linux/drivers/gpu/drm/msm/dsi/pll/dsi_pll_10nm.c
Archit Taneja 28e4309ab9 drm/msm/dsi: Populate PLL 10nm clock ops
Populate PLL clock ops from downstream. This contains the VCO PLL
ops and the registration of standard clk_divider and clk_mux clocks.
Unlike 14nm PLL, the postdividers/mux of the slave PLL doesn't need
to be set to the same values of the postdivs/mux of the master PLL.
Hence, we don't need special postdivider clock ops like we did with
the 14nm PLL driver.

Like the previous PLL drivers, the implementation is slightly different
from downstream. We don't use shadow clocks, but have the ability to
reparent the RCGs to a different source.

Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-02-20 10:41:20 -05:00

823 lines
23 KiB
C

/*
* SPDX-License-Identifier: GPL-2.0
* Copyright (c) 2018, The Linux Foundation
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/iopoll.h>
#include "dsi_pll.h"
#include "dsi.xml.h"
/*
* DSI PLL 10nm - clock diagram (eg: DSI0):
*
* dsi0_pll_out_div_clk dsi0_pll_bit_clk
* | |
* | |
* +---------+ | +----------+ | +----+
* dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0pllbyte
* +---------+ | +----------+ | +----+
* | |
* | | dsi0_pll_by_2_bit_clk
* | | |
* | | +----+ | |\ dsi0_pclk_mux
* | |--| /2 |--o--| \ |
* | | +----+ | \ | +---------+
* | --------------| |--o--| div_7_4 |-- dsi0pll
* |------------------------------| / +---------+
* | +-----+ | /
* -----------| /4? |--o----------|/
* +-----+ | |
* | |dsiclk_sel
* |
* dsi0_pll_post_out_div_clk
*/
#define DSI_BYTE_PLL_CLK 0
#define DSI_PIXEL_PLL_CLK 1
#define NUM_PROVIDED_CLKS 2
struct dsi_pll_regs {
u32 pll_prop_gain_rate;
u32 pll_lockdet_rate;
u32 decimal_div_start;
u32 frac_div_start_low;
u32 frac_div_start_mid;
u32 frac_div_start_high;
u32 pll_clock_inverters;
u32 ssc_stepsize_low;
u32 ssc_stepsize_high;
u32 ssc_div_per_low;
u32 ssc_div_per_high;
u32 ssc_adjper_low;
u32 ssc_adjper_high;
u32 ssc_control;
};
struct dsi_pll_config {
u32 ref_freq;
bool div_override;
u32 output_div;
bool ignore_frac;
bool disable_prescaler;
bool enable_ssc;
bool ssc_center;
u32 dec_bits;
u32 frac_bits;
u32 lock_timer;
u32 ssc_freq;
u32 ssc_offset;
u32 ssc_adj_per;
u32 thresh_cycles;
u32 refclk_cycles;
};
struct pll_10nm_cached_state {
unsigned long vco_rate;
u8 bit_clk_div;
u8 pix_clk_div;
u8 pll_out_div;
u8 pll_mux;
};
struct dsi_pll_10nm {
struct msm_dsi_pll base;
int id;
struct platform_device *pdev;
void __iomem *phy_cmn_mmio;
void __iomem *mmio;
u64 vco_ref_clk_rate;
u64 vco_current_rate;
/* protects REG_DSI_10nm_PHY_CMN_CLK_CFG0 register */
spinlock_t postdiv_lock;
int vco_delay;
struct dsi_pll_config pll_configuration;
struct dsi_pll_regs reg_setup;
/* private clocks: */
struct clk_hw *hws[NUM_DSI_CLOCKS_MAX];
u32 num_hws;
/* clock-provider: */
struct clk_hw_onecell_data *hw_data;
struct pll_10nm_cached_state cached_state;
enum msm_dsi_phy_usecase uc;
struct dsi_pll_10nm *slave;
};
#define to_pll_10nm(x) container_of(x, struct dsi_pll_10nm, base)
/*
* Global list of private DSI PLL struct pointers. We need this for Dual DSI
* mode, where the master PLL's clk_ops needs access the slave's private data
*/
static struct dsi_pll_10nm *pll_10nm_list[DSI_MAX];
static void dsi_pll_setup_config(struct dsi_pll_10nm *pll)
{
struct dsi_pll_config *config = &pll->pll_configuration;
config->ref_freq = pll->vco_ref_clk_rate;
config->output_div = 1;
config->dec_bits = 8;
config->frac_bits = 18;
config->lock_timer = 64;
config->ssc_freq = 31500;
config->ssc_offset = 5000;
config->ssc_adj_per = 2;
config->thresh_cycles = 32;
config->refclk_cycles = 256;
config->div_override = false;
config->ignore_frac = false;
config->disable_prescaler = false;
config->enable_ssc = false;
config->ssc_center = 0;
}
static void dsi_pll_calc_dec_frac(struct dsi_pll_10nm *pll)
{
struct dsi_pll_config *config = &pll->pll_configuration;
struct dsi_pll_regs *regs = &pll->reg_setup;
