linux/drivers/block/drbd/drbd_receiver.c
Lars Ellenberg e959d08d3e drbd: Fix a potential issue with the DISCARD_CONCURRENT flag
The DISCARD_CONCURRENT flag should be set on one node and cleared on the
other node.
As the code was before it was theoretical possible that a node accepts the
meta socket, but has to close it later on, and keeps the DISCARD_CONCURRENT
flag.
Correct this by moving the clear_bit(DISCARD_CONCURRENT) where the packet
gets sent.

Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com>
Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com>
2012-11-09 14:05:47 +01:00

5383 lines
145 KiB
C

/*
drbd_receiver.c
This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
drbd is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
drbd is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with drbd; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <asm/uaccess.h>
#include <net/sock.h>
#include <linux/drbd.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/in.h>
#include <linux/mm.h>
#include <linux/memcontrol.h>
#include <linux/mm_inline.h>
#include <linux/slab.h>
#include <linux/pkt_sched.h>
#define __KERNEL_SYSCALLS__
#include <linux/unistd.h>
#include <linux/vmalloc.h>
#include <linux/random.h>
#include <linux/string.h>
#include <linux/scatterlist.h>
#include "drbd_int.h"
#include "drbd_req.h"
#include "drbd_vli.h"
struct packet_info {
enum drbd_packet cmd;
unsigned int size;
unsigned int vnr;
void *data;
};
enum finish_epoch {
FE_STILL_LIVE,
FE_DESTROYED,
FE_RECYCLED,
};
static int drbd_do_features(struct drbd_tconn *tconn);
static int drbd_do_auth(struct drbd_tconn *tconn);
static int drbd_disconnected(struct drbd_conf *mdev);
static enum finish_epoch drbd_may_finish_epoch(struct drbd_tconn *, struct drbd_epoch *, enum epoch_event);
static int e_end_block(struct drbd_work *, int);
#define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN)
/*
* some helper functions to deal with single linked page lists,
* page->private being our "next" pointer.
*/
/* If at least n pages are linked at head, get n pages off.
* Otherwise, don't modify head, and return NULL.
* Locking is the responsibility of the caller.
*/
static struct page *page_chain_del(struct page **head, int n)
{
struct page *page;
struct page *tmp;
BUG_ON(!n);
BUG_ON(!head);
page = *head;
if (!page)
return NULL;
while (page) {
tmp = page_chain_next(page);
if (--n == 0)
break; /* found sufficient pages */
if (tmp == NULL)
/* insufficient pages, don't use any of them. */
return NULL;
page = tmp;
}
/* add end of list marker for the returned list */
set_page_private(page, 0);
/* actual return value, and adjustment of head */
page = *head;
*head = tmp;
return page;
}
/* may be used outside of locks to find the tail of a (usually short)
* "private" page chain, before adding it back to a global chain head
* with page_chain_add() under a spinlock. */
static struct page *page_chain_tail(struct page *page, int *len)
{
struct page *tmp;
int i = 1;
while ((tmp = page_chain_next(page)))
++i, page = tmp;
if (len)
*len = i;
return page;
}
static int page_chain_free(struct page *page)
{
struct page *tmp;
int i = 0;
page_chain_for_each_safe(page, tmp) {
put_page(page);
++i;
}
return i;
}
static void page_chain_add(struct page **head,
struct page *chain_first, struct page *chain_last)
{
#if 1
struct page *tmp;
tmp = page_chain_tail(chain_first, NULL);
BUG_ON(tmp != chain_last);
#endif
/* add chain to head */
set_page_private(chain_last, (unsigned long)*head);
*head = chain_first;
}
static struct page *__drbd_alloc_pages(struct drbd_conf *mdev,
unsigned int number)
{
struct page *page = NULL;
struct page *tmp = NULL;
unsigned int i = 0;
/* Yes, testing drbd_pp_vacant outside the lock is racy.
* So what. It saves a spin_lock. */
if (drbd_pp_vacant >= number) {
spin_lock(&drbd_pp_lock);
page = page_chain_del(&drbd_pp_pool, number);
if (page)
drbd_pp_vacant -= number;
spin_unlock(&drbd_pp_lock);
if (page)
return page;
}
/* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
* "criss-cross" setup, that might cause write-out on some other DRBD,
* which in turn might block on the other node at this very place. */
for (i = 0; i < number; i++) {
tmp = alloc_page(GFP_TRY);
if (!tmp)
break;
set_page_private(tmp, (unsigned long)page);
page = tmp;
}
if (i == number)
return page;
/* Not enough pages immediately available this time.
* No need to jump around here, drbd_alloc_pages will retry this
* function "soon". */
if (page) {
tmp = page_chain_tail(page, NULL);
spin_lock(&drbd_pp_lock);
page_chain_add(&drbd_pp_pool, page, tmp);
drbd_pp_vacant += i;
spin_unlock(&drbd_pp_lock);
}
return NULL;
}
static void reclaim_finished_net_peer_reqs(struct drbd_conf *mdev,
struct list_head *to_be_freed)
{
struct drbd_peer_request *peer_req;
struct list_head *le, *tle;
/* The EEs are always appended to the end of the list. Since
they are sent in order over the wire, they have to finish
in order. As soon as we see the first not finished we can
stop to examine the list... */
list_for_each_safe(le, tle, &mdev->net_ee) {
peer_req = list_entry(le, struct drbd_peer_request, w.list);
if (drbd_peer_req_has_active_page(peer_req))
break;
list_move(le, to_be_freed);
}
}
static void drbd_kick_lo_and_reclaim_net(struct drbd_conf *mdev)
{
LIST_HEAD(reclaimed);
struct drbd_peer_request *peer_req, *t;
spin_lock_irq(&mdev->tconn->req_lock);
reclaim_finished_net_peer_reqs(mdev, &reclaimed);
spin_unlock_irq(&mdev->tconn->req_lock);
list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
drbd_free_net_peer_req(mdev, peer_req);
}
/**
* drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
* @mdev: DRBD device.
* @number: number of pages requested
* @retry: whether to retry, if not enough pages are available right now
*
* Tries to allocate number pages, first from our own page pool, then from
* the kernel, unless this allocation would exceed the max_buffers setting.
* Possibly retry until DRBD frees sufficient pages somewhere else.
*
* Returns a page chain linked via page->private.
*/
struct page *drbd_alloc_pages(struct drbd_conf *mdev, unsigned int number,
bool retry)
{
struct page *page = NULL;
struct net_conf *nc;
DEFINE_WAIT(wait);
int mxb;
/* Yes, we may run up to @number over max_buffers. If we
* follow it strictly, the admin will get it wrong anyways. */
rcu_read_lock();
nc = rcu_dereference(mdev->tconn->net_conf);
mxb = nc ? nc->max_buffers : 1000000;
rcu_read_unlock();
if (atomic_read(&mdev->pp_in_use) < mxb)
page = __drbd_alloc_pages(mdev, number);
while (page == NULL) {
prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
drbd_kick_lo_and_reclaim_net(mdev);
if (atomic_read(&mdev->pp_in_use) < mxb) {
page = __drbd_alloc_pages(mdev, number);
if (page)
break;
}
if (!retry)
break;
if (signal_pending(current)) {
dev_warn(DEV, "drbd_alloc_pages interrupted!\n");
break;
}
schedule();
}
finish_wait(&drbd_pp_wait, &wait);
if (page)
atomic_add(number, &mdev->pp_in_use);
return page;
}
/* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
* Is also used from inside an other spin_lock_irq(&mdev->tconn->req_lock);
* Either links the page chain back to the global pool,
* or returns all pages to the system. */
static void drbd_free_pages(struct drbd_conf *mdev, struct page *page, int is_net)
{
atomic_t *a = is_net ? &mdev->pp_in_use_by_net : &mdev->pp_in_use;
int i;
if (page == NULL)
return;
if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count)
i = page_chain_free(page);
else {
struct page *tmp;
tmp = page_chain_tail(page, &i);
spin_lock(&drbd_pp_lock);
page_chain_add(&drbd_pp_pool, page, tmp);
drbd_pp_vacant += i;
spin_unlock(&drbd_pp_lock);
}
i = atomic_sub_return(i, a);
if (i < 0)
dev_warn(DEV, "ASSERTION FAILED: %s: %d < 0\n",
is_net ? "pp_in_use_by_net" : "pp_in_use", i);
wake_up(&drbd_pp_wait);
}
/*
You need to hold the req_lock:
_drbd_wait_ee_list_empty()
You must not have the req_lock:
drbd_free_peer_req()
drbd_alloc_peer_req()
drbd_free_peer_reqs()
drbd_ee_fix_bhs()
drbd_finish_peer_reqs()
drbd_clear_done_ee()
drbd_wait_ee_list_empty()
*/
struct drbd_peer_request *
drbd_alloc_peer_req(struct drbd_conf *mdev, u64 id, sector_t sector,
unsigned int data_size, gfp_t gfp_mask) __must_hold(local)
{
struct drbd_peer_request *peer_req;
struct page *page = NULL;
unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT;
if (drbd_insert_fault(mdev, DRBD_FAULT_AL_EE))
return NULL;
peer_req = mempool_alloc(drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
if (!peer_req) {
if (!(gfp_mask & __GFP_NOWARN))
dev_err(DEV, "%s: allocation failed\n", __func__);
return NULL;
}
if (data_size) {
page = drbd_alloc_pages(mdev, nr_pages, (gfp_mask & __GFP_WAIT));
if (!page)
goto fail;
}
drbd_clear_interval(&peer_req->i);
peer_req->i.size = data_size;
peer_req->i.sector = sector;
peer_req->i.local = false;
peer_req->i.waiting = false;
peer_req->epoch = NULL;
peer_req->w.mdev = mdev;
peer_req->pages = page;
atomic_set(&peer_req->pending_bios, 0);
peer_req->flags = 0;
/*
* The block_id is opaque to the receiver. It is not endianness
* converted, and sent back to the sender unchanged.
*/
peer_req->block_id = id;
return peer_req;
fail:
mempool_free(peer_req, drbd_ee_mempool);
return NULL;
}
void __drbd_free_peer_req(struct drbd_conf *mdev, struct drbd_peer_request *peer_req,
int is_net)
{
if (peer_req->flags & EE_HAS_DIGEST)
kfree(peer_req->digest);
drbd_free_pages(mdev, peer_req->pages, is_net);
D_ASSERT(atomic_read(&peer_req->pending_bios) == 0);
D_ASSERT(drbd_interval_empty(&peer_req->i));
mempool_free(peer_req, drbd_ee_mempool);
}
int drbd_free_peer_reqs(struct drbd_conf *mdev, struct list_head *list)
{
LIST_HEAD(work_list);
struct drbd_peer_request *peer_req, *t;
int count = 0;
int is_net = list == &mdev->net_ee;
spin_lock_irq(&mdev->tconn->req_lock);
list_splice_init(list, &work_list);
spin_unlock_irq(&mdev->tconn->req_lock);
list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
__drbd_free_peer_req(mdev, peer_req, is_net);
count++;
}
return count;
}
/*
* See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
*/
static int drbd_finish_peer_reqs(struct drbd_conf *mdev)
{
LIST_HEAD(work_list);
LIST_HEAD(reclaimed);
struct drbd_peer_request *peer_req, *t;
int err = 0;
spin_lock_irq(&mdev->tconn->req_lock);
reclaim_finished_net_peer_reqs(mdev, &reclaimed);
list_splice_init(&mdev->done_ee, &work_list);
spin_unlock_irq(&mdev->tconn->req_lock);
list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
drbd_free_net_peer_req(mdev, peer_req);
/* possible callbacks here:
* e_end_block, and e_end_resync_block, e_send_discard_write.
* all ignore the last argument.
*/
list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
int err2;
/* list_del not necessary, next/prev members not touched */
err2 = peer_req->w.cb(&peer_req->w, !!err);
if (!err)
err = err2;
drbd_free_peer_req(mdev, peer_req);
}
wake_up(&mdev->ee_wait);
return err;
}
static void _drbd_wait_ee_list_empty(struct drbd_conf *mdev,
struct list_head *head)
{
DEFINE_WAIT(wait);
/* avoids spin_lock/unlock
* and calling prepare_to_wait in the fast path */
while (!list_empty(head)) {
prepare_to_wait(&mdev->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&mdev->tconn->req_lock);
io_schedule();
finish_wait(&mdev->ee_wait, &wait);
spin_lock_irq(&mdev->tconn->req_lock);
}
}
static void drbd_wait_ee_list_empty(struct drbd_conf *mdev,
struct list_head *head)
{
spin_lock_irq(&mdev->tconn->req_lock);
_drbd_wait_ee_list_empty(mdev, head);
spin_unlock_irq(&mdev->tconn->req_lock);
}
static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
{
mm_segment_t oldfs;
struct kvec iov = {
.iov_base = buf,
.iov_len = size,
};
struct msghdr msg = {
.msg_iovlen = 1,
.msg_iov = (struct iovec *)&iov,
.msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
};
int rv;
oldfs = get_fs();
set_fs(KERNEL_DS);
rv = sock_recvmsg(sock, &msg, size, msg.msg_flags);
set_fs(oldfs);
return rv;
}
static int drbd_recv(struct drbd_tconn *tconn, void *buf, size_t size)
{
mm_segment_t oldfs;
struct kvec iov = {
.iov_base = buf,
.iov_len = size,
};
struct msghdr msg = {
.msg_iovlen = 1,
.msg_iov = (struct iovec *)&iov,
.msg_flags = MSG_WAITALL | MSG_NOSIGNAL
};
int rv;
oldfs = get_fs();
set_fs(KERNEL_DS);
for (;;) {
rv = sock_recvmsg(tconn->data.socket, &msg, size, msg.msg_flags);
if (rv == size)
break;
/* Note:
* ECONNRESET other side closed the connection
* ERESTARTSYS (on sock) we got a signal
*/
if (rv < 0) {
if (rv == -ECONNRESET)
conn_info(tconn, "sock was reset by peer\n");
else if (rv != -ERESTARTSYS)
conn_err(tconn, "sock_recvmsg returned %d\n", rv);
break;
} else if (rv == 0) {
conn_info(tconn, "sock was shut down by peer\n");
break;
} else {
/* signal came in, or peer/link went down,
* after we read a partial message
*/
/* D_ASSERT(signal_pending(current)); */
break;
}
};
set_fs(oldfs);
if (rv != size)
conn_request_state(tconn, NS(conn, C_BROKEN_PIPE), CS_HARD);
return rv;
}
static int drbd_recv_all(struct drbd_tconn *tconn, void *buf, size_t size)
{
int err;
err = drbd_recv(tconn, buf, size);
if (err != size) {
if (err >= 0)
err = -EIO;
} else
err = 0;
return err;
}
static int drbd_recv_all_warn(struct drbd_tconn *tconn, void *buf, size_t size)
{
int err;
err = drbd_recv_all(tconn, buf, size);
if (err && !signal_pending(current))
conn_warn(tconn, "short read (expected size %d)\n", (int)size);
return err;
}
/* quoting tcp(7):
* On individual connections, the socket buffer size must be set prior to the
* listen(2) or connect(2) calls in order to have it take effect.
* This is our wrapper to do so.
*/
static void drbd_setbufsize(struct socket *sock, unsigned int snd,
unsigned int rcv)
{
/* open coded SO_SNDBUF, SO_RCVBUF */
if (snd) {
sock->sk->sk_sndbuf = snd;
sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
}
if (rcv) {
sock->sk->sk_rcvbuf = rcv;
sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
}
}
static struct socket *drbd_try_connect(struct drbd_tconn *tconn)
{
const char *what;
struct socket *sock;
struct sockaddr_in6 src_in6;
struct sockaddr_in6 peer_in6;
struct net_conf *nc;
int err, peer_addr_len, my_addr_len;
int sndbuf_size, rcvbuf_size, connect_int;
int disconnect_on_error = 1;
rcu_read_lock();
nc = rcu_dereference(tconn->net_conf);
if (!nc) {
rcu_read_unlock();
return NULL;
}
sndbuf_size = nc->sndbuf_size;
rcvbuf_size = nc->rcvbuf_size;
connect_int = nc->connect_int;
rcu_read_unlock();
my_addr_len = min_t(int, tconn->my_addr_len, sizeof(src_in6));
memcpy(&src_in6, &tconn->my_addr, my_addr_len);
if (((struct sockaddr *)&tconn->my_addr)->sa_family == AF_INET6)
src_in6.sin6_port = 0;
else
((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
peer_addr_len = min_t(int, tconn->peer_addr_len, sizeof(src_in6));
memcpy(&peer_in6, &tconn->peer_addr, peer_addr_len);
what = "sock_create_kern";
err = sock_create_kern(((struct sockaddr *)&src_in6)->sa_family,
SOCK_STREAM, IPPROTO_TCP, &sock);
if (err < 0) {
sock = NULL;
goto out;
}
sock->sk->sk_rcvtimeo =
sock->sk->sk_sndtimeo = connect_int * HZ;
drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
/* explicitly bind to the configured IP as source IP
* for the outgoing connections.
* This is needed for multihomed hosts and to be
* able to use lo: interfaces for drbd.
* Make sure to use 0 as port number, so linux selects
* a free one dynamically.
*/
what = "bind before connect";
err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
if (err < 0)
goto out;
/* connect may fail, peer not yet available.
