linux/drivers/iommu/intel/svm.c
Gustavo A. R. Silva 606636dcbd iommu/vt-d: Fix out-bounds-warning in intel/svm.c
Replace a couple of calls to memcpy() with simple assignments in order
to fix the following out-of-bounds warning:

drivers/iommu/intel/svm.c:1198:4: warning: 'memcpy' offset [25, 32] from
    the object at 'desc' is out of the bounds of referenced subobject
    'qw2' with type 'long long unsigned int' at offset 16 [-Warray-bounds]

The problem is that the original code is trying to copy data into a
couple of struct members adjacent to each other in a single call to
memcpy(). This causes a legitimate compiler warning because memcpy()
overruns the length of &desc.qw2 and &resp.qw2, respectively.

This helps with the ongoing efforts to globally enable -Warray-bounds
and get us closer to being able to tighten the FORTIFY_SOURCE routines
on memcpy().

Link: https://github.com/KSPP/linux/issues/109
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20210414201403.GA392764@embeddedor
Link: https://lore.kernel.org/r/20210610020115.1637656-18-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2021-06-10 09:06:13 +02:00

1198 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright © 2015 Intel Corporation.
*
* Authors: David Woodhouse <dwmw2@infradead.org>
*/
#include <linux/intel-iommu.h>
#include <linux/mmu_notifier.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include <linux/intel-svm.h>
#include <linux/rculist.h>
#include <linux/pci.h>
#include <linux/pci-ats.h>
#include <linux/dmar.h>
#include <linux/interrupt.h>
#include <linux/mm_types.h>
#include <linux/xarray.h>
#include <linux/ioasid.h>
#include <asm/page.h>
#include <asm/fpu/api.h>
#include <trace/events/intel_iommu.h>
#include "pasid.h"
#include "perf.h"
#include "../iommu-sva-lib.h"
static irqreturn_t prq_event_thread(int irq, void *d);
static void intel_svm_drain_prq(struct device *dev, u32 pasid);
#define to_intel_svm_dev(handle) container_of(handle, struct intel_svm_dev, sva)
#define PRQ_ORDER 0
static DEFINE_XARRAY_ALLOC(pasid_private_array);
static int pasid_private_add(ioasid_t pasid, void *priv)
{
return xa_alloc(&pasid_private_array, &pasid, priv,
XA_LIMIT(pasid, pasid), GFP_ATOMIC);
}
static void pasid_private_remove(ioasid_t pasid)
{
xa_erase(&pasid_private_array, pasid);
}
static void *pasid_private_find(ioasid_t pasid)
{
return xa_load(&pasid_private_array, pasid);
}
static struct intel_svm_dev *
svm_lookup_device_by_sid(struct intel_svm *svm, u16 sid)
{
struct intel_svm_dev *sdev = NULL, *t;
rcu_read_lock();
list_for_each_entry_rcu(t, &svm->devs, list) {
if (t->sid == sid) {
sdev = t;
break;
}
}
rcu_read_unlock();
return sdev;
}
static struct intel_svm_dev *
svm_lookup_device_by_dev(struct intel_svm *svm, struct device *dev)
{
struct intel_svm_dev *sdev = NULL, *t;
rcu_read_lock();
list_for_each_entry_rcu(t, &svm->devs, list) {
if (t->dev == dev) {
sdev = t;
break;
}
}
rcu_read_unlock();
return sdev;
}
int intel_svm_enable_prq(struct intel_iommu *iommu)
{
struct iopf_queue *iopfq;
struct page *pages;
int irq, ret;
pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, PRQ_ORDER);
if (!pages) {
pr_warn("IOMMU: %s: Failed to allocate page request queue\n",
iommu->name);
return -ENOMEM;
}
iommu->prq = page_address(pages);
irq = dmar_alloc_hwirq(DMAR_UNITS_SUPPORTED + iommu->seq_id, iommu->node, iommu);
if (irq <= 0) {
pr_err("IOMMU: %s: Failed to create IRQ vector for page request queue\n",
iommu->name);
ret = -EINVAL;
goto free_prq;
}
iommu->pr_irq = irq;
snprintf(iommu->iopfq_name, sizeof(iommu->iopfq_name),
"dmar%d-iopfq", iommu->seq_id);
iopfq = iopf_queue_alloc(iommu->iopfq_name);
if (!iopfq) {
pr_err("IOMMU: %s: Failed to allocate iopf queue\n", iommu->name);
ret = -ENOMEM;