u64 fref = pll->vco_ref_clk_rate;
u64 pll_freq;
u64 divider;
u64 dec, dec_multiple;
u32 frac;
u64 multiplier;
pll_freq = pll->vco_current_rate;
if (config->disable_prescaler)
divider = fref;
else
divider = fref * 2;
multiplier = 1 << config->frac_bits;
dec_multiple = div_u64(pll_freq * multiplier, divider);
div_u64_rem(dec_multiple, multiplier, &frac);
dec = div_u64(dec_multiple, multiplier);
if (pll_freq <= 1900000000UL)
regs->pll_prop_gain_rate = 8;
else if (pll_freq <= 3000000000UL)
regs->pll_prop_gain_rate = 10;
else
regs->pll_prop_gain_rate = 12;
if (pll_freq < 1100000000UL)
regs->pll_clock_inverters = 8;
else
regs->pll_clock_inverters = 0;
regs->pll_lockdet_rate = config->lock_timer;
regs->decimal_div_start = dec;
regs->frac_div_start_low = (frac & 0xff);
regs->frac_div_start_mid = (frac & 0xff00) >> 8;
regs->frac_div_start_high = (frac & 0x30000) >> 16;
}
#define SSC_CENTER BIT(0)
#define SSC_EN BIT(1)
static void dsi_pll_calc_ssc(struct dsi_pll_10nm *pll)
{
struct dsi_pll_config *config = &pll->pll_configuration;
struct dsi_pll_regs *regs = &pll->reg_setup;
u32 ssc_per;
u32 ssc_mod;
u64 ssc_step_size;
u64 frac;
if (!config->enable_ssc) {
DBG("SSC not enabled\n");
return;
}
ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 1;
ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
ssc_per -= ssc_mod;
frac = regs->frac_div_start_low |
(regs->frac_div_start_mid << 8) |
(regs->frac_div_start_high << 16);
ssc_step_size = regs->decimal_div_start;
ssc_step_size *= (1 << config->frac_bits);
ssc_step_size += frac;
ssc_step_size *= config->ssc_offset;
ssc_step_size *= (config->ssc_adj_per + 1);
ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
regs->ssc_div_per_low = ssc_per & 0xFF;
regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
regs->decimal_div_start, frac, config->frac_bits);
pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
}
static void dsi_pll_ssc_commit(struct dsi_pll_10nm *pll)
{
void __iomem *base = pll->mmio;
struct dsi_pll_regs *regs = &pll->reg_setup;
if (pll->pll_configuration.enable_ssc) {
pr_debug("SSC is enabled\n");
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
regs->ssc_stepsize_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
regs->ssc_stepsize_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_LOW_1,
regs->ssc_div_per_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
regs->ssc_div_per_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_LOW_1,
regs->ssc_adjper_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_HIGH_1,
regs->ssc_adjper_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_CONTROL,
SSC_EN | regs->ssc_control);
}
}
static void dsi_pll_config_hzindep_reg(struct dsi_pll_10nm *pll)
{
void __iomem *base = pll->mmio;
pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_ONE, 0x80);
pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_DSM_DIVIDER, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
pll_write(base + REG_DSI_10nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
pll_write(base + REG_DSI_10nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE,
0xba);
pll_write(base + REG_DSI_10nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
pll_write(base + REG_DSI_10nm_PHY_PLL_OUTDIV, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_OVERRIDE, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x08);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_BAND_SET_RATE_1, 0xc0);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0xfa);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1,
0x4c);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
pll_write(base + REG_DSI_10nm_PHY_PLL_PFILT, 0x29);
pll_write(base + REG_DSI_10nm_PHY_PLL_IFILT, 0x3f);
}
static void dsi_pll_commit(struct dsi_pll_10nm *pll)
{
void __iomem *base = pll->mmio;
struct dsi_pll_regs *reg = &pll->reg_setup;
pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
pll_write(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1,