* stay C_WF_CONNECTION, don't go Disconnecting! */
disconnect_on_error = 0;
what = "connect";
err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
out:
if (err < 0) {
if (sock) {
sock_release(sock);
sock = NULL;
}
switch (-err) {
/* timeout, busy, signal pending */
case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
case EINTR: case ERESTARTSYS:
/* peer not (yet) available, network problem */
case ECONNREFUSED: case ENETUNREACH:
case EHOSTDOWN: case EHOSTUNREACH:
disconnect_on_error = 0;
break;
default:
conn_err(tconn, "%s failed, err = %d\n", what, err);
}
if (disconnect_on_error)
conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
}
return sock;
}
struct accept_wait_data {
struct drbd_tconn *tconn;
struct socket *s_listen;
struct completion door_bell;
void (*original_sk_state_change)(struct sock *sk);
};
static void incomming_connection(struct sock *sk)
{
struct accept_wait_data *ad = sk->sk_user_data;
struct drbd_tconn *tconn = ad->tconn;
if (sk->sk_state != TCP_ESTABLISHED)
conn_warn(tconn, "unexpected tcp state change. sk_state = %d\n", sk->sk_state);
write_lock_bh(&sk->sk_callback_lock);
sk->sk_state_change = ad->original_sk_state_change;
sk->sk_user_data = NULL;
write_unlock_bh(&sk->sk_callback_lock);
sk->sk_state_change(sk);
complete(&ad->door_bell);
}
static int prepare_listen_socket(struct drbd_tconn *tconn, struct accept_wait_data *ad)
{
int err, sndbuf_size, rcvbuf_size, my_addr_len;
struct sockaddr_in6 my_addr;
struct socket *s_listen;
struct net_conf *nc;
const char *what;
rcu_read_lock();
nc = rcu_dereference(tconn->net_conf);
if (!nc) {
rcu_read_unlock();
return -EIO;
}
sndbuf_size = nc->sndbuf_size;
rcvbuf_size = nc->rcvbuf_size;
rcu_read_unlock();
my_addr_len = min_t(int, tconn->my_addr_len, sizeof(struct sockaddr_in6));
memcpy(&my_addr, &tconn->my_addr, my_addr_len);
what = "sock_create_kern";
err = sock_create_kern(((struct sockaddr *)&my_addr)->sa_family,
SOCK_STREAM, IPPROTO_TCP, &s_listen);
if (err) {
s_listen = NULL;
goto out;
}
s_listen->sk->sk_reuse = 1; /* SO_REUSEADDR */
drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
what = "bind before listen";
err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
if (err < 0)
goto out;
ad->s_listen = s_listen;
write_lock_bh(&s_listen->sk->sk_callback_lock);
ad->original_sk_state_change = s_listen->sk->sk_state_change;
s_listen->sk->sk_state_change = incomming_connection;
s_listen->sk->sk_user_data = ad;
write_unlock_bh(&s_listen->sk->sk_callback_lock);
what = "listen";
err = s_listen->ops->listen(s_listen, 5);
if (err < 0)
goto out;
return 0;
out:
if (s_listen)
sock_release(s_listen);
if (err < 0) {
if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
conn_err(tconn, "%s failed, err = %d\n", what, err);
conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
}
}
return -EIO;
}
static struct socket *drbd_wait_for_connect(struct drbd_tconn *tconn, struct accept_wait_data *ad)
{
int timeo, connect_int, err = 0;
struct socket *s_estab = NULL;
struct net_conf *nc;
rcu_read_lock();
nc = rcu_dereference(tconn->net_conf);
if (!nc) {
rcu_read_unlock();
return NULL;
}
connect_int = nc->connect_int;
rcu_read_unlock();
timeo = connect_int * HZ;
timeo += (random32() & 1) ? timeo / 7 : -timeo / 7; /* 28.5% random jitter */
err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
if (err <= 0)
return NULL;
err = kernel_accept(ad->s_listen, &s_estab, 0);
if (err < 0) {
if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
conn_err(tconn, "accept failed, err = %d\n", err);
conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
}
}
return s_estab;
}
static int decode_header(struct drbd_tconn *, void *, struct packet_info *);
static int send_first_packet(struct drbd_tconn *tconn, struct drbd_socket *sock,
enum drbd_packet cmd)
{
if (!conn_prepare_command(tconn, sock))
return -EIO;
return conn_send_command(tconn, sock, cmd, 0, NULL, 0);
}
static int receive_first_packet(struct drbd_tconn *tconn, struct socket *sock)
{
unsigned int header_size = drbd_header_size(tconn);
struct packet_info pi;
int err;
err = drbd_recv_short(sock, tconn->data.rbuf, header_size, 0);
if (err != header_size) {
if (err >= 0)
err = -EIO;
return err;
}
err = decode_header(tconn, tconn->data.rbuf, &pi);
if (err)
return err;
return pi.cmd;
}
/**
* drbd_socket_okay() - Free the socket if its connection is not okay
* @sock: pointer to the pointer to the socket.
*/
static int drbd_socket_okay(struct socket **sock)
{
int rr;
char tb[4];
if (!*sock)
return false;
rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
if (rr > 0 || rr == -EAGAIN) {
return true;
} else {
sock_release(*sock);
*sock = NULL;
return false;
}
}
/* Gets called if a connection is established, or if a new minor gets created
in a connection */
int drbd_connected(struct drbd_conf *mdev)
{
int err;
atomic_set(&mdev->packet_seq, 0);
mdev->peer_seq = 0;
mdev->state_mutex = mdev->tconn->agreed_pro_version < 100 ?
&mdev->tconn->cstate_mutex :
&mdev->own_state_mutex;
err = drbd_send_sync_param(mdev);
if (!err)
err = drbd_send_sizes(mdev, 0, 0);
if (!err)
err = drbd_send_uuids(mdev);
if (!err)
err = drbd_send_current_state(mdev);
clear_bit(USE_DEGR_WFC_T, &mdev->flags);
clear_bit(RESIZE_PENDING, &mdev->flags);
mod_timer(&mdev->request_timer, jiffies + HZ); /* just start it here. */
return err;
}
/*
* return values:
* 1 yes, we have a valid connection
* 0 oops, did not work out, please try again
* -1 peer talks different language,
* no point in trying again, please go standalone.
* -2 We do not have a network config...
*/
static int conn_connect(struct drbd_tconn *tconn)
{
struct drbd_socket sock, msock;
struct drbd_conf *mdev;
struct net_conf *nc;
int vnr, timeout, h, ok;
bool discard_my_data;
enum drbd_state_rv rv;
struct accept_wait_data ad = {
.tconn = tconn,
.door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
};
if (conn_request_state(tconn, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
return -2;
mutex_init(&sock.mutex);
sock.sbuf = tconn->data.sbuf;
sock.rbuf = tconn->data.rbuf;
sock.socket = NULL;
mutex_init(&msock.mutex);
msock.sbuf = tconn->meta.sbuf;
msock.rbuf = tconn->meta.rbuf;
msock.socket = NULL;
/* Assume that the peer only understands protocol 80 until we know better. */
tconn->agreed_pro_version = 80;
if (prepare_listen_socket(tconn, &ad))
return 0;
do {
struct socket *s;
s = drbd_try_connect(tconn);
if (s) {
if (!sock.socket) {
sock.socket = s;
send_first_packet(tconn, &sock, P_INITIAL_DATA);
} else if (!msock.socket) {
clear_bit(DISCARD_CONCURRENT, &tconn->flags);
msock.socket = s;
send_first_packet(tconn, &msock, P_INITIAL_META);
} else {
conn_err(tconn, "Logic error in conn_connect()\n");
goto out_release_sockets;
}
}
if (sock.socket && msock.socket) {
rcu_read_lock();
nc = rcu_dereference(tconn->net_conf);
timeout = nc->ping_timeo * HZ / 10;
rcu_read_unlock();
schedule_timeout_interruptible(timeout);
ok = drbd_socket_okay(&sock.socket);
ok = drbd_socket_okay(&msock.socket) && ok;
if (ok)
break;
}
retry:
s = drbd_wait_for_connect(tconn, &ad);
if (s) {
int fp = receive_first_packet(tconn, s);
drbd_socket_okay(&sock.socket);
drbd_socket_okay(&msock.socket);
switch (fp) {
case P_INITIAL_DATA:
if (sock.socket) {
conn_warn(tconn, "initial packet S crossed\n");
sock_release(sock.socket);
sock.socket = s;
goto randomize;
}
sock.socket = s;
break;
case P_INITIAL_META:
set_bit(DISCARD_CONCURRENT, &tconn->flags);
if (msock.socket) {
conn_warn(tconn, "initial packet M crossed\n");
sock_release(msock.socket);
msock.socket = s;
goto randomize;
}
msock.socket = s;
break;
default:
conn_warn(tconn, "Error receiving initial packet\n");
sock_release(s);
randomize:
if (random32() & 1)
goto retry;
}
}
if (tconn->cstate <= C_DISCONNECTING)
goto out_release_sockets;
if (signal_pending(current)) {
flush_signals(current);
smp_rmb();
if (get_t_state(&tconn->receiver) == EXITING)
goto out_release_sockets;
}
ok = drbd_socket_okay(&sock.socket);
ok = drbd_socket_okay(&msock.socket) && ok;
} while (!ok);
if (ad.s_listen)
sock_release(ad.s_listen);
sock.socket->sk->sk_reuse = 1; /* SO_REUSEADDR */
msock.socket->sk->sk_reuse = 1; /* SO_REUSEADDR */
sock.socket->sk->sk_allocation = GFP_NOIO;
msock.socket->sk->sk_allocation = GFP_NOIO;
sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
/* NOT YET ...
* sock.socket->sk->sk_sndtimeo = tconn->net_conf->timeout*HZ/10;
* sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
* first set it to the P_CONNECTION_FEATURES timeout,
* which we set to 4x the configured ping_timeout. */
rcu_read_lock();
nc = rcu_dereference(tconn->net_conf);
sock.socket->sk->sk_sndtimeo =
sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
timeout = nc->timeout * HZ / 10;
discard_my_data = nc->discard_my_data;
rcu_read_unlock();
msock.socket->sk->sk_sndtimeo = timeout;
/* we don't want delays.
* we use TCP_CORK where appropriate, though */
drbd_tcp_nodelay(sock.socket);
drbd_tcp_nodelay(msock.socket);
tconn->data.socket = sock.socket;
tconn->meta.socket = msock.socket;
tconn->last_received = jiffies;
h = drbd_do_features(tconn);
if (h <= 0)
return h;
if (tconn->cram_hmac_tfm) {
/* drbd_request_state(mdev, NS(conn, WFAuth)); */
switch (drbd_do_auth(tconn)) {
case -1:
conn_err(tconn, "Authentication of peer failed\n");
return -1;
case 0:
conn_err(tconn, "Authentication of peer failed, trying again.\n");
return 0;
}
}
tconn->data.socket->sk->sk_sndtimeo = timeout;
tconn->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
if (drbd_send_protocol(tconn) == -EOPNOTSUPP)
return -1;
set_bit(STATE_SENT, &tconn->flags);
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
kref_get(&mdev->kref);
rcu_read_unlock();
if (discard_my_data)
set_bit(DISCARD_MY_DATA, &mdev->flags);
else
clear_bit(DISCARD_MY_DATA, &mdev->flags);
drbd_connected(mdev);
kref_put(&mdev->kref, &drbd_minor_destroy);
rcu_read_lock();
}
rcu_read_unlock();
rv = conn_request_state(tconn, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
if (rv < SS_SUCCESS) {
clear_bit(STATE_SENT, &tconn->flags);
return 0;
}
drbd_thread_start(&tconn->asender);
mutex_lock(&tconn->conf_update);
/* The discard_my_data flag is a single-shot modifier to the next
* connection attempt, the handshake of which is now well underway.
* No need for rcu style copying of the whole struct
* just to clear a single value. */
tconn->net_conf->discard_my_data = 0;
mutex_unlock(&tconn->conf_update);
return h;
out_release_sockets:
if (ad.s_listen)
sock_release(ad.s_listen);
if (sock.socket)
sock_release(sock.socket);
if (msock.socket)
sock_release(msock.socket);
return -1;
}
static int decode_header(struct drbd_tconn *tconn, void *header, struct packet_info *pi)
{
unsigned int header_size = drbd_header_size(tconn);
if (header_size == sizeof(struct p_header100) &&
*(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
struct p_header100 *h = header;
if (h->pad != 0) {
conn_err(tconn, "Header padding is not zero\n");
return -EINVAL;
}
pi->vnr = be16_to_cpu(h->volume);
pi->cmd = be16_to_cpu(h->command);
pi->size = be32_to_cpu(h->length);
} else if (header_size == sizeof(struct p_header95) &&
*(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
struct p_header95 *h = header;
pi->cmd = be16_to_cpu(h->command);
pi->size = be32_to_cpu(h->length);
pi->vnr = 0;
} else if (header_size == sizeof(struct p_header80) &&
*(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
struct p_header80 *h = header;
pi->cmd = be16_to_cpu(h->command);
pi->size = be16_to_cpu(h->length);
pi->vnr = 0;
} else {
conn_err(tconn, "Wrong magic value 0x%08x in protocol version %d\n",
be32_to_cpu(*(__be32 *)header),
tconn->agreed_pro_version);
return -EINVAL;
}
pi->data = header + header_size;
return 0;
}
static int drbd_recv_header(struct drbd_tconn *tconn, struct packet_info *pi)
{
void *buffer = tconn->data.rbuf;
int err;
err = drbd_recv_all_warn(tconn, buffer, drbd_header_size(tconn));
if (err)
return err;
err = decode_header(tconn, buffer, pi);
tconn->last_received = jiffies;
return err;
}
static void drbd_flush(struct drbd_tconn *tconn)
{
int rv;
struct drbd_conf *mdev;
int vnr;
if (tconn->write_ordering >= WO_bdev_flush) {
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
if (!get_ldev(mdev))
continue;
kref_get(&mdev->kref);
rcu_read_unlock();
rv = blkdev_issue_flush(mdev->ldev->backing_bdev,
GFP_NOIO, NULL);
if (rv) {
dev_info(DEV, "local disk flush failed with status %d\n", rv);
/* would rather check on EOPNOTSUPP, but that is not reliable.
* don't try again for ANY return value != 0
* if (rv == -EOPNOTSUPP) */
drbd_bump_write_ordering(tconn, WO_drain_io);
}
put_ldev(mdev);
kref_put(&mdev->kref, &drbd_minor_destroy);
rcu_read_lock();
if (rv)
break;
}
rcu_read_unlock();
}
}
/**
* drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
* @mdev: DRBD device.
* @epoch: Epoch object.
* @ev: Epoch event.
*/
static enum finish_epoch drbd_may_finish_epoch(struct drbd_tconn *tconn,
struct drbd_epoch *epoch,
enum epoch_event ev)
{
int epoch_size;
struct drbd_epoch *next_epoch;
enum finish_epoch rv = FE_STILL_LIVE;
spin_lock(&tconn->epoch_lock);
do {
next_epoch = NULL;
epoch_size = atomic_read(&epoch->epoch_size);
switch (ev & ~EV_CLEANUP) {
case EV_PUT:
atomic_dec(&epoch->active);
break;
case EV_GOT_BARRIER_NR:
set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
break;
case EV_BECAME_LAST:
/* nothing to do*/
break;
}
if (epoch_size != 0 &&
atomic_read(&epoch->active) == 0 &&
(test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
if (!(ev & EV_CLEANUP)) {
spin_unlock(&tconn->epoch_lock);
drbd_send_b_ack(epoch->tconn, epoch->barrier_nr, epoch_size);
spin_lock(&tconn->epoch_lock);
}
#if 0
/* FIXME: dec unacked on connection, once we have
* something to count pending connection packets in. */
if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
dec_unacked(epoch->tconn);
#endif
if (tconn->current_epoch != epoch) {
next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
list_del(&epoch->list);
ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
tconn->epochs--;
kfree(epoch);
if (rv == FE_STILL_LIVE)
rv = FE_DESTROYED;
} else {
epoch->flags = 0;
atomic_set(&epoch->epoch_size, 0);
/* atomic_set(&epoch->active, 0); is already zero */
if (rv == FE_STILL_LIVE)
rv = FE_RECYCLED;
}
}
if (!next_epoch)
break;
epoch = next_epoch;
} while (1);
spin_unlock(&tconn->epoch_lock);
return rv;
}
/**
* drbd_bump_write_ordering() - Fall back to an other write ordering method
* @tconn: DRBD connection.
* @wo: Write ordering method to try.
*/
void drbd_bump_write_ordering(struct drbd_tconn *tconn, enum write_ordering_e wo)
{
struct disk_conf *dc;
struct drbd_conf *mdev;
enum write_ordering_e pwo;
int vnr;
static char *write_ordering_str[] = {
[WO_none] = "none",
[WO_drain_io] = "drain",
[WO_bdev_flush] = "flush",
};
pwo = tconn->write_ordering;
wo = min(pwo, wo);
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
if (!get_ldev_if_state(mdev, D_ATTACHING))
continue;
dc = rcu_dereference(mdev->ldev->disk_conf);
if (wo == WO_bdev_flush && !dc->disk_flushes)
wo = WO_drain_io;
if (wo == WO_drain_io && !dc->disk_drain)
wo = WO_none;
put_ldev(mdev);
}
rcu_read_unlock();
tconn->write_ordering = wo;
if (pwo != tconn->write_ordering || wo == WO_bdev_flush)
conn_info(tconn, "Method to ensure write ordering: %s\n", write_ordering_str[tconn->write_ordering]);
}
/**
* drbd_submit_peer_request()
* @mdev: DRBD device.
* @peer_req: peer request
* @rw: flag field, see bio->bi_rw
*
* May spread the pages to multiple bios,
* depending on bio_add_page restrictions.
*
* Returns 0 if all bios have been submitted,
* -ENOMEM if we could not allocate enough bios,
* -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
* single page to an empty bio (which should never happen and likely indicates
* that the lower level IO stack is in some way broken). This has been observed
* on certain Xen deployments.
*/
/* TODO allocate from our own bio_set. */
int drbd_submit_peer_request(struct drbd_conf *mdev,
struct drbd_peer_request *peer_req,
const unsigned rw, const int fault_type)
{
struct bio *bios = NULL;
struct bio *bio;
struct page *page = peer_req->pages;
sector_t sector = peer_req->i.sector;
unsigned ds = peer_req->i.size;
unsigned n_bios = 0;
unsigned nr_pages = (ds + PAGE_SIZE -1) >> PAGE_SHIFT;
int err = -ENOMEM;
/* In most cases, we will only need one bio. But in case the lower
* level restrictions happen to be different at this offset on this
* side than those of the sending peer, we may need to submit the
* request in more than one bio.
*
* Plain bio_alloc is good enough here, this is no DRBD internally
* generated bio, but a bio allocated on behalf of the peer.
*/
next_bio:
bio = bio_alloc(GFP_NOIO, nr_pages);
if (!bio) {
dev_err(DEV, "submit_ee: Allocation of a bio failed\n");
goto fail;
}
/* > peer_req->i.sector, unless this is the first bio */
bio->bi_sector = sector;
bio->bi_bdev = mdev->ldev->backing_bdev;
bio->bi_rw = rw;
bio->bi_private = peer_req;
bio->bi_end_io = drbd_peer_request_endio;
bio->bi_next = bios;
bios = bio;
++n_bios;
page_chain_for_each(page) {
unsigned len = min_t(unsigned, ds, PAGE_SIZE);
if (!bio_add_page(bio, page, len, 0)) {
/* A single page must always be possible!
* But in case it fails anyways,
* we deal with it, and complain (below). */
if (bio->bi_vcnt == 0) {
dev_err(DEV,
"bio_add_page failed for len=%u, "
"bi_vcnt=0 (bi_sector=%llu)\n",
len, (unsigned long long)bio->bi_sector);
err = -ENOSPC;
goto fail;
}
goto next_bio;
}
ds -= len;
sector += len >> 9;
--nr_pages;
}
D_ASSERT(page == NULL);
D_ASSERT(ds == 0);
atomic_set(&peer_req->pending_bios, n_bios);
do {
bio = bios;
bios = bios->bi_next;
bio->bi_next = NULL;
drbd_generic_make_request(mdev, fault_type, bio);
} while (bios);
return 0;
fail:
while (bios) {
bio = bios;
bios = bios->bi_next;
bio_put(bio);
}
return err;
}
static void drbd_remove_epoch_entry_interval(struct drbd_conf *mdev,
struct drbd_peer_request *peer_req)
{
struct drbd_interval *i = &peer_req->i;
drbd_remove_interval(&mdev->write_requests, i);
drbd_clear_interval(i);
/* Wake up any processes waiting for this peer request to complete. */
if (i->waiting)
wake_up(&mdev->misc_wait);
}
void conn_wait_active_ee_empty(struct drbd_tconn *tconn)
{
struct drbd_conf *mdev;
int vnr;
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
kref_get(&mdev->kref);
rcu_read_unlock();
drbd_wait_ee_list_empty(mdev, &mdev->active_ee);
kref_put(&mdev->kref, &drbd_minor_destroy);
rcu_read_lock();
}
rcu_read_unlock();
}
static int receive_Barrier(struct drbd_tconn *tconn, struct packet_info *pi)
{
int rv;
struct p_barrier *p = pi->data;
struct drbd_epoch *epoch;
/* FIXME these are unacked on connection,
* not a specific (peer)device.
*/
tconn->current_epoch->barrier_nr = p->barrier;
tconn->current_epoch->tconn = tconn;
rv = drbd_may_finish_epoch(tconn, tconn->current_epoch, EV_GOT_BARRIER_NR);
/* P_BARRIER_ACK may imply that the corresponding extent is dropped from
* the activity log, which means it would not be resynced in case the
* R_PRIMARY crashes now.
