
|
|
|
|
/* Erase the slave address programmed */
|
|
tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
|
|
tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
|
|
iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
|
|
|
|
/* flush TX/RX FIFOs */
|
|
tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
|
|
iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
|
|
|
|
/* clear all pending slave interrupts */
|
|
iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
|
|
|
|
iproc_i2c->slave = NULL;
|
|
|
|
enable_irq(iproc_i2c->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id bcm_iproc_i2c_of_match[] = {
|
|
{
|
|
.compatible = "brcm,iproc-i2c",
|
|
.data = (int *)IPROC_I2C,
|
|
}, {
|
|
.compatible = "brcm,iproc-nic-i2c",
|
|
.data = (int *)IPROC_I2C_NIC,
|
|
},
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
|
|
|
|
static struct platform_driver bcm_iproc_i2c_driver = {
|
|
.driver = {
|
|
.name = "bcm-iproc-i2c",
|
|
.of_match_table = bcm_iproc_i2c_of_match,
|
|
.pm = BCM_IPROC_I2C_PM_OPS,
|
|
},
|
|
.probe = bcm_iproc_i2c_probe,
|
|
.remove = bcm_iproc_i2c_remove,
|
|
};
|
|
module_platform_driver(bcm_iproc_i2c_driver);
|
|
|
|
MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
|
|
MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
|
|
MODULE_LICENSE("GPL v2");
|