reg->decimal_div_start);
pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1,
reg->frac_div_start_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1,
reg->frac_div_start_mid);
pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
reg->frac_div_start_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
pll_write(base + REG_DSI_10nm_PHY_PLL_CMODE, 0x10);
pll_write(base + REG_DSI_10nm_PHY_PLL_CLOCK_INVERTERS,
reg->pll_clock_inverters);
}
static int dsi_pll_10nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_10nm->id, rate,
parent_rate);
pll_10nm->vco_current_rate = rate;
pll_10nm->vco_ref_clk_rate = parent_rate;
dsi_pll_setup_config(pll_10nm);
dsi_pll_calc_dec_frac(pll_10nm);
dsi_pll_calc_ssc(pll_10nm);
dsi_pll_commit(pll_10nm);
dsi_pll_config_hzindep_reg(pll_10nm);
dsi_pll_ssc_commit(pll_10nm);
/* flush, ensure all register writes are done*/
wmb();
return 0;
}
static int dsi_pll_10nm_lock_status(struct dsi_pll_10nm *pll)
{
int rc;
u32 status = 0;
u32 const delay_us = 100;
u32 const timeout_us = 5000;
rc = readl_poll_timeout_atomic(pll->mmio +
REG_DSI_10nm_PHY_PLL_COMMON_STATUS_ONE,
status,
((status & BIT(0)) > 0),
delay_us,
timeout_us);
if (rc)
pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
pll->id, status);
return rc;
}
static void dsi_pll_disable_pll_bias(struct dsi_pll_10nm *pll)
{
u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0);
pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0,
data & ~BIT(5));
ndelay(250);
}
static void dsi_pll_enable_pll_bias(struct dsi_pll_10nm *pll)
{
u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0,
data | BIT(5));
pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
ndelay(250);
}
static void dsi_pll_disable_global_clk(struct dsi_pll_10nm *pll)
{
u32 data;
data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1,
data & ~BIT(5));
}
static void dsi_pll_enable_global_clk(struct dsi_pll_10nm *pll)
{
u32 data;
data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1,
data | BIT(5));
}
static int dsi_pll_10nm_vco_prepare(struct clk_hw *hw)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
int rc;
dsi_pll_enable_pll_bias(pll_10nm);
if (pll_10nm->slave)
dsi_pll_enable_pll_bias(pll_10nm->slave);
/* Start PLL */
pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL,
0x01);
/*
* ensure all PLL configurations are written prior to checking
* for PLL lock.
*/
wmb();
/* Check for PLL lock */
rc = dsi_pll_10nm_lock_status(pll_10nm);
if (rc) {
pr_err("PLL(%d) lock failed\n", pll_10nm->id);
goto error;
}
pll->pll_on = true;
dsi_pll_enable_global_clk(pll_10nm);
if (pll_10nm->slave)
dsi_pll_enable_global_clk(pll_10nm->slave);
pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL,
0x01);
if (pll_10nm->slave)
pll_write(pll_10nm->slave->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0x01);
error:
return rc;
}
static void dsi_pll_disable_sub(struct dsi_pll_10nm *pll)
{
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0);
dsi_pll_disable_pll_bias(pll);
}
static void dsi_pll_10nm_vco_unprepare(struct clk_hw *hw)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
/*
* To avoid any stray glitches while abruptly powering down the PLL
* make sure to gate the clock using the clock enable bit before
* powering down the PLL
*/
dsi_pll_disable_global_clk(pll_10nm);
pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL, 0);
dsi_pll_disable_sub(pll_10nm);
if (pll_10nm->slave) {
dsi_pll_disable_global_clk(pll_10nm->slave);
dsi_pll_disable_sub(pll_10nm->slave);
}
/* flush, ensure all register writes are done */
wmb();
pll->pll_on = false;
}
static unsigned long dsi_pll_10nm_vco_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
void __iomem *base = pll_10nm->mmio;
u64 ref_clk = pll_10nm->vco_ref_clk_rate;
u64 vco_rate = 0x0;
u64 multiplier;
u32 frac;
u32 dec;
u64 pll_freq, tmp64;
dec = pll_read(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1);
dec &= 0xff;