* Therefore we must send the barrier_ack after the barrier request was
* completed. */
switch (tconn->write_ordering) {
case WO_none:
if (rv == FE_RECYCLED)
return 0;
/* receiver context, in the writeout path of the other node.
* avoid potential distributed deadlock */
epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
if (epoch)
break;
else
conn_warn(tconn, "Allocation of an epoch failed, slowing down\n");
/* Fall through */
case WO_bdev_flush:
case WO_drain_io:
conn_wait_active_ee_empty(tconn);
drbd_flush(tconn);
if (atomic_read(&tconn->current_epoch->epoch_size)) {
epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
if (epoch)
break;
}
return 0;
default:
conn_err(tconn, "Strangeness in tconn->write_ordering %d\n", tconn->write_ordering);
return -EIO;
}
epoch->flags = 0;
atomic_set(&epoch->epoch_size, 0);
atomic_set(&epoch->active, 0);
spin_lock(&tconn->epoch_lock);
if (atomic_read(&tconn->current_epoch->epoch_size)) {
list_add(&epoch->list, &tconn->current_epoch->list);
tconn->current_epoch = epoch;
tconn->epochs++;
} else {
/* The current_epoch got recycled while we allocated this one... */
kfree(epoch);
}
spin_unlock(&tconn->epoch_lock);
return 0;
}
/* used from receive_RSDataReply (recv_resync_read)
* and from receive_Data */
static struct drbd_peer_request *
read_in_block(struct drbd_conf *mdev, u64 id, sector_t sector,
int data_size) __must_hold(local)
{
const sector_t capacity = drbd_get_capacity(mdev->this_bdev);
struct drbd_peer_request *peer_req;
struct page *page;
int dgs, ds, err;
void *dig_in = mdev->tconn->int_dig_in;
void *dig_vv = mdev->tconn->int_dig_vv;
unsigned long *data;
dgs = 0;
if (mdev->tconn->peer_integrity_tfm) {
dgs = crypto_hash_digestsize(mdev->tconn->peer_integrity_tfm);
/*
* FIXME: Receive the incoming digest into the receive buffer
* here, together with its struct p_data?
*/
err = drbd_recv_all_warn(mdev->tconn, dig_in, dgs);
if (err)
return NULL;
data_size -= dgs;
}
if (!expect(IS_ALIGNED(data_size, 512)))
return NULL;
if (!expect(data_size <= DRBD_MAX_BIO_SIZE))
return NULL;
/* even though we trust out peer,
* we sometimes have to double check. */
if (sector + (data_size>>9) > capacity) {
dev_err(DEV, "request from peer beyond end of local disk: "
"capacity: %llus < sector: %llus + size: %u\n",
(unsigned long long)capacity,
(unsigned long long)sector, data_size);
return NULL;
}
/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
* "criss-cross" setup, that might cause write-out on some other DRBD,
* which in turn might block on the other node at this very place. */
peer_req = drbd_alloc_peer_req(mdev, id, sector, data_size, GFP_NOIO);
if (!peer_req)
return NULL;
if (!data_size)
return peer_req;
ds = data_size;
page = peer_req->pages;
page_chain_for_each(page) {
unsigned len = min_t(int, ds, PAGE_SIZE);
data = kmap(page);
err = drbd_recv_all_warn(mdev->tconn, data, len);
if (drbd_insert_fault(mdev, DRBD_FAULT_RECEIVE)) {
dev_err(DEV, "Fault injection: Corrupting data on receive\n");
data[0] = data[0] ^ (unsigned long)-1;
}
kunmap(page);
if (err) {
drbd_free_peer_req(mdev, peer_req);
return NULL;
}
ds -= len;
}
if (dgs) {
drbd_csum_ee(mdev, mdev->tconn->peer_integrity_tfm, peer_req, dig_vv);
if (memcmp(dig_in, dig_vv, dgs)) {
dev_err(DEV, "Digest integrity check FAILED: %llus +%u\n",
(unsigned long long)sector, data_size);
drbd_free_peer_req(mdev, peer_req);
return NULL;
}
}
mdev->recv_cnt += data_size>>9;
return peer_req;
}
/* drbd_drain_block() just takes a data block
* out of the socket input buffer, and discards it.
*/
static int drbd_drain_block(struct drbd_conf *mdev, int data_size)
{
struct page *page;
int err = 0;
void *data;
if (!data_size)
return 0;
page = drbd_alloc_pages(mdev, 1, 1);
data = kmap(page);
while (data_size) {
unsigned int len = min_t(int, data_size, PAGE_SIZE);
err = drbd_recv_all_warn(mdev->tconn, data, len);
if (err)
break;
data_size -= len;
}
kunmap(page);
drbd_free_pages(mdev, page, 0);
return err;
}
static int recv_dless_read(struct drbd_conf *mdev, struct drbd_request *req,
sector_t sector, int data_size)
{
struct bio_vec *bvec;
struct bio *bio;
int dgs, err, i, expect;
void *dig_in = mdev->tconn->int_dig_in;
void *dig_vv = mdev->tconn->int_dig_vv;
dgs = 0;
if (mdev->tconn->peer_integrity_tfm) {
dgs = crypto_hash_digestsize(mdev->tconn->peer_integrity_tfm);
err = drbd_recv_all_warn(mdev->tconn, dig_in, dgs);
if (err)
return err;
data_size -= dgs;
}
/* optimistically update recv_cnt. if receiving fails below,
* we disconnect anyways, and counters will be reset. */
mdev->recv_cnt += data_size>>9;
bio = req->master_bio;
D_ASSERT(sector == bio->bi_sector);
bio_for_each_segment(bvec, bio, i) {
void *mapped = kmap(bvec->bv_page) + bvec->bv_offset;
expect = min_t(int, data_size, bvec->bv_len);
err = drbd_recv_all_warn(mdev->tconn, mapped, expect);
kunmap(bvec->bv_page);
if (err)
return err;
data_size -= expect;
}
if (dgs) {
drbd_csum_bio(mdev, mdev->tconn->peer_integrity_tfm, bio, dig_vv);
if (memcmp(dig_in, dig_vv, dgs)) {
dev_err(DEV, "Digest integrity check FAILED. Broken NICs?\n");
return -EINVAL;
}
}
D_ASSERT(data_size == 0);
return 0;
}
/*
* e_end_resync_block() is called in asender context via
* drbd_finish_peer_reqs().
*/
static int e_end_resync_block(struct drbd_work *w, int unused)
{
struct drbd_peer_request *peer_req =
container_of(w, struct drbd_peer_request, w);
struct drbd_conf *mdev = w->mdev;
sector_t sector = peer_req->i.sector;
int err;
D_ASSERT(drbd_interval_empty(&peer_req->i));
if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
drbd_set_in_sync(mdev, sector, peer_req->i.size);
err = drbd_send_ack(mdev, P_RS_WRITE_ACK, peer_req);
} else {
/* Record failure to sync */
drbd_rs_failed_io(mdev, sector, peer_req->i.size);
err = drbd_send_ack(mdev, P_NEG_ACK, peer_req);
}
dec_unacked(mdev);
return err;
}
static int recv_resync_read(struct drbd_conf *mdev, sector_t sector, int data_size) __releases(local)
{
struct drbd_peer_request *peer_req;
peer_req = read_in_block(mdev, ID_SYNCER, sector, data_size);
if (!peer_req)
goto fail;
dec_rs_pending(mdev);
inc_unacked(mdev);
/* corresponding dec_unacked() in e_end_resync_block()
* respective _drbd_clear_done_ee */
peer_req->w.cb = e_end_resync_block;
spin_lock_irq(&mdev->tconn->req_lock);
list_add(&peer_req->w.list, &mdev->sync_ee);
spin_unlock_irq(&mdev->tconn->req_lock);
atomic_add(data_size >> 9, &mdev->rs_sect_ev);
if (drbd_submit_peer_request(mdev, peer_req, WRITE, DRBD_FAULT_RS_WR) == 0)
return 0;
/* don't care for the reason here */
dev_err(DEV, "submit failed, triggering re-connect\n");
spin_lock_irq(&mdev->tconn->req_lock);
list_del(&peer_req->w.list);
spin_unlock_irq(&mdev->tconn->req_lock);
drbd_free_peer_req(mdev, peer_req);
fail:
put_ldev(mdev);
return -EIO;
}
static struct drbd_request *
find_request(struct drbd_conf *mdev, struct rb_root *root, u64 id,
sector_t sector, bool missing_ok, const char *func)
{
struct drbd_request *req;
/* Request object according to our peer */
req = (struct drbd_request *)(unsigned long)id;
if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
return req;
if (!missing_ok) {
dev_err(DEV, "%s: failed to find request 0x%lx, sector %llus\n", func,
(unsigned long)id, (unsigned long long)sector);
}
return NULL;
}
static int receive_DataReply(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct drbd_request *req;
sector_t sector;
int err;
struct p_data *p = pi->data;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
sector = be64_to_cpu(p->sector);
spin_lock_irq(&mdev->tconn->req_lock);
req = find_request(mdev, &mdev->read_requests, p->block_id, sector, false, __func__);
spin_unlock_irq(&mdev->tconn->req_lock);
if (unlikely(!req))
return -EIO;
/* hlist_del(&req->collision) is done in _req_may_be_done, to avoid
* special casing it there for the various failure cases.
* still no race with drbd_fail_pending_reads */
err = recv_dless_read(mdev, req, sector, pi->size);
if (!err)
req_mod(req, DATA_RECEIVED);
/* else: nothing. handled from drbd_disconnect...
* I don't think we may complete this just yet
* in case we are "on-disconnect: freeze" */
return err;
}
static int receive_RSDataReply(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
sector_t sector;
int err;
struct p_data *p = pi->data;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
sector = be64_to_cpu(p->sector);
D_ASSERT(p->block_id == ID_SYNCER);
if (get_ldev(mdev)) {
/* data is submitted to disk within recv_resync_read.
* corresponding put_ldev done below on error,
* or in drbd_peer_request_endio. */
err = recv_resync_read(mdev, sector, pi->size);
} else {
if (__ratelimit(&drbd_ratelimit_state))
dev_err(DEV, "Can not write resync data to local disk.\n");
err = drbd_drain_block(mdev, pi->size);
drbd_send_ack_dp(mdev, P_NEG_ACK, p, pi->size);
}
atomic_add(pi->size >> 9, &mdev->rs_sect_in);
return err;
}
static void restart_conflicting_writes(struct drbd_conf *mdev,
sector_t sector, int size)
{
struct drbd_interval *i;
struct drbd_request *req;
drbd_for_each_overlap(i, &mdev->write_requests, sector, size) {
if (!i->local)
continue;
req = container_of(i, struct drbd_request, i);
if (req->rq_state & RQ_LOCAL_PENDING ||
!(req->rq_state & RQ_POSTPONED))
continue;
/* as it is RQ_POSTPONED, this will cause it to
* be queued on the retry workqueue. */
__req_mod(req, DISCARD_WRITE, NULL);
}
}
/*
* e_end_block() is called in asender context via drbd_finish_peer_reqs().
*/
static int e_end_block(struct drbd_work *w, int cancel)
{
struct drbd_peer_request *peer_req =
container_of(w, struct drbd_peer_request, w);
struct drbd_conf *mdev = w->mdev;
sector_t sector = peer_req->i.sector;
int err = 0, pcmd;
if (peer_req->flags & EE_SEND_WRITE_ACK) {
if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
pcmd = (mdev->state.conn >= C_SYNC_SOURCE &&
mdev->state.conn <= C_PAUSED_SYNC_T &&
peer_req->flags & EE_MAY_SET_IN_SYNC) ?
P_RS_WRITE_ACK : P_WRITE_ACK;
err = drbd_send_ack(mdev, pcmd, peer_req);
if (pcmd == P_RS_WRITE_ACK)
drbd_set_in_sync(mdev, sector, peer_req->i.size);
} else {
err = drbd_send_ack(mdev, P_NEG_ACK, peer_req);
/* we expect it to be marked out of sync anyways...
* maybe assert this? */
}
dec_unacked(mdev);
}
/* we delete from the conflict detection hash _after_ we sent out the
* P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */
if (peer_req->flags & EE_IN_INTERVAL_TREE) {
spin_lock_irq(&mdev->tconn->req_lock);
D_ASSERT(!drbd_interval_empty(&peer_req->i));
drbd_remove_epoch_entry_interval(mdev, peer_req);
if (peer_req->flags & EE_RESTART_REQUESTS)
restart_conflicting_writes(mdev, sector, peer_req->i.size);
spin_unlock_irq(&mdev->tconn->req_lock);
} else
D_ASSERT(drbd_interval_empty(&peer_req->i));
drbd_may_finish_epoch(mdev->tconn, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
return err;
}
static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
{
struct drbd_conf *mdev = w->mdev;
struct drbd_peer_request *peer_req =
container_of(w, struct drbd_peer_request, w);
int err;
err = drbd_send_ack(mdev, ack, peer_req);
dec_unacked(mdev);
return err;
}
static int e_send_discard_write(struct drbd_work *w, int unused)
{
return e_send_ack(w, P_DISCARD_WRITE);
}
static int e_send_retry_write(struct drbd_work *w, int unused)
{
struct drbd_tconn *tconn = w->mdev->tconn;
return e_send_ack(w, tconn->agreed_pro_version >= 100 ?
P_RETRY_WRITE : P_DISCARD_WRITE);
}
static bool seq_greater(u32 a, u32 b)
{
/*
* We assume 32-bit wrap-around here.
* For 24-bit wrap-around, we would have to shift:
* a <<= 8; b <<= 8;
*/
return (s32)a - (s32)b > 0;
}
static u32 seq_max(u32 a, u32 b)
{
return seq_greater(a, b) ? a : b;
}
static bool need_peer_seq(struct drbd_conf *mdev)
{
struct drbd_tconn *tconn = mdev->tconn;
int tp;
/*
* We only need to keep track of the last packet_seq number of our peer
* if we are in dual-primary mode and we have the discard flag set; see
* handle_write_conflicts().
*/
rcu_read_lock();
tp = rcu_dereference(mdev->tconn->net_conf)->two_primaries;
rcu_read_unlock();
return tp && test_bit(DISCARD_CONCURRENT, &tconn->flags);
}
static void update_peer_seq(struct drbd_conf *mdev, unsigned int peer_seq)
{
unsigned int newest_peer_seq;
if (need_peer_seq(mdev)) {
spin_lock(&mdev->peer_seq_lock);
newest_peer_seq = seq_max(mdev->peer_seq, peer_seq);
mdev->peer_seq = newest_peer_seq;
spin_unlock(&mdev->peer_seq_lock);
/* wake up only if we actually changed mdev->peer_seq */
if (peer_seq == newest_peer_seq)
wake_up(&mdev->seq_wait);
}
}
static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
{
return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
}
/* maybe change sync_ee into interval trees as well? */
static bool overlapping_resync_write(struct drbd_conf *mdev, struct drbd_peer_request *peer_req)
{
struct drbd_peer_request *rs_req;
bool rv = 0;
spin_lock_irq(&mdev->tconn->req_lock);
list_for_each_entry(rs_req, &mdev->sync_ee, w.list) {
if (overlaps(peer_req->i.sector, peer_req->i.size,
rs_req->i.sector, rs_req->i.size)) {
rv = 1;
break;
}
}
spin_unlock_irq(&mdev->tconn->req_lock);
return rv;
}
/* Called from receive_Data.
* Synchronize packets on sock with packets on msock.
*
* This is here so even when a P_DATA packet traveling via sock overtook an Ack
* packet traveling on msock, they are still processed in the order they have
* been sent.
*
* Note: we don't care for Ack packets overtaking P_DATA packets.
*
* In case packet_seq is larger than mdev->peer_seq number, there are
* outstanding packets on the msock. We wait for them to arrive.
* In case we are the logically next packet, we update mdev->peer_seq
* ourselves. Correctly handles 32bit wrap around.
*
* Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
* about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
* for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
* 1<<9 == 512 seconds aka ages for the 32bit wrap around...
*
* returns 0 if we may process the packet,
* -ERESTARTSYS if we were interrupted (by disconnect signal). */
static int wait_for_and_update_peer_seq(struct drbd_conf *mdev, const u32 peer_seq)
{
DEFINE_WAIT(wait);
long timeout;
int ret;
if (!need_peer_seq(mdev))
return 0;
spin_lock(&mdev->peer_seq_lock);
for (;;) {
if (!seq_greater(peer_seq - 1, mdev->peer_seq)) {
mdev->peer_seq = seq_max(mdev->peer_seq, peer_seq);
ret = 0;
break;
}
if (signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
prepare_to_wait(&mdev->seq_wait, &wait, TASK_INTERRUPTIBLE);
spin_unlock(&mdev->peer_seq_lock);
rcu_read_lock();
timeout = rcu_dereference(mdev->tconn->net_conf)->ping_timeo*HZ/10;
rcu_read_unlock();
timeout = schedule_timeout(timeout);
spin_lock(&mdev->peer_seq_lock);
if (!timeout) {
ret = -ETIMEDOUT;
dev_err(DEV, "Timed out waiting for missing ack packets; disconnecting\n");
break;
}
}
spin_unlock(&mdev->peer_seq_lock);
finish_wait(&mdev->seq_wait, &wait);
return ret;
}
/* see also bio_flags_to_wire()
* DRBD_REQ_*, because we need to semantically map the flags to data packet
* flags and back. We may replicate to other kernel versions. */
static unsigned long wire_flags_to_bio(struct drbd_conf *mdev, u32 dpf)
{
return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
(dpf & DP_FUA ? REQ_FUA : 0) |
(dpf & DP_FLUSH ? REQ_FLUSH : 0) |
(dpf & DP_DISCARD ? REQ_DISCARD : 0);
}
static void fail_postponed_requests(struct drbd_conf *mdev, sector_t sector,
unsigned int size)
{
struct drbd_interval *i;
repeat:
drbd_for_each_overlap(i, &mdev->write_requests, sector, size) {
struct drbd_request *req;
struct bio_and_error m;
if (!i->local)
continue;
req = container_of(i, struct drbd_request, i);
if (!(req->rq_state & RQ_POSTPONED))
continue;
req->rq_state &= ~RQ_POSTPONED;
__req_mod(req, NEG_ACKED, &m);
spin_unlock_irq(&mdev->tconn->req_lock);
if (m.bio)
complete_master_bio(mdev, &m);
spin_lock_irq(&mdev->tconn->req_lock);
goto repeat;
}
}
static int handle_write_conflicts(struct drbd_conf *mdev,
struct drbd_peer_request *peer_req)
{
struct drbd_tconn *tconn = mdev->tconn;
bool resolve_conflicts = test_bit(DISCARD_CONCURRENT, &tconn->flags);
sector_t sector = peer_req->i.sector;
const unsigned int size = peer_req->i.size;
struct drbd_interval *i;
bool equal;
int err;
/*
* Inserting the peer request into the write_requests tree will prevent
* new conflicting local requests from being added.
*/
drbd_insert_interval(&mdev->write_requests, &peer_req->i);
repeat:
drbd_for_each_overlap(i, &mdev->write_requests, sector, size) {
if (i == &peer_req->i)
continue;
if (!i->local) {
/*
* Our peer has sent a conflicting remote request; this
* should not happen in a two-node setup. Wait for the
* earlier peer request to complete.