goto free_hwirq;
}
iommu->iopf_queue = iopfq;
snprintf(iommu->prq_name, sizeof(iommu->prq_name), "dmar%d-prq", iommu->seq_id);
ret = request_threaded_irq(irq, NULL, prq_event_thread, IRQF_ONESHOT,
iommu->prq_name, iommu);
if (ret) {
pr_err("IOMMU: %s: Failed to request IRQ for page request queue\n",
iommu->name);
goto free_iopfq;
}
dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
dmar_writeq(iommu->reg + DMAR_PQA_REG, virt_to_phys(iommu->prq) | PRQ_ORDER);
init_completion(&iommu->prq_complete);
return 0;
free_iopfq:
iopf_queue_free(iommu->iopf_queue);
iommu->iopf_queue = NULL;
free_hwirq:
dmar_free_hwirq(irq);
iommu->pr_irq = 0;
free_prq:
free_pages((unsigned long)iommu->prq, PRQ_ORDER);
iommu->prq = NULL;
return ret;
}
int intel_svm_finish_prq(struct intel_iommu *iommu)
{
dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
dmar_writeq(iommu->reg + DMAR_PQA_REG, 0ULL);
if (iommu->pr_irq) {
free_irq(iommu->pr_irq, iommu);
dmar_free_hwirq(iommu->pr_irq);
iommu->pr_irq = 0;
}
if (iommu->iopf_queue) {
iopf_queue_free(iommu->iopf_queue);
iommu->iopf_queue = NULL;
}
free_pages((unsigned long)iommu->prq, PRQ_ORDER);
iommu->prq = NULL;
return 0;
}
static inline bool intel_svm_capable(struct intel_iommu *iommu)
{
return iommu->flags & VTD_FLAG_SVM_CAPABLE;
}
void intel_svm_check(struct intel_iommu *iommu)
{
if (!pasid_supported(iommu))
return;
if (cpu_feature_enabled(X86_FEATURE_GBPAGES) &&
!cap_fl1gp_support(iommu->cap)) {
pr_err("%s SVM disabled, incompatible 1GB page capability\n",
iommu->name);
return;
}
if (cpu_feature_enabled(X86_FEATURE_LA57) &&
!cap_5lp_support(iommu->cap)) {
pr_err("%s SVM disabled, incompatible paging mode\n",
iommu->name);
return;
}
iommu->flags |= VTD_FLAG_SVM_CAPABLE;
}
static void __flush_svm_range_dev(struct intel_svm *svm,
struct intel_svm_dev *sdev,
unsigned long address,
unsigned long pages, int ih)
{
struct device_domain_info *info = get_domain_info(sdev->dev);
if (WARN_ON(!pages))
return;
qi_flush_piotlb(sdev->iommu, sdev->did, svm->pasid, address, pages, ih);
if (info->ats_enabled)
qi_flush_dev_iotlb_pasid(sdev->iommu, sdev->sid, info->pfsid,
svm->pasid, sdev->qdep, address,
order_base_2(pages));
}
static void intel_flush_svm_range_dev(struct intel_svm *svm,
struct intel_svm_dev *sdev,
unsigned long address,
unsigned long pages, int ih)
{
unsigned long shift = ilog2(__roundup_pow_of_two(pages));
unsigned long align = (1ULL << (VTD_PAGE_SHIFT + shift));
unsigned long start = ALIGN_DOWN(address, align);
unsigned long end = ALIGN(address + (pages << VTD_PAGE_SHIFT), align);
while (start < end) {
__flush_svm_range_dev(svm, sdev, start, align >> VTD_PAGE_SHIFT, ih);
start += align;
}
}
static void intel_flush_svm_range(struct intel_svm *svm, unsigned long address,
unsigned long pages, int ih)
{
struct intel_svm_dev *sdev;
rcu_read_lock();
list_for_each_entry_rcu(sdev, &svm->devs, list)
intel_flush_svm_range_dev(svm, sdev, address, pages, ih);
rcu_read_unlock();
}
/* Pages have been freed at this point */
static void intel_invalidate_range(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start, unsigned long end)
{
struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);
intel_flush_svm_range(svm, start,
(end - start + PAGE_SIZE - 1) >> VTD_PAGE_SHIFT, 0);
}
static void intel_mm_release(struct mmu_notifier *mn, struct mm_struct *mm)
{
struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);
struct intel_svm_dev *sdev;
/* This might end up being called from exit_mmap(), *before* the page
* tables are cleared. And __mmu_notifier_release() will delete us from
* the list of notifiers so that our invalidate_range() callback doesn't
* get called when the page tables are cleared. So we need to protect
* against hardware accessing those page tables.