frac = pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1);
frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1) &
0xff) << 8);
frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
0x3) << 16);
/*
* TODO:
* 1. Assumes prescaler is disabled
* 2. Multiplier is 2^18. it should be 2^(num_of_frac_bits)
*/
multiplier = 1 << 18;
pll_freq = dec * (ref_clk * 2);
tmp64 = (ref_clk * 2 * frac);
pll_freq += div_u64(tmp64, multiplier);
vco_rate = pll_freq;
DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
pll_10nm->id, (unsigned long)vco_rate, dec, frac);
return (unsigned long)vco_rate;
}
static const struct clk_ops clk_ops_dsi_pll_10nm_vco = {
.round_rate = msm_dsi_pll_helper_clk_round_rate,
.set_rate = dsi_pll_10nm_vco_set_rate,
.recalc_rate = dsi_pll_10nm_vco_recalc_rate,
.prepare = dsi_pll_10nm_vco_prepare,
.unprepare = dsi_pll_10nm_vco_unprepare,
};
/*
* PLL Callbacks
*/
static void dsi_pll_10nm_save_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
struct pll_10nm_cached_state *cached = &pll_10nm->cached_state;
void __iomem *phy_base = pll_10nm->phy_cmn_mmio;
u32 cmn_clk_cfg0, cmn_clk_cfg1;
cached->pll_out_div = pll_read(pll_10nm->mmio +
REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE);
cached->pll_out_div &= 0x3;
cmn_clk_cfg0 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0);
cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
cmn_clk_cfg1 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
cached->pll_mux = cmn_clk_cfg1 & 0x3;
DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
pll_10nm->id, cached->pll_out_div, cached->bit_clk_div,
cached->pix_clk_div, cached->pll_mux);
}
static int dsi_pll_10nm_restore_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
struct pll_10nm_cached_state *cached = &pll_10nm->cached_state;
void __iomem *phy_base = pll_10nm->phy_cmn_mmio;
u32 val;
val = pll_read(pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE);
val &= ~0x3;
val |= cached->pll_out_div;
pll_write(pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE, val);
pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0,
cached->bit_clk_div | (cached->pix_clk_div << 4));
val = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
val &= ~0x3;
val |= cached->pll_mux;
pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, val);
DBG("DSI PLL%d", pll_10nm->id);
return 0;
}
static int dsi_pll_10nm_set_usecase(struct msm_dsi_pll *pll,
enum msm_dsi_phy_usecase uc)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
void __iomem *base = pll_10nm->phy_cmn_mmio;
u32 data = 0x0; /* internal PLL */
DBG("DSI PLL%d", pll_10nm->id);
switch (uc) {
case MSM_DSI_PHY_STANDALONE:
break;
case MSM_DSI_PHY_MASTER:
pll_10nm->slave = pll_10nm_list[(pll_10nm->id + 1) % DSI_MAX];
break;
case MSM_DSI_PHY_SLAVE:
data = 0x1; /* external PLL */
break;
default:
return -EINVAL;
}
/* set PLL src */
pll_write(base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, (data << 2));
pll_10nm->uc = uc;
return 0;
}
static int dsi_pll_10nm_get_provider(struct msm_dsi_pll *pll,
struct clk **byte_clk_provider,
struct clk **pixel_clk_provider)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
struct clk_hw_onecell_data *hw_data = pll_10nm->hw_data;
DBG("DSI PLL%d", pll_10nm->id);
if (byte_clk_provider)
*byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
if (pixel_clk_provider)
*pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;
return 0;
}
static void dsi_pll_10nm_destroy(struct msm_dsi_pll *pll)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
DBG("DSI PLL%d", pll_10nm->id);
}
/*
* The post dividers and mux clocks are created using the standard divider and
* mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
* state to follow the master PLL's divider/mux state. Therefore, we don't
* require special clock ops that also configure the slave PLL registers
*/
static int pll_10nm_register(struct dsi_pll_10nm *pll_10nm)
{
char clk_name[32], parent[32], vco_name[32];