*/
err = drbd_wait_misc(mdev, i);
if (err)
goto out;
goto repeat;
}
equal = i->sector == sector && i->size == size;
if (resolve_conflicts) {
/*
* If the peer request is fully contained within the
* overlapping request, it can be discarded; otherwise,
* it will be retried once all overlapping requests
* have completed.
*/
bool discard = i->sector <= sector && i->sector +
(i->size >> 9) >= sector + (size >> 9);
if (!equal)
dev_alert(DEV, "Concurrent writes detected: "
"local=%llus +%u, remote=%llus +%u, "
"assuming %s came first\n",
(unsigned long long)i->sector, i->size,
(unsigned long long)sector, size,
discard ? "local" : "remote");
inc_unacked(mdev);
peer_req->w.cb = discard ? e_send_discard_write :
e_send_retry_write;
list_add_tail(&peer_req->w.list, &mdev->done_ee);
wake_asender(mdev->tconn);
err = -ENOENT;
goto out;
} else {
struct drbd_request *req =
container_of(i, struct drbd_request, i);
if (!equal)
dev_alert(DEV, "Concurrent writes detected: "
"local=%llus +%u, remote=%llus +%u\n",
(unsigned long long)i->sector, i->size,
(unsigned long long)sector, size);
if (req->rq_state & RQ_LOCAL_PENDING ||
!(req->rq_state & RQ_POSTPONED)) {
/*
* Wait for the node with the discard flag to
* decide if this request will be discarded or
* retried. Requests that are discarded will
* disappear from the write_requests tree.
*
* In addition, wait for the conflicting
* request to finish locally before submitting
* the conflicting peer request.
*/
err = drbd_wait_misc(mdev, &req->i);
if (err) {
_conn_request_state(mdev->tconn,
NS(conn, C_TIMEOUT),
CS_HARD);
fail_postponed_requests(mdev, sector, size);
goto out;
}
goto repeat;
}
/*
* Remember to restart the conflicting requests after
* the new peer request has completed.
*/
peer_req->flags |= EE_RESTART_REQUESTS;
}
}
err = 0;
out:
if (err)
drbd_remove_epoch_entry_interval(mdev, peer_req);
return err;
}
/* mirrored write */
static int receive_Data(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
sector_t sector;
struct drbd_peer_request *peer_req;
struct p_data *p = pi->data;
u32 peer_seq = be32_to_cpu(p->seq_num);
int rw = WRITE;
u32 dp_flags;
int err, tp;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
if (!get_ldev(mdev)) {
int err2;
err = wait_for_and_update_peer_seq(mdev, peer_seq);
drbd_send_ack_dp(mdev, P_NEG_ACK, p, pi->size);
atomic_inc(&tconn->current_epoch->epoch_size);
err2 = drbd_drain_block(mdev, pi->size);
if (!err)
err = err2;
return err;
}
/*
* Corresponding put_ldev done either below (on various errors), or in
* drbd_peer_request_endio, if we successfully submit the data at the
* end of this function.
*/
sector = be64_to_cpu(p->sector);
peer_req = read_in_block(mdev, p->block_id, sector, pi->size);
if (!peer_req) {
put_ldev(mdev);
return -EIO;
}
peer_req->w.cb = e_end_block;
dp_flags = be32_to_cpu(p->dp_flags);
rw |= wire_flags_to_bio(mdev, dp_flags);
if (peer_req->pages == NULL) {
D_ASSERT(peer_req->i.size == 0);
D_ASSERT(dp_flags & DP_FLUSH);
}
if (dp_flags & DP_MAY_SET_IN_SYNC)
peer_req->flags |= EE_MAY_SET_IN_SYNC;
spin_lock(&tconn->epoch_lock);
peer_req->epoch = tconn->current_epoch;
atomic_inc(&peer_req->epoch->epoch_size);
atomic_inc(&peer_req->epoch->active);
spin_unlock(&tconn->epoch_lock);
rcu_read_lock();
tp = rcu_dereference(mdev->tconn->net_conf)->two_primaries;
rcu_read_unlock();
if (tp) {
peer_req->flags |= EE_IN_INTERVAL_TREE;
err = wait_for_and_update_peer_seq(mdev, peer_seq);
if (err)
goto out_interrupted;
spin_lock_irq(&mdev->tconn->req_lock);
err = handle_write_conflicts(mdev, peer_req);
if (err) {
spin_unlock_irq(&mdev->tconn->req_lock);
if (err == -ENOENT) {
put_ldev(mdev);
return 0;
}
goto out_interrupted;
}
} else
spin_lock_irq(&mdev->tconn->req_lock);
list_add(&peer_req->w.list, &mdev->active_ee);
spin_unlock_irq(&mdev->tconn->req_lock);
if (mdev->state.conn == C_SYNC_TARGET)
wait_event(mdev->ee_wait, !overlapping_resync_write(mdev, peer_req));
if (mdev->tconn->agreed_pro_version < 100) {
rcu_read_lock();
switch (rcu_dereference(mdev->tconn->net_conf)->wire_protocol) {
case DRBD_PROT_C:
dp_flags |= DP_SEND_WRITE_ACK;
break;
case DRBD_PROT_B:
dp_flags |= DP_SEND_RECEIVE_ACK;
break;
}
rcu_read_unlock();
}
if (dp_flags & DP_SEND_WRITE_ACK) {
peer_req->flags |= EE_SEND_WRITE_ACK;
inc_unacked(mdev);
/* corresponding dec_unacked() in e_end_block()
* respective _drbd_clear_done_ee */
}
if (dp_flags & DP_SEND_RECEIVE_ACK) {
/* I really don't like it that the receiver thread
* sends on the msock, but anyways */
drbd_send_ack(mdev, P_RECV_ACK, peer_req);
}
if (mdev->state.pdsk < D_INCONSISTENT) {
/* In case we have the only disk of the cluster, */
drbd_set_out_of_sync(mdev, peer_req->i.sector, peer_req->i.size);
peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
drbd_al_begin_io(mdev, &peer_req->i);
}
err = drbd_submit_peer_request(mdev, peer_req, rw, DRBD_FAULT_DT_WR);
if (!err)
return 0;
/* don't care for the reason here */
dev_err(DEV, "submit failed, triggering re-connect\n");
spin_lock_irq(&mdev->tconn->req_lock);
list_del(&peer_req->w.list);
drbd_remove_epoch_entry_interval(mdev, peer_req);
spin_unlock_irq(&mdev->tconn->req_lock);
if (peer_req->flags & EE_CALL_AL_COMPLETE_IO)
drbd_al_complete_io(mdev, &peer_req->i);
out_interrupted:
drbd_may_finish_epoch(tconn, peer_req->epoch, EV_PUT + EV_CLEANUP);
put_ldev(mdev);
drbd_free_peer_req(mdev, peer_req);
return err;
}
/* We may throttle resync, if the lower device seems to be busy,
* and current sync rate is above c_min_rate.
*
* To decide whether or not the lower device is busy, we use a scheme similar
* to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
* (more than 64 sectors) of activity we cannot account for with our own resync
* activity, it obviously is "busy".
*
* The current sync rate used here uses only the most recent two step marks,
* to have a short time average so we can react faster.
*/
int drbd_rs_should_slow_down(struct drbd_conf *mdev, sector_t sector)
{
struct gendisk *disk = mdev->ldev->backing_bdev->bd_contains->bd_disk;
unsigned long db, dt, dbdt;
struct lc_element *tmp;
int curr_events;
int throttle = 0;
unsigned int c_min_rate;
rcu_read_lock();
c_min_rate = rcu_dereference(mdev->ldev->disk_conf)->c_min_rate;
rcu_read_unlock();
/* feature disabled? */
if (c_min_rate == 0)
return 0;
spin_lock_irq(&mdev->al_lock);
tmp = lc_find(mdev->resync, BM_SECT_TO_EXT(sector));
if (tmp) {
struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
if (test_bit(BME_PRIORITY, &bm_ext->flags)) {
spin_unlock_irq(&mdev->al_lock);
return 0;
}
/* Do not slow down if app IO is already waiting for this extent */
}
spin_unlock_irq(&mdev->al_lock);
curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
(int)part_stat_read(&disk->part0, sectors[1]) -
atomic_read(&mdev->rs_sect_ev);
if (!mdev->rs_last_events || curr_events - mdev->rs_last_events > 64) {
unsigned long rs_left;
int i;
mdev->rs_last_events = curr_events;
/* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
* approx. */
i = (mdev->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
if (mdev->state.conn == C_VERIFY_S || mdev->state.conn == C_VERIFY_T)
rs_left = mdev->ov_left;
else
rs_left = drbd_bm_total_weight(mdev) - mdev->rs_failed;
dt = ((long)jiffies - (long)mdev->rs_mark_time[i]) / HZ;
if (!dt)
dt++;
db = mdev->rs_mark_left[i] - rs_left;
dbdt = Bit2KB(db/dt);
if (dbdt > c_min_rate)
throttle = 1;
}
return throttle;
}
static int receive_DataRequest(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
sector_t sector;
sector_t capacity;
struct drbd_peer_request *peer_req;
struct digest_info *di = NULL;
int size, verb;
unsigned int fault_type;
struct p_block_req *p = pi->data;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
capacity = drbd_get_capacity(mdev->this_bdev);
sector = be64_to_cpu(p->sector);
size = be32_to_cpu(p->blksize);
if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
dev_err(DEV, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
(unsigned long long)sector, size);
return -EINVAL;
}
if (sector + (size>>9) > capacity) {
dev_err(DEV, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
(unsigned long long)sector, size);
return -EINVAL;
}
if (!get_ldev_if_state(mdev, D_UP_TO_DATE)) {
verb = 1;
switch (pi->cmd) {
case P_DATA_REQUEST:
drbd_send_ack_rp(mdev, P_NEG_DREPLY, p);
break;
case P_RS_DATA_REQUEST:
case P_CSUM_RS_REQUEST:
case P_OV_REQUEST:
drbd_send_ack_rp(mdev, P_NEG_RS_DREPLY , p);
break;
case P_OV_REPLY:
verb = 0;
dec_rs_pending(mdev);
drbd_send_ack_ex(mdev, P_OV_RESULT, sector, size, ID_IN_SYNC);
break;
default:
BUG();
}
if (verb && __ratelimit(&drbd_ratelimit_state))
dev_err(DEV, "Can not satisfy peer's read request, "
"no local data.\n");
/* drain possibly payload */
return drbd_drain_block(mdev, pi->size);
}
/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
* "criss-cross" setup, that might cause write-out on some other DRBD,
* which in turn might block on the other node at this very place. */
peer_req = drbd_alloc_peer_req(mdev, p->block_id, sector, size, GFP_NOIO);
if (!peer_req) {
put_ldev(mdev);
return -ENOMEM;
}
switch (pi->cmd) {
case P_DATA_REQUEST:
peer_req->w.cb = w_e_end_data_req;
fault_type = DRBD_FAULT_DT_RD;
/* application IO, don't drbd_rs_begin_io */
goto submit;
case P_RS_DATA_REQUEST:
peer_req->w.cb = w_e_end_rsdata_req;
fault_type = DRBD_FAULT_RS_RD;
/* used in the sector offset progress display */
mdev->bm_resync_fo = BM_SECT_TO_BIT(sector);
break;
case P_OV_REPLY:
case P_CSUM_RS_REQUEST:
fault_type = DRBD_FAULT_RS_RD;
di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
if (!di)
goto out_free_e;
di->digest_size = pi->size;
di->digest = (((char *)di)+sizeof(struct digest_info));
peer_req->digest = di;
peer_req->flags |= EE_HAS_DIGEST;
if (drbd_recv_all(mdev->tconn, di->digest, pi->size))
goto out_free_e;
if (pi->cmd == P_CSUM_RS_REQUEST) {
D_ASSERT(mdev->tconn->agreed_pro_version >= 89);
peer_req->w.cb = w_e_end_csum_rs_req;
/* used in the sector offset progress display */
mdev->bm_resync_fo = BM_SECT_TO_BIT(sector);
} else if (pi->cmd == P_OV_REPLY) {
/* track progress, we may need to throttle */
atomic_add(size >> 9, &mdev->rs_sect_in);
peer_req->w.cb = w_e_end_ov_reply;
dec_rs_pending(mdev);
/* drbd_rs_begin_io done when we sent this request,
* but accounting still needs to be done. */
goto submit_for_resync;
}
break;
case P_OV_REQUEST:
if (mdev->ov_start_sector == ~(sector_t)0 &&
mdev->tconn->agreed_pro_version >= 90) {
unsigned long now = jiffies;
int i;
mdev->ov_start_sector = sector;
mdev->ov_position = sector;
mdev->ov_left = drbd_bm_bits(mdev) - BM_SECT_TO_BIT(sector);
mdev->rs_total = mdev->ov_left;
for (i = 0; i < DRBD_SYNC_MARKS; i++) {
mdev->rs_mark_left[i] = mdev->ov_left;
mdev->rs_mark_time[i] = now;
}
dev_info(DEV, "Online Verify start sector: %llu\n",
(unsigned long long)sector);
}
peer_req->w.cb = w_e_end_ov_req;
fault_type = DRBD_FAULT_RS_RD;
break;
default:
BUG();
}
/* Throttle, drbd_rs_begin_io and submit should become asynchronous
* wrt the receiver, but it is not as straightforward as it may seem.
* Various places in the resync start and stop logic assume resync
* requests are processed in order, requeuing this on the worker thread
* introduces a bunch of new code for synchronization between threads.
*
* Unlimited throttling before drbd_rs_begin_io may stall the resync
* "forever", throttling after drbd_rs_begin_io will lock that extent
* for application writes for the same time. For now, just throttle
* here, where the rest of the code expects the receiver to sleep for
* a while, anyways.
*/
/* Throttle before drbd_rs_begin_io, as that locks out application IO;
* this defers syncer requests for some time, before letting at least
* on request through. The resync controller on the receiving side
* will adapt to the incoming rate accordingly.
*
* We cannot throttle here if remote is Primary/SyncTarget:
* we would also throttle its application reads.
* In that case, throttling is done on the SyncTarget only.
*/
if (mdev->state.peer != R_PRIMARY && drbd_rs_should_slow_down(mdev, sector))
schedule_timeout_uninterruptible(HZ/10);
if (drbd_rs_begin_io(mdev, sector))
goto out_free_e;
submit_for_resync:
atomic_add(size >> 9, &mdev->rs_sect_ev);
submit:
inc_unacked(mdev);
spin_lock_irq(&mdev->tconn->req_lock);
list_add_tail(&peer_req->w.list, &mdev->read_ee);
spin_unlock_irq(&mdev->tconn->req_lock);
if (drbd_submit_peer_request(mdev, peer_req, READ, fault_type) == 0)
return 0;
/* don't care for the reason here */
dev_err(DEV, "submit failed, triggering re-connect\n");
spin_lock_irq(&mdev->tconn->req_lock);
list_del(&peer_req->w.list);
spin_unlock_irq(&mdev->tconn->req_lock);
/* no drbd_rs_complete_io(), we are dropping the connection anyways */
out_free_e:
put_ldev(mdev);
drbd_free_peer_req(mdev, peer_req);
return -EIO;
}
static int drbd_asb_recover_0p(struct drbd_conf *mdev) __must_hold(local)
{
int self, peer, rv = -100;
unsigned long ch_self, ch_peer;
enum drbd_after_sb_p after_sb_0p;
self = mdev->ldev->md.uuid[UI_BITMAP] & 1;
peer = mdev->p_uuid[UI_BITMAP] & 1;
ch_peer = mdev->p_uuid[UI_SIZE];
ch_self = mdev->comm_bm_set;
rcu_read_lock();
after_sb_0p = rcu_dereference(mdev->tconn->net_conf)->after_sb_0p;
rcu_read_unlock();
switch (after_sb_0p) {
case ASB_CONSENSUS:
case ASB_DISCARD_SECONDARY:
case ASB_CALL_HELPER:
case ASB_VIOLENTLY:
dev_err(DEV, "Configuration error.\n");
break;
case ASB_DISCONNECT:
break;
case ASB_DISCARD_YOUNGER_PRI:
if (self == 0 && peer == 1) {
rv = -1;
break;
}
if (self == 1 && peer == 0) {
rv = 1;
break;
}
/* Else fall through to one of the other strategies... */
case ASB_DISCARD_OLDER_PRI:
if (self == 0 && peer == 1) {
rv = 1;
break;
}
if (self == 1 && peer == 0) {
rv = -1;
break;
}
/* Else fall through to one of the other strategies... */
dev_warn(DEV, "Discard younger/older primary did not find a decision\n"
"Using discard-least-changes instead\n");
case ASB_DISCARD_ZERO_CHG:
if (ch_peer == 0 && ch_self == 0) {
rv = test_bit(DISCARD_CONCURRENT, &mdev->tconn->flags)
? -1 : 1;
break;
} else {
if (ch_peer == 0) { rv = 1; break; }
if (ch_self == 0) { rv = -1; break; }
}
if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
break;
case ASB_DISCARD_LEAST_CHG:
if (ch_self < ch_peer)
rv = -1;
else if (ch_self > ch_peer)
rv = 1;
else /* ( ch_self == ch_peer ) */
/* Well, then use something else. */
rv = test_bit(DISCARD_CONCURRENT, &mdev->tconn->flags)
? -1 : 1;
break;
case ASB_DISCARD_LOCAL:
rv = -1;
break;
case ASB_DISCARD_REMOTE:
rv = 1;
}
return rv;
}
static int drbd_asb_recover_1p(struct drbd_conf *mdev) __must_hold(local)
{
int hg, rv = -100;
enum drbd_after_sb_p after_sb_1p;
rcu_read_lock();
after_sb_1p = rcu_dereference(mdev->tconn->net_conf)->after_sb_1p;
rcu_read_unlock();
switch (after_sb_1p) {
case ASB_DISCARD_YOUNGER_PRI:
case ASB_DISCARD_OLDER_PRI:
case ASB_DISCARD_LEAST_CHG:
case ASB_DISCARD_LOCAL:
case ASB_DISCARD_REMOTE:
case ASB_DISCARD_ZERO_CHG:
dev_err(DEV, "Configuration error.\n");
break;
case ASB_DISCONNECT:
break;
case ASB_CONSENSUS:
hg = drbd_asb_recover_0p(mdev);
if (hg == -1 && mdev->state.role == R_SECONDARY)
rv = hg;
if (hg == 1 && mdev->state.role == R_PRIMARY)
rv = hg;
break;
case ASB_VIOLENTLY:
rv = drbd_asb_recover_0p(mdev);
break;
case ASB_DISCARD_SECONDARY:
return mdev->state.role == R_PRIMARY ? 1 : -1;
case ASB_CALL_HELPER:
hg = drbd_asb_recover_0p(mdev);
if (hg == -1 && mdev->state.role == R_PRIMARY) {
enum drbd_state_rv rv2;
drbd_set_role(mdev, R_SECONDARY, 0);
/* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
* we might be here in C_WF_REPORT_PARAMS which is transient.