*
* We do it by clearing the entry in the PASID table and then flushing
* the IOTLB and the PASID table caches. This might upset hardware;
* perhaps we'll want to point the PASID to a dummy PGD (like the zero
* page) so that we end up taking a fault that the hardware really
* *has* to handle gracefully without affecting other processes.
*/
rcu_read_lock();
list_for_each_entry_rcu(sdev, &svm->devs, list)
intel_pasid_tear_down_entry(sdev->iommu, sdev->dev,
svm->pasid, true);
rcu_read_unlock();
}
static const struct mmu_notifier_ops intel_mmuops = {
.release = intel_mm_release,
.invalidate_range = intel_invalidate_range,
};
static DEFINE_MUTEX(pasid_mutex);
static int pasid_to_svm_sdev(struct device *dev, unsigned int pasid,
struct intel_svm **rsvm,
struct intel_svm_dev **rsdev)
{
struct intel_svm_dev *sdev = NULL;
struct intel_svm *svm;
/* The caller should hold the pasid_mutex lock */
if (WARN_ON(!mutex_is_locked(&pasid_mutex)))
return -EINVAL;
if (pasid == INVALID_IOASID || pasid >= PASID_MAX)
return -EINVAL;
svm = pasid_private_find(pasid);
if (IS_ERR(svm))
return PTR_ERR(svm);
if (!svm)
goto out;
/*
* If we found svm for the PASID, there must be at least one device
* bond.
*/
if (WARN_ON(list_empty(&svm->devs)))
return -EINVAL;
sdev = svm_lookup_device_by_dev(svm, dev);
out:
*rsvm = svm;
*rsdev = sdev;
return 0;
}
int intel_svm_bind_gpasid(struct iommu_domain *domain, struct device *dev,
struct iommu_gpasid_bind_data *data)
{
struct intel_iommu *iommu = device_to_iommu(dev, NULL, NULL);
struct intel_svm_dev *sdev = NULL;
struct dmar_domain *dmar_domain;
struct device_domain_info *info;
struct intel_svm *svm = NULL;
unsigned long iflags;
int ret = 0;
if (WARN_ON(!iommu) || !data)
return -EINVAL;
if (data->format != IOMMU_PASID_FORMAT_INTEL_VTD)
return -EINVAL;
/* IOMMU core ensures argsz is more than the start of the union */
if (data->argsz < offsetofend(struct iommu_gpasid_bind_data, vendor.vtd))
return -EINVAL;
/* Make sure no undefined flags are used in vendor data */
if (data->vendor.vtd.flags & ~(IOMMU_SVA_VTD_GPASID_LAST - 1))
return -EINVAL;
if (!dev_is_pci(dev))
return -ENOTSUPP;
/* VT-d supports devices with full 20 bit PASIDs only */
if (pci_max_pasids(to_pci_dev(dev)) != PASID_MAX)
return -EINVAL;
/*
* We only check host PASID range, we have no knowledge to check
* guest PASID range.