char parent2[32], parent3[32], parent4[32];
struct clk_init_data vco_init = {
.parent_names = (const char *[]){ "xo" },
.num_parents = 1,
.name = vco_name,
.flags = CLK_IGNORE_UNUSED,
.ops = &clk_ops_dsi_pll_10nm_vco,
};
struct device *dev = &pll_10nm->pdev->dev;
struct clk_hw **hws = pll_10nm->hws;
struct clk_hw_onecell_data *hw_data;
struct clk_hw *hw;
int num = 0;
int ret;
DBG("DSI%d", pll_10nm->id);
hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
GFP_KERNEL);
if (!hw_data)
return -ENOMEM;
snprintf(vco_name, 32, "dsi%dvco_clk", pll_10nm->id);
pll_10nm->base.clk_hw.init = &vco_init;
ret = clk_hw_register(dev, &pll_10nm->base.clk_hw);
if (ret)
return ret;
hws[num++] = &pll_10nm->base.clk_hw;
snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%dvco_clk", pll_10nm->id);
hw = clk_hw_register_divider(dev, clk_name,
parent, CLK_SET_RATE_PARENT,
pll_10nm->mmio +
REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE,
0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
/* BIT CLK: DIV_CTRL_3_0 */
hw = clk_hw_register_divider(dev, clk_name, parent,
CLK_SET_RATE_PARENT,
pll_10nm->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_CLK_CFG0,
0, 4, CLK_DIVIDER_ONE_BASED,
&pll_10nm->postdiv_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%dpllbyte", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
CLK_SET_RATE_PARENT, 1, 8);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
hw_data->hws[DSI_BYTE_PLL_CLK] = hw;
snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
0, 1, 2);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
0, 1, 4);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id);
snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id);
hw = clk_hw_register_mux(dev, clk_name,
(const char *[]){
parent, parent2, parent3, parent4
}, 4, 0, pll_10nm->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_CLK_CFG1,
0, 2, 0, NULL);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%dpll", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pclk_mux", pll_10nm->id);
/* PIX CLK DIV : DIV_CTRL_7_4*/
hw = clk_hw_register_divider(dev, clk_name, parent,
0, pll_10nm->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_CLK_CFG0,
4, 4, CLK_DIVIDER_ONE_BASED,
&pll_10nm->postdiv_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
hw_data->hws[DSI_PIXEL_PLL_CLK] = hw;
pll_10nm->num_hws = num;
hw_data->num = NUM_PROVIDED_CLKS;
pll_10nm->hw_data = hw_data;
ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
pll_10nm->hw_data);
if (ret) {
dev_err(dev, "failed to register clk provider: %d\n", ret);
return ret;
}
return 0;
}
struct msm_dsi_pll *msm_dsi_pll_10nm_init(struct platform_device *pdev, int id)
{
struct dsi_pll_10nm *pll_10nm;
struct msm_dsi_pll *pll;
int ret;
if (!pdev)
return ERR_PTR(-ENODEV);
pll_10nm = devm_kzalloc(&pdev->dev, sizeof(*pll_10nm), GFP_KERNEL);
if (!pll_10nm)
return ERR_PTR(-ENOMEM);
DBG("DSI PLL%d", id);
pll_10nm->pdev = pdev;
pll_10nm->id = id;
pll_10nm_list[id] = pll_10nm;
pll_10nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
if (IS_ERR_OR_NULL(pll_10nm->phy_cmn_mmio)) {
dev_err(&pdev->dev, "failed to map CMN PHY base\n");
return ERR_PTR(-ENOMEM);
}
pll_10nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
if (IS_ERR_OR_NULL(pll_10nm->mmio)) {
dev_err(&pdev->dev, "failed to map PLL base\n");
return ERR_PTR(-ENOMEM);
}
pll = &pll_10nm->base;
pll->min_rate = 1000000000UL;
pll->max_rate = 3500000000UL;
pll->get_provider = dsi_pll_10nm_get_provider;
pll->destroy = dsi_pll_10nm_destroy;
pll->save_state = dsi_pll_10nm_save_state;
pll->restore_state = dsi_pll_10nm_restore_state;
pll->set_usecase = dsi_pll_10nm_set_usecase;
pll_10nm->vco_delay = 1;
ret = pll_10nm_register(pll_10nm);
if (ret) {
dev_err(&pdev->dev, "failed to register PLL: %d\n", ret);
return ERR_PTR(ret);
}
/* TODO: Remove this when we have proper display handover support */
msm_dsi_pll_save_state(pll);
return pll;
}