* we do not need to wait for the after state change work either. */
rv2 = drbd_change_state(mdev, CS_VERBOSE, NS(role, R_SECONDARY));
if (rv2 != SS_SUCCESS) {
drbd_khelper(mdev, "pri-lost-after-sb");
} else {
dev_warn(DEV, "Successfully gave up primary role.\n");
rv = hg;
}
} else
rv = hg;
}
return rv;
}
static int drbd_asb_recover_2p(struct drbd_conf *mdev) __must_hold(local)
{
int hg, rv = -100;
enum drbd_after_sb_p after_sb_2p;
rcu_read_lock();
after_sb_2p = rcu_dereference(mdev->tconn->net_conf)->after_sb_2p;
rcu_read_unlock();
switch (after_sb_2p) {
case ASB_DISCARD_YOUNGER_PRI:
case ASB_DISCARD_OLDER_PRI:
case ASB_DISCARD_LEAST_CHG:
case ASB_DISCARD_LOCAL:
case ASB_DISCARD_REMOTE:
case ASB_CONSENSUS:
case ASB_DISCARD_SECONDARY:
case ASB_DISCARD_ZERO_CHG:
dev_err(DEV, "Configuration error.\n");
break;
case ASB_VIOLENTLY:
rv = drbd_asb_recover_0p(mdev);
break;
case ASB_DISCONNECT:
break;
case ASB_CALL_HELPER:
hg = drbd_asb_recover_0p(mdev);
if (hg == -1) {
enum drbd_state_rv rv2;
/* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
* we might be here in C_WF_REPORT_PARAMS which is transient.
* we do not need to wait for the after state change work either. */
rv2 = drbd_change_state(mdev, CS_VERBOSE, NS(role, R_SECONDARY));
if (rv2 != SS_SUCCESS) {
drbd_khelper(mdev, "pri-lost-after-sb");
} else {
dev_warn(DEV, "Successfully gave up primary role.\n");
rv = hg;
}
} else
rv = hg;
}
return rv;
}
static void drbd_uuid_dump(struct drbd_conf *mdev, char *text, u64 *uuid,
u64 bits, u64 flags)
{
if (!uuid) {
dev_info(DEV, "%s uuid info vanished while I was looking!\n", text);
return;
}
dev_info(DEV, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
text,
(unsigned long long)uuid[UI_CURRENT],
(unsigned long long)uuid[UI_BITMAP],
(unsigned long long)uuid[UI_HISTORY_START],
(unsigned long long)uuid[UI_HISTORY_END],
(unsigned long long)bits,
(unsigned long long)flags);
}
/*
100 after split brain try auto recover
2 C_SYNC_SOURCE set BitMap
1 C_SYNC_SOURCE use BitMap
0 no Sync
-1 C_SYNC_TARGET use BitMap
-2 C_SYNC_TARGET set BitMap
-100 after split brain, disconnect
-1000 unrelated data
-1091 requires proto 91
-1096 requires proto 96
*/
static int drbd_uuid_compare(struct drbd_conf *mdev, int *rule_nr) __must_hold(local)
{
u64 self, peer;
int i, j;
self = mdev->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
peer = mdev->p_uuid[UI_CURRENT] & ~((u64)1);
*rule_nr = 10;
if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
return 0;
*rule_nr = 20;
if ((self == UUID_JUST_CREATED || self == (u64)0) &&
peer != UUID_JUST_CREATED)
return -2;
*rule_nr = 30;
if (self != UUID_JUST_CREATED &&
(peer == UUID_JUST_CREATED || peer == (u64)0))
return 2;
if (self == peer) {
int rct, dc; /* roles at crash time */
if (mdev->p_uuid[UI_BITMAP] == (u64)0 && mdev->ldev->md.uuid[UI_BITMAP] != (u64)0) {
if (mdev->tconn->agreed_pro_version < 91)
return -1091;
if ((mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (mdev->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
(mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (mdev->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
dev_info(DEV, "was SyncSource, missed the resync finished event, corrected myself:\n");
drbd_uuid_set_bm(mdev, 0UL);
drbd_uuid_dump(mdev, "self", mdev->ldev->md.uuid,
mdev->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(mdev) : 0, 0);
*rule_nr = 34;
} else {
dev_info(DEV, "was SyncSource (peer failed to write sync_uuid)\n");
*rule_nr = 36;
}
return 1;
}
if (mdev->ldev->md.uuid[UI_BITMAP] == (u64)0 && mdev->p_uuid[UI_BITMAP] != (u64)0) {
if (mdev->tconn->agreed_pro_version < 91)
return -1091;
if ((mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (mdev->p_uuid[UI_BITMAP] & ~((u64)1)) &&
(mdev->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (mdev->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
dev_info(DEV, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
mdev->p_uuid[UI_HISTORY_START + 1] = mdev->p_uuid[UI_HISTORY_START];
mdev->p_uuid[UI_HISTORY_START] = mdev->p_uuid[UI_BITMAP];
mdev->p_uuid[UI_BITMAP] = 0UL;
drbd_uuid_dump(mdev, "peer", mdev->p_uuid, mdev->p_uuid[UI_SIZE], mdev->p_uuid[UI_FLAGS]);
*rule_nr = 35;
} else {
dev_info(DEV, "was SyncTarget (failed to write sync_uuid)\n");
*rule_nr = 37;
}
return -1;
}
/* Common power [off|failure] */
rct = (test_bit(CRASHED_PRIMARY, &mdev->flags) ? 1 : 0) +
(mdev->p_uuid[UI_FLAGS] & 2);
/* lowest bit is set when we were primary,
* next bit (weight 2) is set when peer was primary */
*rule_nr = 40;
switch (rct) {
case 0: /* !self_pri && !peer_pri */ return 0;
case 1: /* self_pri && !peer_pri */ return 1;
case 2: /* !self_pri && peer_pri */ return -1;
case 3: /* self_pri && peer_pri */
dc = test_bit(DISCARD_CONCURRENT, &mdev->tconn->flags);
return dc ? -1 : 1;
}
}
*rule_nr = 50;
peer = mdev->p_uuid[UI_BITMAP] & ~((u64)1);
if (self == peer)
return -1;
*rule_nr = 51;
peer = mdev->p_uuid[UI_HISTORY_START] & ~((u64)1);
if (self == peer) {
if (mdev->tconn->agreed_pro_version < 96 ?
(mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
(mdev->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
peer + UUID_NEW_BM_OFFSET == (mdev->p_uuid[UI_BITMAP] & ~((u64)1))) {
/* The last P_SYNC_UUID did not get though. Undo the last start of
resync as sync source modifications of the peer's UUIDs. */
if (mdev->tconn->agreed_pro_version < 91)
return -1091;
mdev->p_uuid[UI_BITMAP] = mdev->p_uuid[UI_HISTORY_START];
mdev->p_uuid[UI_HISTORY_START] = mdev->p_uuid[UI_HISTORY_START + 1];
dev_info(DEV, "Lost last syncUUID packet, corrected:\n");
drbd_uuid_dump(mdev, "peer", mdev->p_uuid, mdev->p_uuid[UI_SIZE], mdev->p_uuid[UI_FLAGS]);
return -1;
}
}
*rule_nr = 60;
self = mdev->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
peer = mdev->p_uuid[i] & ~((u64)1);
if (self == peer)
return -2;
}
*rule_nr = 70;
self = mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
peer = mdev->p_uuid[UI_CURRENT] & ~((u64)1);
if (self == peer)
return 1;
*rule_nr = 71;
self = mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
if (self == peer) {
if (mdev->tconn->agreed_pro_version < 96 ?
(mdev->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
(mdev->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
self + UUID_NEW_BM_OFFSET == (mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
/* The last P_SYNC_UUID did not get though. Undo the last start of
resync as sync source modifications of our UUIDs. */
if (mdev->tconn->agreed_pro_version < 91)
return -1091;
_drbd_uuid_set(mdev, UI_BITMAP, mdev->ldev->md.uuid[UI_HISTORY_START]);
_drbd_uuid_set(mdev, UI_HISTORY_START, mdev->ldev->md.uuid[UI_HISTORY_START + 1]);
dev_info(DEV, "Last syncUUID did not get through, corrected:\n");
drbd_uuid_dump(mdev, "self", mdev->ldev->md.uuid,
mdev->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(mdev) : 0, 0);
return 1;
}
}
*rule_nr = 80;
peer = mdev->p_uuid[UI_CURRENT] & ~((u64)1);
for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
self = mdev->ldev->md.uuid[i] & ~((u64)1);
if (self == peer)
return 2;
}
*rule_nr = 90;
self = mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
peer = mdev->p_uuid[UI_BITMAP] & ~((u64)1);
if (self == peer && self != ((u64)0))
return 100;
*rule_nr = 100;
for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
self = mdev->ldev->md.uuid[i] & ~((u64)1);
for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
peer = mdev->p_uuid[j] & ~((u64)1);
if (self == peer)
return -100;
}
}
return -1000;
}
/* drbd_sync_handshake() returns the new conn state on success, or
CONN_MASK (-1) on failure.
*/
static enum drbd_conns drbd_sync_handshake(struct drbd_conf *mdev, enum drbd_role peer_role,
enum drbd_disk_state peer_disk) __must_hold(local)
{
enum drbd_conns rv = C_MASK;
enum drbd_disk_state mydisk;
struct net_conf *nc;
int hg, rule_nr, rr_conflict, tentative;
mydisk = mdev->state.disk;
if (mydisk == D_NEGOTIATING)
mydisk = mdev->new_state_tmp.disk;
dev_info(DEV, "drbd_sync_handshake:\n");
drbd_uuid_dump(mdev, "self", mdev->ldev->md.uuid, mdev->comm_bm_set, 0);
drbd_uuid_dump(mdev, "peer", mdev->p_uuid,
mdev->p_uuid[UI_SIZE], mdev->p_uuid[UI_FLAGS]);
hg = drbd_uuid_compare(mdev, &rule_nr);
dev_info(DEV, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
if (hg == -1000) {
dev_alert(DEV, "Unrelated data, aborting!\n");
return C_MASK;
}
if (hg < -1000) {
dev_alert(DEV, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
return C_MASK;
}
if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
(peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) {
int f = (hg == -100) || abs(hg) == 2;
hg = mydisk > D_INCONSISTENT ? 1 : -1;
if (f)
hg = hg*2;
dev_info(DEV, "Becoming sync %s due to disk states.\n",
hg > 0 ? "source" : "target");
}
if (abs(hg) == 100)
drbd_khelper(mdev, "initial-split-brain");
rcu_read_lock();
nc = rcu_dereference(mdev->tconn->net_conf);
if (hg == 100 || (hg == -100 && nc->always_asbp)) {
int pcount = (mdev->state.role == R_PRIMARY)
+ (peer_role == R_PRIMARY);
int forced = (hg == -100);
switch (pcount) {
case 0:
hg = drbd_asb_recover_0p(mdev);
break;
case 1:
hg = drbd_asb_recover_1p(mdev);
break;
case 2:
hg = drbd_asb_recover_2p(mdev);
break;
}
if (abs(hg) < 100) {
dev_warn(DEV, "Split-Brain detected, %d primaries, "
"automatically solved. Sync from %s node\n",
pcount, (hg < 0) ? "peer" : "this");
if (forced) {
dev_warn(DEV, "Doing a full sync, since"
" UUIDs where ambiguous.\n");
hg = hg*2;
}
}
}
if (hg == -100) {
if (test_bit(DISCARD_MY_DATA, &mdev->flags) && !(mdev->p_uuid[UI_FLAGS]&1))
hg = -1;
if (!test_bit(DISCARD_MY_DATA, &mdev->flags) && (mdev->p_uuid[UI_FLAGS]&1))
hg = 1;
if (abs(hg) < 100)
dev_warn(DEV, "Split-Brain detected, manually solved. "
"Sync from %s node\n",
(hg < 0) ? "peer" : "this");
}
rr_conflict = nc->rr_conflict;
tentative = nc->tentative;
rcu_read_unlock();
if (hg == -100) {
/* FIXME this log message is not correct if we end up here
* after an attempted attach on a diskless node.
* We just refuse to attach -- well, we drop the "connection"
* to that disk, in a way... */
dev_alert(DEV, "Split-Brain detected but unresolved, dropping connection!\n");
drbd_khelper(mdev, "split-brain");
return C_MASK;
}
if (hg > 0 && mydisk <= D_INCONSISTENT) {
dev_err(DEV, "I shall become SyncSource, but I am inconsistent!\n");
return C_MASK;
}
if (hg < 0 && /* by intention we do not use mydisk here. */
mdev->state.role == R_PRIMARY && mdev->state.disk >= D_CONSISTENT) {
switch (rr_conflict) {
case ASB_CALL_HELPER:
drbd_khelper(mdev, "pri-lost");
/* fall through */
case ASB_DISCONNECT:
dev_err(DEV, "I shall become SyncTarget, but I am primary!\n");
return C_MASK;
case ASB_VIOLENTLY:
dev_warn(DEV, "Becoming SyncTarget, violating the stable-data"
"assumption\n");
}
}
if (tentative || test_bit(CONN_DRY_RUN, &mdev->tconn->flags)) {
if (hg == 0)
dev_info(DEV, "dry-run connect: No resync, would become Connected immediately.\n");
else
dev_info(DEV, "dry-run connect: Would become %s, doing a %s resync.",
drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
abs(hg) >= 2 ? "full" : "bit-map based");
return C_MASK;
}
if (abs(hg) >= 2) {
dev_info(DEV, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
if (drbd_bitmap_io(mdev, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
BM_LOCKED_SET_ALLOWED))
return C_MASK;
}
if (hg > 0) { /* become sync source. */
rv = C_WF_BITMAP_S;
} else if (hg < 0) { /* become sync target */
rv = C_WF_BITMAP_T;
} else {
rv = C_CONNECTED;
if (drbd_bm_total_weight(mdev)) {
dev_info(DEV, "No resync, but %lu bits in bitmap!\n",
drbd_bm_total_weight(mdev));
}
}
return rv;
}
static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
{
/* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
if (peer == ASB_DISCARD_REMOTE)
return ASB_DISCARD_LOCAL;
/* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
if (peer == ASB_DISCARD_LOCAL)
return ASB_DISCARD_REMOTE;
/* everything else is valid if they are equal on both sides. */
return peer;
}
static int receive_protocol(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct p_protocol *p = pi->data;
enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
int p_proto, p_discard_my_data, p_two_primaries, cf;
struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
char integrity_alg[SHARED_SECRET_MAX] = "";
struct crypto_hash *peer_integrity_tfm = NULL;
void *int_dig_in = NULL, *int_dig_vv = NULL;
p_proto = be32_to_cpu(p->protocol);
p_after_sb_0p = be32_to_cpu(p->after_sb_0p);
p_after_sb_1p = be32_to_cpu(p->after_sb_1p);
p_after_sb_2p = be32_to_cpu(p->after_sb_2p);
p_two_primaries = be32_to_cpu(p->two_primaries);
cf = be32_to_cpu(p->conn_flags);
p_discard_my_data = cf & CF_DISCARD_MY_DATA;
if (tconn->agreed_pro_version >= 87) {
int err;
if (pi->size > sizeof(integrity_alg))
return -EIO;
err = drbd_recv_all(tconn, integrity_alg, pi->size);
if (err)
return err;
integrity_alg[SHARED_SECRET_MAX - 1] = 0;
}
if (pi->cmd != P_PROTOCOL_UPDATE) {
clear_bit(CONN_DRY_RUN, &tconn->flags);
if (cf & CF_DRY_RUN)
set_bit(CONN_DRY_RUN, &tconn->flags);
rcu_read_lock();
nc = rcu_dereference(tconn->net_conf);
if (p_proto != nc->wire_protocol) {
conn_err(tconn, "incompatible %s settings\n", "protocol");
goto disconnect_rcu_unlock;
}
if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
conn_err(tconn, "incompatible %s settings\n", "after-sb-0pri");
goto disconnect_rcu_unlock;
}
if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
conn_err(tconn, "incompatible %s settings\n", "after-sb-1pri");
goto disconnect_rcu_unlock;
}
if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
conn_err(tconn, "incompatible %s settings\n", "after-sb-2pri");
goto disconnect_rcu_unlock;
}
if (p_discard_my_data && nc->discard_my_data) {
conn_err(tconn, "incompatible %s settings\n", "discard-my-data");
goto disconnect_rcu_unlock;
}
if (p_two_primaries != nc->two_primaries) {
conn_err(tconn, "incompatible %s settings\n", "allow-two-primaries");
goto disconnect_rcu_unlock;
}
if (strcmp(integrity_alg, nc->integrity_alg)) {
conn_err(tconn, "incompatible %s settings\n", "data-integrity-alg");
goto disconnect_rcu_unlock;
}
rcu_read_unlock();
}
if (integrity_alg[0]) {
int hash_size;
/*
* We can only change the peer data integrity algorithm
* here. Changing our own data integrity algorithm
* requires that we send a P_PROTOCOL_UPDATE packet at
* the same time; otherwise, the peer has no way to
* tell between which packets the algorithm should
* change.
*/
peer_integrity_tfm = crypto_alloc_hash(integrity_alg, 0, CRYPTO_ALG_ASYNC);
if (!peer_integrity_tfm) {
conn_err(tconn, "peer data-integrity-alg %s not supported\n",
integrity_alg);
goto disconnect;
}
hash_size = crypto_hash_digestsize(peer_integrity_tfm);
int_dig_in = kmalloc(hash_size, GFP_KERNEL);
int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
if (!(int_dig_in && int_dig_vv)) {
conn_err(tconn, "Allocation of buffers for data integrity checking failed\n");
goto disconnect;
}
}
new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
if (!new_net_conf) {
conn_err(tconn, "Allocation of new net_conf failed\n");
goto disconnect;
}
mutex_lock(&tconn->data.mutex);
mutex_lock(&tconn->conf_update);
old_net_conf = tconn->net_conf;
*new_net_conf = *old_net_conf;
new_net_conf->wire_protocol = p_proto;
new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
new_net_conf->two_primaries = p_two_primaries;
rcu_assign_pointer(tconn->net_conf, new_net_conf);
mutex_unlock(&tconn->conf_update);
mutex_unlock(&tconn->data.mutex);
crypto_free_hash(tconn->peer_integrity_tfm);
kfree(tconn->int_dig_in);
kfree(tconn->int_dig_vv);
tconn->peer_integrity_tfm = peer_integrity_tfm;
tconn->int_dig_in = int_dig_in;
tconn->int_dig_vv = int_dig_vv;
if (strcmp(old_net_conf->integrity_alg, integrity_alg))
conn_info(tconn, "peer data-integrity-alg: %s\n",
integrity_alg[0] ? integrity_alg : "(none)");
synchronize_rcu();
kfree(old_net_conf);
return 0;
disconnect_rcu_unlock:
rcu_read_unlock();
disconnect:
crypto_free_hash(peer_integrity_tfm);
kfree(int_dig_in);
kfree(int_dig_vv);
conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
return -EIO;
}
/* helper function
* input: alg name, feature name
* return: NULL (alg name was "")
* ERR_PTR(error) if something goes wrong
* or the crypto hash ptr, if it worked out ok. */
struct crypto_hash *drbd_crypto_alloc_digest_safe(const struct drbd_conf *mdev,
const char *alg, const char *name)
{
struct crypto_hash *tfm;
if (!alg[0])
return NULL;
tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm)) {
dev_err(DEV, "Can not allocate \"%s\" as %s (reason: %ld)\n",
alg, name, PTR_ERR(tfm));
return tfm;
}
return tfm;
}
static int ignore_remaining_packet(struct drbd_tconn *tconn, struct packet_info *pi)
{
void *buffer = tconn->data.rbuf;
int size = pi->size;
while (size) {
int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
s = drbd_recv(tconn, buffer, s);
if (s <= 0) {
if (s < 0)
return s;
break;
}
size -= s;
}
if (size)
return -EIO;
return 0;
}
/*
* config_unknown_volume - device configuration command for unknown volume
*
* When a device is added to an existing connection, the node on which the
* device is added first will send configuration commands to its peer but the
* peer will not know about the device yet. It will warn and ignore these
* commands. Once the device is added on the second node, the second node will
* send the same device configuration commands, but in the other direction.