*/
if (data->hpasid <= 0 || data->hpasid >= PASID_MAX)
return -EINVAL;
info = get_domain_info(dev);
if (!info)
return -EINVAL;
dmar_domain = to_dmar_domain(domain);
mutex_lock(&pasid_mutex);
ret = pasid_to_svm_sdev(dev, data->hpasid, &svm, &sdev);
if (ret)
goto out;
if (sdev) {
/*
* Do not allow multiple bindings of the same device-PASID since
* there is only one SL page tables per PASID. We may revisit
* once sharing PGD across domains are supported.
*/
dev_warn_ratelimited(dev, "Already bound with PASID %u\n",
svm->pasid);
ret = -EBUSY;
goto out;
}
if (!svm) {
/* We come here when PASID has never been bond to a device. */
svm = kzalloc(sizeof(*svm), GFP_KERNEL);
if (!svm) {
ret = -ENOMEM;
goto out;
}
/* REVISIT: upper layer/VFIO can track host process that bind
* the PASID. ioasid_set = mm might be sufficient for vfio to
* check pasid VMM ownership. We can drop the following line
* once VFIO and IOASID set check is in place.
*/
svm->mm = get_task_mm(current);
svm->pasid = data->hpasid;
if (data->flags & IOMMU_SVA_GPASID_VAL) {
svm->gpasid = data->gpasid;
svm->flags |= SVM_FLAG_GUEST_PASID;
}
pasid_private_add(data->hpasid, svm);
INIT_LIST_HEAD_RCU(&svm->devs);
mmput(svm->mm);
}
sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
if (!sdev) {
ret = -ENOMEM;
goto out;
}
sdev->dev = dev;
sdev->sid = PCI_DEVID(info->bus, info->devfn);
sdev->iommu = iommu;
/* Only count users if device has aux domains */
if (iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX))
sdev->users = 1;
/* Set up device context entry for PASID if not enabled already */
ret = intel_iommu_enable_pasid(iommu, sdev->dev);
if (ret) {
dev_err_ratelimited(dev, "Failed to enable PASID capability\n");
kfree(sdev);
goto out;
}
/*
* PASID table is per device for better security. Therefore, for
* each bind of a new device even with an existing PASID, we need to
* call the nested mode setup function here.
*/
spin_lock_irqsave(&iommu->lock, iflags);
ret = intel_pasid_setup_nested(iommu, dev,
(pgd_t *)(uintptr_t)data->gpgd,
data->hpasid, &data->vendor.vtd, dmar_domain,
data->addr_width);
spin_unlock_irqrestore(&iommu->lock, iflags);
if (ret) {
dev_err_ratelimited(dev, "Failed to set up PASID %llu in nested mode, Err %d\n",
data->hpasid, ret);
/*
* PASID entry should be in cleared state if nested mode
* set up failed. So we only need to clear IOASID tracking
* data such that free call will succeed.
*/
kfree(sdev);
goto out;
}
svm->flags |= SVM_FLAG_GUEST_MODE;
init_rcu_head(&sdev->rcu);
list_add_rcu(&sdev->list, &svm->devs);
out:
if (!IS_ERR_OR_NULL(svm) && list_empty(&svm->devs)) {
pasid_private_remove(data->hpasid);
kfree(svm);
}
mutex_unlock(&pasid_mutex);
return ret;
}
int intel_svm_unbind_gpasid(struct device *dev, u32 pasid)
{
struct intel_iommu *iommu = device_to_iommu(dev, NULL, NULL);
struct intel_svm_dev *sdev;
struct intel_svm *svm;
int ret;
if (WARN_ON(!iommu))
return -EINVAL;
mutex_lock(&pasid_mutex);
ret = pasid_to_svm_sdev(dev, pasid, &svm, &sdev);
if (ret)
goto out;
if (sdev) {
if (iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX))
sdev->users--;
if (!sdev->users) {
list_del_rcu(&sdev->list);
intel_pasid_tear_down_entry(iommu, dev,
svm->pasid, false);
intel_svm_drain_prq(dev, svm->pasid);
kfree_rcu(sdev, rcu);
if (list_empty(&svm->devs)) {
/*
* We do not free the IOASID here in that
* IOMMU driver did not allocate it.
* Unlike native SVM, IOASID for guest use was
* allocated prior to the bind call.