*
* (We can also end up here if drbd is misconfigured.)
*/
static int config_unknown_volume(struct drbd_tconn *tconn, struct packet_info *pi)
{
conn_warn(tconn, "%s packet received for volume %u, which is not configured locally\n",
cmdname(pi->cmd), pi->vnr);
return ignore_remaining_packet(tconn, pi);
}
static int receive_SyncParam(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_rs_param_95 *p;
unsigned int header_size, data_size, exp_max_sz;
struct crypto_hash *verify_tfm = NULL;
struct crypto_hash *csums_tfm = NULL;
struct net_conf *old_net_conf, *new_net_conf = NULL;
struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
const int apv = tconn->agreed_pro_version;
struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
int fifo_size = 0;
int err;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return config_unknown_volume(tconn, pi);
exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param)
: apv == 88 ? sizeof(struct p_rs_param)
+ SHARED_SECRET_MAX
: apv <= 94 ? sizeof(struct p_rs_param_89)
: /* apv >= 95 */ sizeof(struct p_rs_param_95);
if (pi->size > exp_max_sz) {
dev_err(DEV, "SyncParam packet too long: received %u, expected <= %u bytes\n",
pi->size, exp_max_sz);
return -EIO;
}
if (apv <= 88) {
header_size = sizeof(struct p_rs_param);
data_size = pi->size - header_size;
} else if (apv <= 94) {
header_size = sizeof(struct p_rs_param_89);
data_size = pi->size - header_size;
D_ASSERT(data_size == 0);
} else {
header_size = sizeof(struct p_rs_param_95);
data_size = pi->size - header_size;
D_ASSERT(data_size == 0);
}
/* initialize verify_alg and csums_alg */
p = pi->data;
memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
err = drbd_recv_all(mdev->tconn, p, header_size);
if (err)
return err;
mutex_lock(&mdev->tconn->conf_update);
old_net_conf = mdev->tconn->net_conf;
if (get_ldev(mdev)) {
new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
if (!new_disk_conf) {
put_ldev(mdev);
mutex_unlock(&mdev->tconn->conf_update);
dev_err(DEV, "Allocation of new disk_conf failed\n");
return -ENOMEM;
}
old_disk_conf = mdev->ldev->disk_conf;
*new_disk_conf = *old_disk_conf;
new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
}
if (apv >= 88) {
if (apv == 88) {
if (data_size > SHARED_SECRET_MAX || data_size == 0) {
dev_err(DEV, "verify-alg of wrong size, "
"peer wants %u, accepting only up to %u byte\n",
data_size, SHARED_SECRET_MAX);
err = -EIO;
goto reconnect;
}
err = drbd_recv_all(mdev->tconn, p->verify_alg, data_size);
if (err)
goto reconnect;
/* we expect NUL terminated string */
/* but just in case someone tries to be evil */
D_ASSERT(p->verify_alg[data_size-1] == 0);
p->verify_alg[data_size-1] = 0;
} else /* apv >= 89 */ {
/* we still expect NUL terminated strings */
/* but just in case someone tries to be evil */
D_ASSERT(p->verify_alg[SHARED_SECRET_MAX-1] == 0);
D_ASSERT(p->csums_alg[SHARED_SECRET_MAX-1] == 0);
p->verify_alg[SHARED_SECRET_MAX-1] = 0;
p->csums_alg[SHARED_SECRET_MAX-1] = 0;
}
if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
if (mdev->state.conn == C_WF_REPORT_PARAMS) {
dev_err(DEV, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
old_net_conf->verify_alg, p->verify_alg);
goto disconnect;
}
verify_tfm = drbd_crypto_alloc_digest_safe(mdev,
p->verify_alg, "verify-alg");
if (IS_ERR(verify_tfm)) {
verify_tfm = NULL;
goto disconnect;
}
}
if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
if (mdev->state.conn == C_WF_REPORT_PARAMS) {
dev_err(DEV, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
old_net_conf->csums_alg, p->csums_alg);
goto disconnect;
}
csums_tfm = drbd_crypto_alloc_digest_safe(mdev,
p->csums_alg, "csums-alg");
if (IS_ERR(csums_tfm)) {
csums_tfm = NULL;
goto disconnect;
}
}
if (apv > 94 && new_disk_conf) {
new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
if (fifo_size != mdev->rs_plan_s->size) {
new_plan = fifo_alloc(fifo_size);
if (!new_plan) {
dev_err(DEV, "kmalloc of fifo_buffer failed");
put_ldev(mdev);
goto disconnect;
}
}
}
if (verify_tfm || csums_tfm) {
new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
if (!new_net_conf) {
dev_err(DEV, "Allocation of new net_conf failed\n");
goto disconnect;
}
*new_net_conf = *old_net_conf;
if (verify_tfm) {
strcpy(new_net_conf->verify_alg, p->verify_alg);
new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
crypto_free_hash(mdev->tconn->verify_tfm);
mdev->tconn->verify_tfm = verify_tfm;
dev_info(DEV, "using verify-alg: \"%s\"\n", p->verify_alg);
}
if (csums_tfm) {
strcpy(new_net_conf->csums_alg, p->csums_alg);
new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
crypto_free_hash(mdev->tconn->csums_tfm);
mdev->tconn->csums_tfm = csums_tfm;
dev_info(DEV, "using csums-alg: \"%s\"\n", p->csums_alg);
}
rcu_assign_pointer(tconn->net_conf, new_net_conf);
}
}
if (new_disk_conf) {
rcu_assign_pointer(mdev->ldev->disk_conf, new_disk_conf);
put_ldev(mdev);
}
if (new_plan) {
old_plan = mdev->rs_plan_s;
rcu_assign_pointer(mdev->rs_plan_s, new_plan);
}
mutex_unlock(&mdev->tconn->conf_update);
synchronize_rcu();
if (new_net_conf)
kfree(old_net_conf);
kfree(old_disk_conf);
kfree(old_plan);
return 0;
reconnect:
if (new_disk_conf) {
put_ldev(mdev);
kfree(new_disk_conf);
}
mutex_unlock(&mdev->tconn->conf_update);
return -EIO;
disconnect:
kfree(new_plan);
if (new_disk_conf) {
put_ldev(mdev);
kfree(new_disk_conf);
}
mutex_unlock(&mdev->tconn->conf_update);
/* just for completeness: actually not needed,
* as this is not reached if csums_tfm was ok. */
crypto_free_hash(csums_tfm);
/* but free the verify_tfm again, if csums_tfm did not work out */
crypto_free_hash(verify_tfm);
conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD);
return -EIO;
}
/* warn if the arguments differ by more than 12.5% */
static void warn_if_differ_considerably(struct drbd_conf *mdev,
const char *s, sector_t a, sector_t b)
{
sector_t d;
if (a == 0 || b == 0)
return;
d = (a > b) ? (a - b) : (b - a);
if (d > (a>>3) || d > (b>>3))
dev_warn(DEV, "Considerable difference in %s: %llus vs. %llus\n", s,
(unsigned long long)a, (unsigned long long)b);
}
static int receive_sizes(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_sizes *p = pi->data;
enum determine_dev_size dd = unchanged;
sector_t p_size, p_usize, my_usize;
int ldsc = 0; /* local disk size changed */
enum dds_flags ddsf;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return config_unknown_volume(tconn, pi);
p_size = be64_to_cpu(p->d_size);
p_usize = be64_to_cpu(p->u_size);
/* just store the peer's disk size for now.
* we still need to figure out whether we accept that. */
mdev->p_size = p_size;
if (get_ldev(mdev)) {
rcu_read_lock();
my_usize = rcu_dereference(mdev->ldev->disk_conf)->disk_size;
rcu_read_unlock();
warn_if_differ_considerably(mdev, "lower level device sizes",
p_size, drbd_get_max_capacity(mdev->ldev));
warn_if_differ_considerably(mdev, "user requested size",
p_usize, my_usize);
/* if this is the first connect, or an otherwise expected
* param exchange, choose the minimum */
if (mdev->state.conn == C_WF_REPORT_PARAMS)
p_usize = min_not_zero(my_usize, p_usize);
/* Never shrink a device with usable data during connect.
But allow online shrinking if we are connected. */
if (drbd_new_dev_size(mdev, mdev->ldev, p_usize, 0) <
drbd_get_capacity(mdev->this_bdev) &&
mdev->state.disk >= D_OUTDATED &&
mdev->state.conn < C_CONNECTED) {
dev_err(DEV, "The peer's disk size is too small!\n");
conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD);
put_ldev(mdev);
return -EIO;
}
if (my_usize != p_usize) {
struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
if (!new_disk_conf) {
dev_err(DEV, "Allocation of new disk_conf failed\n");
put_ldev(mdev);
return -ENOMEM;
}
mutex_lock(&mdev->tconn->conf_update);
old_disk_conf = mdev->ldev->disk_conf;
*new_disk_conf = *old_disk_conf;
new_disk_conf->disk_size = p_usize;
rcu_assign_pointer(mdev->ldev->disk_conf, new_disk_conf);
mutex_unlock(&mdev->tconn->conf_update);
synchronize_rcu();
kfree(old_disk_conf);
dev_info(DEV, "Peer sets u_size to %lu sectors\n",
(unsigned long)my_usize);
}
put_ldev(mdev);
}
ddsf = be16_to_cpu(p->dds_flags);
if (get_ldev(mdev)) {
dd = drbd_determine_dev_size(mdev, ddsf);
put_ldev(mdev);
if (dd == dev_size_error)
return -EIO;
drbd_md_sync(mdev);
} else {
/* I am diskless, need to accept the peer's size. */
drbd_set_my_capacity(mdev, p_size);
}
mdev->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
drbd_reconsider_max_bio_size(mdev);
if (get_ldev(mdev)) {
if (mdev->ldev->known_size != drbd_get_capacity(mdev->ldev->backing_bdev)) {
mdev->ldev->known_size = drbd_get_capacity(mdev->ldev->backing_bdev);
ldsc = 1;
}
put_ldev(mdev);
}
if (mdev->state.conn > C_WF_REPORT_PARAMS) {
if (be64_to_cpu(p->c_size) !=
drbd_get_capacity(mdev->this_bdev) || ldsc) {
/* we have different sizes, probably peer
* needs to know my new size... */
drbd_send_sizes(mdev, 0, ddsf);
}
if (test_and_clear_bit(RESIZE_PENDING, &mdev->flags) ||
(dd == grew && mdev->state.conn == C_CONNECTED)) {
if (mdev->state.pdsk >= D_INCONSISTENT &&
mdev->state.disk >= D_INCONSISTENT) {
if (ddsf & DDSF_NO_RESYNC)
dev_info(DEV, "Resync of new storage suppressed with --assume-clean\n");
else
resync_after_online_grow(mdev);
} else
set_bit(RESYNC_AFTER_NEG, &mdev->flags);
}
}
return 0;
}
static int receive_uuids(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_uuids *p = pi->data;
u64 *p_uuid;
int i, updated_uuids = 0;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return config_unknown_volume(tconn, pi);
p_uuid = kmalloc(sizeof(u64)*UI_EXTENDED_SIZE, GFP_NOIO);
for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
p_uuid[i] = be64_to_cpu(p->uuid[i]);
kfree(mdev->p_uuid);
mdev->p_uuid = p_uuid;
if (mdev->state.conn < C_CONNECTED &&
mdev->state.disk < D_INCONSISTENT &&
mdev->state.role == R_PRIMARY &&
(mdev->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
dev_err(DEV, "Can only connect to data with current UUID=%016llX\n",
(unsigned long long)mdev->ed_uuid);
conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD);
return -EIO;
}
if (get_ldev(mdev)) {
int skip_initial_sync =
mdev->state.conn == C_CONNECTED &&
mdev->tconn->agreed_pro_version >= 90 &&
mdev->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
(p_uuid[UI_FLAGS] & 8);
if (skip_initial_sync) {
dev_info(DEV, "Accepted new current UUID, preparing to skip initial sync\n");
drbd_bitmap_io(mdev, &drbd_bmio_clear_n_write,
"clear_n_write from receive_uuids",
BM_LOCKED_TEST_ALLOWED);
_drbd_uuid_set(mdev, UI_CURRENT, p_uuid[UI_CURRENT]);
_drbd_uuid_set(mdev, UI_BITMAP, 0);
_drbd_set_state(_NS2(mdev, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
CS_VERBOSE, NULL);
drbd_md_sync(mdev);
updated_uuids = 1;
}
put_ldev(mdev);
} else if (mdev->state.disk < D_INCONSISTENT &&
mdev->state.role == R_PRIMARY) {
/* I am a diskless primary, the peer just created a new current UUID
for me. */
updated_uuids = drbd_set_ed_uuid(mdev, p_uuid[UI_CURRENT]);
}
/* Before we test for the disk state, we should wait until an eventually
ongoing cluster wide state change is finished. That is important if
we are primary and are detaching from our disk. We need to see the
new disk state... */
mutex_lock(mdev->state_mutex);
mutex_unlock(mdev->state_mutex);
if (mdev->state.conn >= C_CONNECTED && mdev->state.disk < D_INCONSISTENT)
updated_uuids |= drbd_set_ed_uuid(mdev, p_uuid[UI_CURRENT]);
if (updated_uuids)
drbd_print_uuids(mdev, "receiver updated UUIDs to");
return 0;
}
/**
* convert_state() - Converts the peer's view of the cluster state to our point of view
* @ps: The state as seen by the peer.
*/
static union drbd_state convert_state(union drbd_state ps)
{
union drbd_state ms;
static enum drbd_conns c_tab[] = {
[C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
[C_CONNECTED] = C_CONNECTED,
[C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
[C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
[C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
[C_VERIFY_S] = C_VERIFY_T,
[C_MASK] = C_MASK,
};
ms.i = ps.i;
ms.conn = c_tab[ps.conn];
ms.peer = ps.role;
ms.role = ps.peer;
ms.pdsk = ps.disk;
ms.disk = ps.pdsk;
ms.peer_isp = (ps.aftr_isp | ps.user_isp);
return ms;
}
static int receive_req_state(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_req_state *p = pi->data;
union drbd_state mask, val;
enum drbd_state_rv rv;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
mask.i = be32_to_cpu(p->mask);
val.i = be32_to_cpu(p->val);
if (test_bit(DISCARD_CONCURRENT, &mdev->tconn->flags) &&
mutex_is_locked(mdev->state_mutex)) {
drbd_send_sr_reply(mdev, SS_CONCURRENT_ST_CHG);
return 0;
}
mask = convert_state(mask);
val = convert_state(val);
rv = drbd_change_state(mdev, CS_VERBOSE, mask, val);
drbd_send_sr_reply(mdev, rv);
drbd_md_sync(mdev);
return 0;
}
static int receive_req_conn_state(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct p_req_state *p = pi->data;
union drbd_state mask, val;
enum drbd_state_rv rv;
mask.i = be32_to_cpu(p->mask);
val.i = be32_to_cpu(p->val);
if (test_bit(DISCARD_CONCURRENT, &tconn->flags) &&
mutex_is_locked(&tconn->cstate_mutex)) {
conn_send_sr_reply(tconn, SS_CONCURRENT_ST_CHG);
return 0;
}
mask = convert_state(mask);
val = convert_state(val);
rv = conn_request_state(tconn, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
conn_send_sr_reply(tconn, rv);
return 0;
}
static int receive_state(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_state *p = pi->data;
union drbd_state os, ns, peer_state;
enum drbd_disk_state real_peer_disk;
enum chg_state_flags cs_flags;
int rv;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return config_unknown_volume(tconn, pi);
peer_state.i = be32_to_cpu(p->state);
real_peer_disk = peer_state.disk;
if (peer_state.disk == D_NEGOTIATING) {
real_peer_disk = mdev->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
dev_info(DEV, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
}
spin_lock_irq(&mdev->tconn->req_lock);
retry:
os = ns = drbd_read_state(mdev);
spin_unlock_irq(&mdev->tconn->req_lock);
/* If some other part of the code (asender thread, timeout)
* already decided to close the connection again,
* we must not "re-establish" it here. */
if (os.conn <= C_TEAR_DOWN)
return -ECONNRESET;
/* If this is the "end of sync" confirmation, usually the peer disk
* transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
* set) resync started in PausedSyncT, or if the timing of pause-/
* unpause-sync events has been "just right", the peer disk may
* transition from D_CONSISTENT to D_UP_TO_DATE as well.
*/
if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
real_peer_disk == D_UP_TO_DATE &&
os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
/* If we are (becoming) SyncSource, but peer is still in sync
* preparation, ignore its uptodate-ness to avoid flapping, it
* will change to inconsistent once the peer reaches active
* syncing states.
* It may have changed syncer-paused flags, however, so we
* cannot ignore this completely. */
if (peer_state.conn > C_CONNECTED &&
peer_state.conn < C_SYNC_SOURCE)
real_peer_disk = D_INCONSISTENT;
/* if peer_state changes to connected at the same time,
* it explicitly notifies us that it finished resync.
* Maybe we should finish it up, too? */
else if (os.conn >= C_SYNC_SOURCE &&
peer_state.conn == C_CONNECTED) {
if (drbd_bm_total_weight(mdev) <= mdev->rs_failed)
drbd_resync_finished(mdev);
return 0;
}
}
/* explicit verify finished notification, stop sector reached. */
if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
ov_out_of_sync_print(mdev);
drbd_resync_finished(mdev);
return 0;
}
/* peer says his disk is inconsistent, while we think it is uptodate,
* and this happens while the peer still thinks we have a sync going on,
* but we think we are already done with the sync.
* We ignore this to avoid flapping pdsk.
* This should not happen, if the peer is a recent version of drbd. */
if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
real_peer_disk = D_UP_TO_DATE;
if (ns.conn == C_WF_REPORT_PARAMS)
ns.conn = C_CONNECTED;
if (peer_state.conn == C_AHEAD)
ns.conn = C_BEHIND;
if (mdev->p_uuid && peer_state.disk >= D_NEGOTIATING &&
get_ldev_if_state(mdev, D_NEGOTIATING)) {
int cr; /* consider resync */
/* if we established a new connection */
cr = (os.conn < C_CONNECTED);
/* if we had an established connection
* and one of the nodes newly attaches a disk */
cr |= (os.conn == C_CONNECTED &&
(peer_state.disk == D_NEGOTIATING ||
os.disk == D_NEGOTIATING));
/* if we have both been inconsistent, and the peer has been
* forced to be UpToDate with --overwrite-data */
cr |= test_bit(CONSIDER_RESYNC, &mdev->flags);
/* if we had been plain connected, and the admin requested to
* start a sync by "invalidate" or "invalidate-remote" */
cr |= (os.conn == C_CONNECTED &&
(peer_state.conn >= C_STARTING_SYNC_S &&
peer_state.conn <= C_WF_BITMAP_T));
if (cr)
ns.conn = drbd_sync_handshake(mdev, peer_state.role, real_peer_disk);
put_ldev(mdev);
if (ns.conn == C_MASK) {
ns.conn = C_CONNECTED;
if (mdev->state.disk == D_NEGOTIATING) {
drbd_force_state(mdev, NS(disk, D_FAILED));
} else if (peer_state.disk == D_NEGOTIATING) {
dev_err(DEV, "Disk attach process on the peer node was aborted.\n");
peer_state.disk = D_DISKLESS;
real_peer_disk = D_DISKLESS;
} else {
if (test_and_clear_bit(CONN_DRY_RUN, &mdev->tconn->flags))
return -EIO;
D_ASSERT(os.conn == C_WF_REPORT_PARAMS);
conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD);
return -EIO;
}
}
}
spin_lock_irq(&mdev->tconn->req_lock);
if (os.i != drbd_read_state(mdev).i)
goto retry;
clear_bit(CONSIDER_RESYNC, &mdev->flags);
ns.peer = peer_state.role;
ns.pdsk = real_peer_disk;
ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
ns.disk = mdev->new_state_tmp.disk;
cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
if (ns.pdsk == D_CONSISTENT && drbd_suspended(mdev) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
test_bit(NEW_CUR_UUID, &mdev->flags)) {
/* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
for temporal network outages! */
spin_unlock_irq(&mdev->tconn->req_lock);
dev_err(DEV, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
tl_clear(mdev->tconn);
drbd_uuid_new_current(mdev);
clear_bit(NEW_CUR_UUID, &mdev->flags);
conn_request_state(mdev->tconn, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
return -EIO;
}
rv = _drbd_set_state(mdev, ns, cs_flags, NULL);
ns = drbd_read_state(mdev);
spin_unlock_irq(&mdev->tconn->req_lock);
if (rv < SS_SUCCESS) {
conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD);
return -EIO;
}
if (os.conn > C_WF_REPORT_PARAMS) {
if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
peer_state.disk != D_NEGOTIATING ) {
/* we want resync, peer has not yet decided to sync... */
/* Nowadays only used when forcing a node into primary role and
setting its disk to UpToDate with that */
drbd_send_uuids(mdev);
drbd_send_current_state(mdev);
}
}
clear_bit(DISCARD_MY_DATA, &mdev->flags);
drbd_md_sync(mdev); /* update connected indicator, la_size, ... */
return 0;
}
static int receive_sync_uuid(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_rs_uuid *p = pi->data;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
wait_event(mdev->misc_wait,
mdev->state.conn == C_WF_SYNC_UUID ||
mdev->state.conn == C_BEHIND ||
mdev->state.conn < C_CONNECTED ||
mdev->state.disk < D_NEGOTIATING);
/* D_ASSERT( mdev->state.conn == C_WF_SYNC_UUID ); */
/* Here the _drbd_uuid_ functions are right, current should
_not_ be rotated into the history */
if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
_drbd_uuid_set(mdev, UI_CURRENT, be64_to_cpu(p->uuid));
_drbd_uuid_set(mdev, UI_BITMAP, 0UL);
drbd_print_uuids(mdev, "updated sync uuid");
drbd_start_resync(mdev, C_SYNC_TARGET);
put_ldev(mdev);
} else
dev_err(DEV, "Ignoring SyncUUID packet!\n");
return 0;
}
/**
* receive_bitmap_plain
*
* Return 0 when done, 1 when another iteration is needed, and a negative error
* code upon failure.
*/
static int
receive_bitmap_plain(struct drbd_conf *mdev, unsigned int size,
unsigned long *p, struct bm_xfer_ctx *c)
{
unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
drbd_header_size(mdev->tconn);
unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
c->bm_words - c->word_offset);
unsigned int want = num_words * sizeof(*p);
int err;
if (want != size) {
dev_err(DEV, "%s:want (%u) != size (%u)\n", __func__, want, size);
return -EIO;
}
if (want == 0)
return 0;
err = drbd_recv_all(mdev->tconn, p, want);
if (err)
return err;
drbd_bm_merge_lel(mdev, c->word_offset, num_words, p);
c->word_offset += num_words;
c->bit_offset = c->word_offset * BITS_PER_LONG;
if (c->bit_offset > c->bm_bits)
c->bit_offset = c->bm_bits;
return 1;
}
static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
{
return (enum drbd_bitmap_code)(p->encoding & 0x0f);
}
static int dcbp_get_start(struct p_compressed_bm *p)
{
return (p->encoding & 0x80) != 0;
}
static int dcbp_get_pad_bits(struct p_compressed_bm *p)
{
return (p->encoding >> 4) & 0x7;
}
/**
* recv_bm_rle_bits
*
* Return 0 when done, 1 when another iteration is needed, and a negative error
* code upon failure.
*/
static int
recv_bm_rle_bits(struct drbd_conf *mdev,
struct p_compressed_bm *p,
struct bm_xfer_ctx *c,
unsigned int len)
{
struct bitstream bs;
u64 look_ahead;
u64 rl;
u64 tmp;
unsigned long s = c->bit_offset;
unsigned long e;
int toggle = dcbp_get_start(p);
int have;
int bits;
bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
bits = bitstream_get_bits(&bs, &look_ahead, 64);
if (bits < 0)
return -EIO;
for (have = bits; have > 0; s += rl, toggle = !toggle) {
bits = vli_decode_bits(&rl, look_ahead);
if (bits <= 0)
return -EIO;
if (toggle) {
e = s + rl -1;
if (e >= c->bm_bits) {
dev_err(DEV, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
return -EIO;
}
_drbd_bm_set_bits(mdev, s, e);
}
if (have < bits) {
dev_err(DEV, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
have, bits, look_ahead,
(unsigned int)(bs.cur.b - p->code),
(unsigned int)bs.buf_len);
return -EIO;
}
look_ahead >>= bits;
have -= bits;
bits = bitstream_get_bits(&bs, &tmp, 64 - have);
if (bits < 0)
return -EIO;
look_ahead |= tmp << have;
have += bits;
}
c->bit_offset = s;
bm_xfer_ctx_bit_to_word_offset(c);
return (s != c->bm_bits);
}
/**
* decode_bitmap_c
*
* Return 0 when done, 1 when another iteration is needed, and a negative error
* code upon failure.
*/
static int
decode_bitmap_c(struct drbd_conf *mdev,
struct p_compressed_bm *p,
struct bm_xfer_ctx *c,
unsigned int len)
{
if (dcbp_get_code(p) == RLE_VLI_Bits)
return recv_bm_rle_bits(mdev, p, c, len - sizeof(*p));
/* other variants had been implemented for evaluation,
* but have been dropped as this one turned out to be "best"
* during all our tests. */
dev_err(DEV, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
conn_request_state(mdev->tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
return -EIO;
}
void INFO_bm_xfer_stats(struct drbd_conf *mdev,
const char *direction, struct bm_xfer_ctx *c)
{
/* what would it take to transfer it "plaintext" */
unsigned int header_size = drbd_header_size(mdev->tconn);
unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
unsigned int plain =
header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
c->bm_words * sizeof(unsigned long);
unsigned int total = c->bytes[0] + c->bytes[1];
unsigned int r;
/* total can not be zero. but just in case: */
if (total == 0)
return;
/* don't report if not compressed */
if (total >= plain)
return;
/* total < plain. check for overflow, still */
r = (total > UINT_MAX/1000) ? (total / (plain/1000))
: (1000 * total / plain);
if (r > 1000)
r = 1000;
r = 1000 - r;
dev_info(DEV, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
"total %u; compression: %u.%u%%\n",
direction,
c->bytes[1], c->packets[1],
c->bytes[0], c->packets[0],
total, r/10, r % 10);
}
/* Since we are processing the bitfield from lower addresses to higher,
it does not matter if the process it in 32 bit chunks or 64 bit
chunks as long as it is little endian. (Understand it as byte stream,
beginning with the lowest byte...) If we would use big endian
we would need to process it from the highest address to the lowest,
in order to be agnostic to the 32 vs 64 bits issue.
returns 0 on failure, 1 if we successfully received it. */
static int receive_bitmap(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct bm_xfer_ctx c;
int err;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
drbd_bm_lock(mdev, "receive bitmap", BM_LOCKED_SET_ALLOWED);
/* you are supposed to send additional out-of-sync information
* if you actually set bits during this phase */
c = (struct bm_xfer_ctx) {
.bm_bits = drbd_bm_bits(mdev),
.bm_words = drbd_bm_words(mdev),
};
for(;;) {
if (pi->cmd == P_BITMAP)
err = receive_bitmap_plain(mdev, pi->size, pi->data, &c);
else if (pi->cmd == P_COMPRESSED_BITMAP) {
/* MAYBE: sanity check that we speak proto >= 90,
* and the feature is enabled! */
struct p_compressed_bm *p = pi->data;
if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(tconn)) {
dev_err(DEV, "ReportCBitmap packet too large\n");
err = -EIO;
goto out;
}
if (pi->size <= sizeof(*p)) {
dev_err(DEV, "ReportCBitmap packet too small (l:%u)\n", pi->size);
err = -EIO;
goto out;
}
err = drbd_recv_all(mdev->tconn, p, pi->size);
if (err)
goto out;
err = decode_bitmap_c(mdev, p, &c, pi->size);
} else {
dev_warn(DEV, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
err = -EIO;
goto out;
}
c.packets[pi->cmd == P_BITMAP]++;
c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(tconn) + pi->size;
if (err <= 0) {
if (err < 0)
goto out;
break;
}
err = drbd_recv_header(mdev->tconn, pi);
if (err)
goto out;
}
INFO_bm_xfer_stats(mdev, "receive", &c);
if (mdev->state.conn == C_WF_BITMAP_T) {
enum drbd_state_rv rv;
err = drbd_send_bitmap(mdev);
if (err)
goto out;
/* Omit CS_ORDERED with this state transition to avoid deadlocks. */
rv = _drbd_request_state(mdev, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
D_ASSERT(rv == SS_SUCCESS);
} else if (mdev->state.conn != C_WF_BITMAP_S) {
/* admin may have requested C_DISCONNECTING,
* other threads may have noticed network errors */
dev_info(DEV, "unexpected cstate (%s) in receive_bitmap\n",
drbd_conn_str(mdev->state.conn));
}
err = 0;
out:
drbd_bm_unlock(mdev);
if (!err && mdev->state.conn == C_WF_BITMAP_S)
drbd_start_resync(mdev, C_SYNC_SOURCE);
return err;
}
static int receive_skip(struct drbd_tconn *tconn, struct packet_info *pi)
{
conn_warn(tconn, "skipping unknown optional packet type %d, l: %d!\n",
pi->cmd, pi->size);
return ignore_remaining_packet(tconn, pi);
}
static int receive_UnplugRemote(struct drbd_tconn *tconn, struct packet_info *pi)
{
/* Make sure we've acked all the TCP data associated
* with the data requests being unplugged */
drbd_tcp_quickack(tconn->data.socket);
return 0;
}
static int receive_out_of_sync(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_block_desc *p = pi->data;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
switch (mdev->state.conn) {
case C_WF_SYNC_UUID:
case C_WF_BITMAP_T:
case C_BEHIND:
break;
default:
dev_err(DEV, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
drbd_conn_str(mdev->state.conn));
}
drbd_set_out_of_sync(mdev, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
return 0;
}
struct data_cmd {
int expect_payload;
size_t pkt_size;
int (*fn)(struct drbd_tconn *, struct packet_info *);
};
static struct data_cmd drbd_cmd_handler[] = {
[P_DATA] = { 1, sizeof(struct p_data), receive_Data },
[P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply },
[P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } ,
[P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } ,
[P_BITMAP] = { 1, 0, receive_bitmap } ,
[P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
[P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote },
[P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
[P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
[P_SYNC_PARAM] = { 1, 0, receive_SyncParam },
[P_SYNC_PARAM89] = { 1, 0, receive_SyncParam },
[P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol },
[P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids },
[P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes },
[P_STATE] = { 0, sizeof(struct p_state), receive_state },
[P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state },
[P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
[P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
[P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest },
[P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
[P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip },
[P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
[P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
[P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
};
static void drbdd(struct drbd_tconn *tconn)
{
struct packet_info pi;
size_t shs; /* sub header size */
int err;
while (get_t_state(&tconn->receiver) == RUNNING) {
struct data_cmd *cmd;
drbd_thread_current_set_cpu(&tconn->receiver);
if (drbd_recv_header(tconn, &pi))
goto err_out;
cmd = &drbd_cmd_handler[pi.cmd];
if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
conn_err(tconn, "Unexpected data packet %s (0x%04x)",
cmdname(pi.cmd), pi.cmd);
goto err_out;
}
shs = cmd->pkt_size;
if (pi.size > shs && !cmd->expect_payload) {
conn_err(tconn, "No payload expected %s l:%d\n",
cmdname(pi.cmd), pi.size);
goto err_out;
}
if (shs) {
err = drbd_recv_all_warn(tconn, pi.data, shs);
if (err)
goto err_out;
pi.size -= shs;
}
err = cmd->fn(tconn, &pi);
if (err) {
conn_err(tconn, "error receiving %s, e: %d l: %d!\n",
cmdname(pi.cmd), err, pi.size);
goto err_out;
}
}
return;
err_out:
conn_request_state(tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
}
void conn_flush_workqueue(struct drbd_tconn *tconn)
{
struct drbd_wq_barrier barr;
barr.w.cb = w_prev_work_done;
barr.w.tconn = tconn;
init_completion(&barr.done);
drbd_queue_work(&tconn->sender_work, &barr.w);
wait_for_completion(&barr.done);
}
static void conn_disconnect(struct drbd_tconn *tconn)
{
struct drbd_conf *mdev;
enum drbd_conns oc;
int vnr;
if (tconn->cstate == C_STANDALONE)
return;
/* We are about to start the cleanup after connection loss.
* Make sure drbd_make_request knows about that.
* Usually we should be in some network failure state already,
* but just in case we are not, we fix it up here.
*/
conn_request_state(tconn, NS(conn, C_NETWORK_FAILURE), CS_HARD);
/* asender does not clean up anything. it must not interfere, either */
drbd_thread_stop(&tconn->asender);
drbd_free_sock(tconn);
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
kref_get(&mdev->kref);
rcu_read_unlock();
drbd_disconnected(mdev);
kref_put(&mdev->kref, &drbd_minor_destroy);
rcu_read_lock();
}
rcu_read_unlock();
if (!list_empty(&tconn->current_epoch->list))
conn_err(tconn, "ASSERTION FAILED: tconn->current_epoch->list not empty\n");
/* ok, no more ee's on the fly, it is safe to reset the epoch_size */
atomic_set(&tconn->current_epoch->epoch_size, 0);
tconn->send.seen_any_write_yet = false;
conn_info(tconn, "Connection closed\n");
if (conn_highest_role(tconn) == R_PRIMARY && conn_highest_pdsk(tconn) >= D_UNKNOWN)
conn_try_outdate_peer_async(tconn);
spin_lock_irq(&tconn->req_lock);
oc = tconn->cstate;
if (oc >= C_UNCONNECTED)
_conn_request_state(tconn, NS(conn, C_UNCONNECTED), CS_VERBOSE);
spin_unlock_irq(&tconn->req_lock);
if (oc == C_DISCONNECTING)
conn_request_state(tconn, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
}
static int drbd_disconnected(struct drbd_conf *mdev)
{
unsigned int i;
/* wait for current activity to cease. */
spin_lock_irq(&mdev->tconn->req_lock);
_drbd_wait_ee_list_empty(mdev, &mdev->active_ee);
_drbd_wait_ee_list_empty(mdev, &mdev->sync_ee);
_drbd_wait_ee_list_empty(mdev, &mdev->read_ee);
spin_unlock_irq(&mdev->tconn->req_lock);
/* We do not have data structures that would allow us to
* get the rs_pending_cnt down to 0 again.
* * On C_SYNC_TARGET we do not have any data structures describing
* the pending RSDataRequest's we have sent.
* * On C_SYNC_SOURCE there is no data structure that tracks
* the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
* And no, it is not the sum of the reference counts in the
* resync_LRU. The resync_LRU tracks the whole operation including
* the disk-IO, while the rs_pending_cnt only tracks the blocks
* on the fly. */
drbd_rs_cancel_all(mdev);
mdev->rs_total = 0;
mdev->rs_failed = 0;
atomic_set(&mdev->rs_pending_cnt, 0);
wake_up(&mdev->misc_wait);
del_timer_sync(&mdev->resync_timer);
resync_timer_fn((unsigned long)mdev);
/* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
* w_make_resync_request etc. which may still be on the worker queue
* to be "canceled" */
drbd_flush_workqueue(mdev);
drbd_finish_peer_reqs(mdev);
/* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
might have issued a work again. The one before drbd_finish_peer_reqs() is
necessary to reclain net_ee in drbd_finish_peer_reqs(). */
drbd_flush_workqueue(mdev);
kfree(mdev->p_uuid);
mdev->p_uuid = NULL;
if (!drbd_suspended(mdev))
tl_clear(mdev->tconn);
drbd_md_sync(mdev);
/* serialize with bitmap writeout triggered by the state change,
* if any. */
wait_event(mdev->misc_wait, !test_bit(BITMAP_IO, &mdev->flags));
/* tcp_close and release of sendpage pages can be deferred. I don't
* want to use SO_LINGER, because apparently it can be deferred for
* more than 20 seconds (longest time I checked).
*
* Actually we don't care for exactly when the network stack does its
* put_page(), but release our reference on these pages right here.
*/
i = drbd_free_peer_reqs(mdev, &mdev->net_ee);
if (i)
dev_info(DEV, "net_ee not empty, killed %u entries\n", i);
i = atomic_read(&mdev->pp_in_use_by_net);
if (i)
dev_info(DEV, "pp_in_use_by_net = %d, expected 0\n", i);
i = atomic_read(&mdev->pp_in_use);
if (i)
dev_info(DEV, "pp_in_use = %d, expected 0\n", i);
D_ASSERT(list_empty(&mdev->read_ee));
D_ASSERT(list_empty(&mdev->active_ee));
D_ASSERT(list_empty(&mdev->sync_ee));
D_ASSERT(list_empty(&mdev->done_ee));
return 0;
}
/*
* We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
* we can agree on is stored in agreed_pro_version.
*
* feature flags and the reserved array should be enough room for future
* enhancements of the handshake protocol, and possible plugins...
*
* for now, they are expected to be zero, but ignored.
*/
static int drbd_send_features(struct drbd_tconn *tconn)
{
struct drbd_socket *sock;
struct p_connection_features *p;
sock = &tconn->data;
p = conn_prepare_command(tconn, sock);
if (!p)
return -EIO;
memset(p, 0, sizeof(*p));
p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
return conn_send_command(tconn, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
}
/*
* return values:
* 1 yes, we have a valid connection
* 0 oops, did not work out, please try again
* -1 peer talks different language,
* no point in trying again, please go standalone.
*/
static int drbd_do_features(struct drbd_tconn *tconn)
{
/* ASSERT current == tconn->receiver ... */
struct p_connection_features *p;
const int expect = sizeof(struct p_connection_features);
struct packet_info pi;
int err;
err = drbd_send_features(tconn);
if (err)
return 0;
err = drbd_recv_header(tconn, &pi);
if (err)
return 0;
if (pi.cmd != P_CONNECTION_FEATURES) {
conn_err(tconn, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
cmdname(pi.cmd), pi.cmd);
return -1;
}
if (pi.size != expect) {
conn_err(tconn, "expected ConnectionFeatures length: %u, received: %u\n",
expect, pi.size);
return -1;
}
p = pi.data;
err = drbd_recv_all_warn(tconn, p, expect);
if (err)
return 0;
p->protocol_min = be32_to_cpu(p->protocol_min);
p->protocol_max = be32_to_cpu(p->protocol_max);
if (p->protocol_max == 0)
p->protocol_max = p->protocol_min;
if (PRO_VERSION_MAX < p->protocol_min ||
PRO_VERSION_MIN > p->protocol_max)
goto incompat;
tconn->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
conn_info(tconn, "Handshake successful: "
"Agreed network protocol version %d\n", tconn->agreed_pro_version);
return 1;
incompat:
conn_err(tconn, "incompatible DRBD dialects: "
"I support %d-%d, peer supports %d-%d\n",
PRO_VERSION_MIN, PRO_VERSION_MAX,
p->protocol_min, p->protocol_max);
return -1;
}
#if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
static int drbd_do_auth(struct drbd_tconn *tconn)
{
dev_err(DEV, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
dev_err(DEV, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
return -1;
}
#else
#define CHALLENGE_LEN 64
/* Return value:
1 - auth succeeded,
0 - failed, try again (network error),
-1 - auth failed, don't try again.
*/
static int drbd_do_auth(struct drbd_tconn *tconn)
{
struct drbd_socket *sock;
char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */
struct scatterlist sg;
char *response = NULL;
char *right_response = NULL;
char *peers_ch = NULL;
unsigned int key_len;
char secret[SHARED_SECRET_MAX]; /* 64 byte */
unsigned int resp_size;
struct hash_desc desc;
struct packet_info pi;
struct net_conf *nc;
int err, rv;
/* FIXME: Put the challenge/response into the preallocated socket buffer. */
rcu_read_lock();
nc = rcu_dereference(tconn->net_conf);
key_len = strlen(nc->shared_secret);
memcpy(secret, nc->shared_secret, key_len);
rcu_read_unlock();
desc.tfm = tconn->cram_hmac_tfm;
desc.flags = 0;
rv = crypto_hash_setkey(tconn->cram_hmac_tfm, (u8 *)secret, key_len);
if (rv) {
conn_err(tconn, "crypto_hash_setkey() failed with %d\n", rv);
rv = -1;
goto fail;
}
get_random_bytes(my_challenge, CHALLENGE_LEN);
sock = &tconn->data;
if (!conn_prepare_command(tconn, sock)) {
rv = 0;
goto fail;
}
rv = !conn_send_command(tconn, sock, P_AUTH_CHALLENGE, 0,
my_challenge, CHALLENGE_LEN);
if (!rv)
goto fail;
err = drbd_recv_header(tconn, &pi);
if (err) {
rv = 0;
goto fail;
}
if (pi.cmd != P_AUTH_CHALLENGE) {
conn_err(tconn, "expected AuthChallenge packet, received: %s (0x%04x)\n",
cmdname(pi.cmd), pi.cmd);
rv = 0;
goto fail;
}
if (pi.size > CHALLENGE_LEN * 2) {
conn_err(tconn, "expected AuthChallenge payload too big.\n");
rv = -1;
goto fail;
}
peers_ch = kmalloc(pi.size, GFP_NOIO);
if (peers_ch == NULL) {
conn_err(tconn, "kmalloc of peers_ch failed\n");
rv = -1;
goto fail;
}
err = drbd_recv_all_warn(tconn, peers_ch, pi.size);
if (err) {
rv = 0;
goto fail;
}
resp_size = crypto_hash_digestsize(tconn->cram_hmac_tfm);
response = kmalloc(resp_size, GFP_NOIO);
if (response == NULL) {
conn_err(tconn, "kmalloc of response failed\n");
rv = -1;
goto fail;
}
sg_init_table(&sg, 1);
sg_set_buf(&sg, peers_ch, pi.size);
rv = crypto_hash_digest(&desc, &sg, sg.length, response);
if (rv) {
conn_err(tconn, "crypto_hash_digest() failed with %d\n", rv);
rv = -1;
goto fail;
}
if (!conn_prepare_command(tconn, sock)) {
rv = 0;
goto fail;
}
rv = !conn_send_command(tconn, sock, P_AUTH_RESPONSE, 0,
response, resp_size);
if (!rv)
goto fail;
err = drbd_recv_header(tconn, &pi);
if (err) {
rv = 0;
goto fail;
}
if (pi.cmd != P_AUTH_RESPONSE) {
conn_err(tconn, "expected AuthResponse packet, received: %s (0x%04x)\n",
cmdname(pi.cmd), pi.cmd);
rv = 0;
goto fail;
}
if (pi.size != resp_size) {
conn_err(tconn, "expected AuthResponse payload of wrong size\n");
rv = 0;
goto fail;
}
err = drbd_recv_all_warn(tconn, response , resp_size);
if (err) {
rv = 0;
goto fail;
}
right_response = kmalloc(resp_size, GFP_NOIO);
if (right_response == NULL) {
conn_err(tconn, "kmalloc of right_response failed\n");
rv = -1;
goto fail;
}
sg_set_buf(&sg, my_challenge, CHALLENGE_LEN);
rv = crypto_hash_digest(&desc, &sg, sg.length, right_response);
if (rv) {
conn_err(tconn, "crypto_hash_digest() failed with %d\n", rv);
rv = -1;
goto fail;
}
rv = !memcmp(response, right_response, resp_size);
if (rv)
conn_info(tconn, "Peer authenticated using %d bytes HMAC\n",
resp_size);
else
rv = -1;
fail:
kfree(peers_ch);
kfree(response);
kfree(right_response);
return rv;
}
#endif
int drbdd_init(struct drbd_thread *thi)
{
struct drbd_tconn *tconn = thi->tconn;
int h;
conn_info(tconn, "receiver (re)started\n");
do {
h = conn_connect(tconn);
if (h == 0) {
conn_disconnect(tconn);
schedule_timeout_interruptible(HZ);
}
if (h == -1) {
conn_warn(tconn, "Discarding network configuration.\n");
conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
}
} while (h == 0);
if (h > 0)
drbdd(tconn);
conn_disconnect(tconn);
conn_info(tconn, "receiver terminated\n");
return 0;
}
/* ********* acknowledge sender ******** */
static int got_conn_RqSReply(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct p_req_state_reply *p = pi->data;
int retcode = be32_to_cpu(p->retcode);
if (retcode >= SS_SUCCESS) {
set_bit(CONN_WD_ST_CHG_OKAY, &tconn->flags);
} else {
set_bit(CONN_WD_ST_CHG_FAIL, &tconn->flags);
conn_err(tconn, "Requested state change failed by peer: %s (%d)\n",
drbd_set_st_err_str(retcode), retcode);
}
wake_up(&tconn->ping_wait);
return 0;
}
static int got_RqSReply(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_req_state_reply *p = pi->data;
int retcode = be32_to_cpu(p->retcode);
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
if (test_bit(CONN_WD_ST_CHG_REQ, &tconn->flags)) {
D_ASSERT(tconn->agreed_pro_version < 100);
return got_conn_RqSReply(tconn, pi);
}
if (retcode >= SS_SUCCESS) {
set_bit(CL_ST_CHG_SUCCESS, &mdev->flags);
} else {
set_bit(CL_ST_CHG_FAIL, &mdev->flags);
dev_err(DEV, "Requested state change failed by peer: %s (%d)\n",
drbd_set_st_err_str(retcode), retcode);
}
wake_up(&mdev->state_wait);
return 0;
}
static int got_Ping(struct drbd_tconn *tconn, struct packet_info *pi)
{
return drbd_send_ping_ack(tconn);
}
static int got_PingAck(struct drbd_tconn *tconn, struct packet_info *pi)
{
/* restore idle timeout */
tconn->meta.socket->sk->sk_rcvtimeo = tconn->net_conf->ping_int*HZ;
if (!test_and_set_bit(GOT_PING_ACK, &tconn->flags))
wake_up(&tconn->ping_wait);
return 0;
}
static int got_IsInSync(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_block_ack *p = pi->data;
sector_t sector = be64_to_cpu(p->sector);
int blksize = be32_to_cpu(p->blksize);
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
D_ASSERT(mdev->tconn->agreed_pro_version >= 89);
update_peer_seq(mdev, be32_to_cpu(p->seq_num));
if (get_ldev(mdev)) {
drbd_rs_complete_io(mdev, sector);
drbd_set_in_sync(mdev, sector, blksize);
/* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
mdev->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
put_ldev(mdev);
}
dec_rs_pending(mdev);
atomic_add(blksize >> 9, &mdev->rs_sect_in);
return 0;
}
static int
validate_req_change_req_state(struct drbd_conf *mdev, u64 id, sector_t sector,
struct rb_root *root, const char *func,
enum drbd_req_event what, bool missing_ok)
{
struct drbd_request *req;
struct bio_and_error m;
spin_lock_irq(&mdev->tconn->req_lock);
req = find_request(mdev, root, id, sector, missing_ok, func);
if (unlikely(!req)) {
spin_unlock_irq(&mdev->tconn->req_lock);
return -EIO;
}
__req_mod(req, what, &m);
spin_unlock_irq(&mdev->tconn->req_lock);
if (m.bio)
complete_master_bio(mdev, &m);
return 0;
}
static int got_BlockAck(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_block_ack *p = pi->data;
sector_t sector = be64_to_cpu(p->sector);
int blksize = be32_to_cpu(p->blksize);
enum drbd_req_event what;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
update_peer_seq(mdev, be32_to_cpu(p->seq_num));
if (p->block_id == ID_SYNCER) {
drbd_set_in_sync(mdev, sector, blksize);
dec_rs_pending(mdev);
return 0;
}
switch (pi->cmd) {
case P_RS_WRITE_ACK:
what = WRITE_ACKED_BY_PEER_AND_SIS;
break;
case P_WRITE_ACK:
what = WRITE_ACKED_BY_PEER;
break;
case P_RECV_ACK:
what = RECV_ACKED_BY_PEER;
break;
case P_DISCARD_WRITE:
what = DISCARD_WRITE;
break;
case P_RETRY_WRITE:
what = POSTPONE_WRITE;
break;
default:
BUG();
}
return validate_req_change_req_state(mdev, p->block_id, sector,
&mdev->write_requests, __func__,
what, false);
}
static int got_NegAck(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_block_ack *p = pi->data;
sector_t sector = be64_to_cpu(p->sector);
int size = be32_to_cpu(p->blksize);
int err;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
update_peer_seq(mdev, be32_to_cpu(p->seq_num));
if (p->block_id == ID_SYNCER) {
dec_rs_pending(mdev);
drbd_rs_failed_io(mdev, sector, size);
return 0;
}
err = validate_req_change_req_state(mdev, p->block_id, sector,
&mdev->write_requests, __func__,
NEG_ACKED, true);
if (err) {
/* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
The master bio might already be completed, therefore the
request is no longer in the collision hash. */
/* In Protocol B we might already have got a P_RECV_ACK
but then get a P_NEG_ACK afterwards. */
drbd_set_out_of_sync(mdev, sector, size);
}
return 0;
}
static int got_NegDReply(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_block_ack *p = pi->data;
sector_t sector = be64_to_cpu(p->sector);
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
update_peer_seq(mdev, be32_to_cpu(p->seq_num));
dev_err(DEV, "Got NegDReply; Sector %llus, len %u.\n",
(unsigned long long)sector, be32_to_cpu(p->blksize));
return validate_req_change_req_state(mdev, p->block_id, sector,
&mdev->read_requests, __func__,
NEG_ACKED, false);
}
static int got_NegRSDReply(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
sector_t sector;
int size;
struct p_block_ack *p = pi->data;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
sector = be64_to_cpu(p->sector);
size = be32_to_cpu(p->blksize);
update_peer_seq(mdev, be32_to_cpu(p->seq_num));
dec_rs_pending(mdev);
if (get_ldev_if_state(mdev, D_FAILED)) {
drbd_rs_complete_io(mdev, sector);
switch (pi->cmd) {
case P_NEG_RS_DREPLY:
drbd_rs_failed_io(mdev, sector, size);
case P_RS_CANCEL:
break;
default:
BUG();
}
put_ldev(mdev);
}
return 0;
}
static int got_BarrierAck(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct p_barrier_ack *p = pi->data;
struct drbd_conf *mdev;
int vnr;
tl_release(tconn, p->barrier, be32_to_cpu(p->set_size));
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
if (mdev->state.conn == C_AHEAD &&
atomic_read(&mdev->ap_in_flight) == 0 &&
!test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &mdev->flags)) {
mdev->start_resync_timer.expires = jiffies + HZ;
add_timer(&mdev->start_resync_timer);
}
}
rcu_read_unlock();
return 0;
}
static int got_OVResult(struct drbd_tconn *tconn, struct packet_info *pi)
{
struct drbd_conf *mdev;
struct p_block_ack *p = pi->data;
struct drbd_work *w;
sector_t sector;
int size;
mdev = vnr_to_mdev(tconn, pi->vnr);
if (!mdev)
return -EIO;
sector = be64_to_cpu(p->sector);
size = be32_to_cpu(p->blksize);
update_peer_seq(mdev, be32_to_cpu(p->seq_num));
if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
drbd_ov_out_of_sync_found(mdev, sector, size);
else
ov_out_of_sync_print(mdev);
if (!get_ldev(mdev))
return 0;
drbd_rs_complete_io(mdev, sector);
dec_rs_pending(mdev);
--mdev->ov_left;
/* let's advance progress step marks only for every other megabyte */
if ((mdev->ov_left & 0x200) == 0x200)
drbd_advance_rs_marks(mdev, mdev->ov_left);
if (mdev->ov_left == 0) {
w = kmalloc(sizeof(*w), GFP_NOIO);
if (w) {
w->cb = w_ov_finished;
w->mdev = mdev;
drbd_queue_work(&mdev->tconn->sender_work, w);
} else {
dev_err(DEV, "kmalloc(w) failed.");
ov_out_of_sync_print(mdev);
drbd_resync_finished(mdev);
}
}
put_ldev(mdev);
return 0;
}
static int got_skip(struct drbd_tconn *tconn, struct packet_info *pi)
{
return 0;
}
static int tconn_finish_peer_reqs(struct drbd_tconn *tconn)
{
struct drbd_conf *mdev;
int vnr, not_empty = 0;
do {
clear_bit(SIGNAL_ASENDER, &tconn->flags);
flush_signals(current);
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
kref_get(&mdev->kref);
rcu_read_unlock();
if (drbd_finish_peer_reqs(mdev)) {
kref_put(&mdev->kref, &drbd_minor_destroy);
return 1;
}
kref_put(&mdev->kref, &drbd_minor_destroy);
rcu_read_lock();
}
set_bit(SIGNAL_ASENDER, &tconn->flags);
spin_lock_irq(&tconn->req_lock);
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
not_empty = !list_empty(&mdev->done_ee);
if (not_empty)
break;
}
spin_unlock_irq(&tconn->req_lock);
rcu_read_unlock();
} while (not_empty);
return 0;
}
struct asender_cmd {
size_t pkt_size;
int (*fn)(struct drbd_tconn *tconn, struct packet_info *);
};
static struct asender_cmd asender_tbl[] = {
[P_PING] = { 0, got_Ping },
[P_PING_ACK] = { 0, got_PingAck },
[P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
[P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
[P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
[P_DISCARD_WRITE] = { sizeof(struct p_block_ack), got_BlockAck },
[P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck },
[P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply },
[P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply },
[P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult },
[P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck },
[P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
[P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync },
[P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip },
[P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply },
[P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
[P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck },
};
int drbd_asender(struct drbd_thread *thi)
{
struct drbd_tconn *tconn = thi->tconn;
struct asender_cmd *cmd = NULL;
struct packet_info pi;
int rv;
void *buf = tconn->meta.rbuf;
int received = 0;
unsigned int header_size = drbd_header_size(tconn);
int expect = header_size;
bool ping_timeout_active = false;
struct net_conf *nc;
int ping_timeo, tcp_cork, ping_int;
current->policy = SCHED_RR; /* Make this a realtime task! */
current->rt_priority = 2; /* more important than all other tasks */
while (get_t_state(thi) == RUNNING) {
drbd_thread_current_set_cpu(thi);
rcu_read_lock();
nc = rcu_dereference(tconn->net_conf);
ping_timeo = nc->ping_timeo;
tcp_cork = nc->tcp_cork;
ping_int = nc->ping_int;
rcu_read_unlock();
if (test_and_clear_bit(SEND_PING, &tconn->flags)) {
if (drbd_send_ping(tconn)) {
conn_err(tconn, "drbd_send_ping has failed\n");
goto reconnect;
}
tconn->meta.socket->sk->sk_rcvtimeo = ping_timeo * HZ / 10;
ping_timeout_active = true;
}
/* TODO: conditionally cork; it may hurt latency if we cork without
much to send */
if (tcp_cork)
drbd_tcp_cork(tconn->meta.socket);
if (tconn_finish_peer_reqs(tconn)) {
conn_err(tconn, "tconn_finish_peer_reqs() failed\n");
goto reconnect;
}
/* but unconditionally uncork unless disabled */
if (tcp_cork)
drbd_tcp_uncork(tconn->meta.socket);
/* short circuit, recv_msg would return EINTR anyways. */
if (signal_pending(current))
continue;
rv = drbd_recv_short(tconn->meta.socket, buf, expect-received, 0);
clear_bit(SIGNAL_ASENDER, &tconn->flags);
flush_signals(current);
/* Note:
* -EINTR (on meta) we got a signal
* -EAGAIN (on meta) rcvtimeo expired
* -ECONNRESET other side closed the connection
* -ERESTARTSYS (on data) we got a signal
* rv < 0 other than above: unexpected error!
* rv == expected: full header or command
* rv < expected: "woken" by signal during receive
* rv == 0 : "connection shut down by peer"
*/
if (likely(rv > 0)) {
received += rv;
buf += rv;
} else if (rv == 0) {
conn_err(tconn, "meta connection shut down by peer.\n");
goto reconnect;
} else if (rv == -EAGAIN) {
/* If the data socket received something meanwhile,
* that is good enough: peer is still alive. */
if (time_after(tconn->last_received,
jiffies - tconn->meta.socket->sk->sk_rcvtimeo))
continue;
if (ping_timeout_active) {
conn_err(tconn, "PingAck did not arrive in time.\n");
goto reconnect;
}
set_bit(SEND_PING, &tconn->flags);
continue;
} else if (rv == -EINTR) {
continue;
} else {
conn_err(tconn, "sock_recvmsg returned %d\n", rv);
goto reconnect;
}
if (received == expect && cmd == NULL) {
if (decode_header(tconn, tconn->meta.rbuf, &pi))
goto reconnect;
cmd = &asender_tbl[pi.cmd];
if (pi.cmd >= ARRAY_SIZE(asender_tbl) || !cmd->fn) {
conn_err(tconn, "Unexpected meta packet %s (0x%04x)\n",
cmdname(pi.cmd), pi.cmd);
goto disconnect;
}
expect = header_size + cmd->pkt_size;
if (pi.size != expect - header_size) {
conn_err(tconn, "Wrong packet size on meta (c: %d, l: %d)\n",
pi.cmd, pi.size);
goto reconnect;
}
}
if (received == expect) {
bool err;
err = cmd->fn(tconn, &pi);
if (err) {
conn_err(tconn, "%pf failed\n", cmd->fn);
goto reconnect;
}
tconn->last_received = jiffies;
if (cmd == &asender_tbl[P_PING_ACK]) {
/* restore idle timeout */
tconn->meta.socket->sk->sk_rcvtimeo = ping_int * HZ;
ping_timeout_active = false;
}
buf = tconn->meta.rbuf;
received = 0;
expect = header_size;
cmd = NULL;
}
}
if (0) {
reconnect:
conn_request_state(tconn, NS(conn, C_NETWORK_FAILURE), CS_HARD);
}
if (0) {
disconnect:
conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
}
clear_bit(SIGNAL_ASENDER, &tconn->flags);
conn_info(tconn, "asender terminated\n");
return 0;
}