* In any case, if the free call comes before
* the unbind, IOMMU driver will get notified
* and perform cleanup.
*/
pasid_private_remove(pasid);
kfree(svm);
}
}
}
out:
mutex_unlock(&pasid_mutex);
return ret;
}
static void _load_pasid(void *unused)
{
update_pasid();
}
static void load_pasid(struct mm_struct *mm, u32 pasid)
{
mutex_lock(&mm->context.lock);
/* Synchronize with READ_ONCE in update_pasid(). */
smp_store_release(&mm->pasid, pasid);
/* Update PASID MSR on all CPUs running the mm's tasks. */
on_each_cpu_mask(mm_cpumask(mm), _load_pasid, NULL, true);
mutex_unlock(&mm->context.lock);
}
static int intel_svm_alloc_pasid(struct device *dev, struct mm_struct *mm,
unsigned int flags)
{
ioasid_t max_pasid = dev_is_pci(dev) ?
pci_max_pasids(to_pci_dev(dev)) : intel_pasid_max_id;
return iommu_sva_alloc_pasid(mm, PASID_MIN, max_pasid - 1);
}
static void intel_svm_free_pasid(struct mm_struct *mm)
{
iommu_sva_free_pasid(mm);
}
static struct iommu_sva *intel_svm_bind_mm(struct intel_iommu *iommu,
struct device *dev,
struct mm_struct *mm,
unsigned int flags)
{
struct device_domain_info *info = get_domain_info(dev);
unsigned long iflags, sflags;
struct intel_svm_dev *sdev;
struct intel_svm *svm;
int ret = 0;
svm = pasid_private_find(mm->pasid);
if (!svm) {
svm = kzalloc(sizeof(*svm), GFP_KERNEL);
if (!svm)
return ERR_PTR(-ENOMEM);
svm->pasid = mm->pasid;
svm->mm = mm;
svm->flags = flags;
INIT_LIST_HEAD_RCU(&svm->devs);
if (!(flags & SVM_FLAG_SUPERVISOR_MODE)) {
svm->notifier.ops = &intel_mmuops;
ret = mmu_notifier_register(&svm->notifier, mm);
if (ret) {
kfree(svm);
return ERR_PTR(ret);
}
}
ret = pasid_private_add(svm->pasid, svm);
if (ret) {
if (svm->notifier.ops)
mmu_notifier_unregister(&svm->notifier, mm);
kfree(svm);
return ERR_PTR(ret);
}
}
/* Find the matching device in svm list */
sdev = svm_lookup_device_by_dev(svm, dev);
if (sdev) {
sdev->users++;
goto success;
}
sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
if (!sdev) {
ret = -ENOMEM;
goto free_svm;
}
sdev->dev = dev;
sdev->iommu = iommu;
sdev->did = FLPT_DEFAULT_DID;
sdev->sid = PCI_DEVID(info->bus, info->devfn);
sdev->users = 1;
sdev->pasid = svm->pasid;
sdev->sva.dev = dev;
init_rcu_head(&sdev->rcu);
if (info->ats_enabled) {
sdev->dev_iotlb = 1;
sdev->qdep = info->ats_qdep;
if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
sdev->qdep = 0;
}
/* Setup the pasid table: */
sflags = (flags & SVM_FLAG_SUPERVISOR_MODE) ?
PASID_FLAG_SUPERVISOR_MODE : 0;
sflags |= cpu_feature_enabled(X86_FEATURE_LA57) ? PASID_FLAG_FL5LP : 0;
spin_lock_irqsave(&iommu->lock, iflags);
ret = intel_pasid_setup_first_level(iommu, dev, mm->pgd, mm->pasid,
FLPT_DEFAULT_DID, sflags);
spin_unlock_irqrestore(&iommu->lock, iflags);
if (ret)
goto free_sdev;
/* The newly allocated pasid is loaded to the mm. */
if (!(flags & SVM_FLAG_SUPERVISOR_MODE) && list_empty(&svm->devs))
load_pasid(mm, svm->pasid);
list_add_rcu(&sdev->list, &svm->devs);
success:
return &sdev->sva;
free_sdev:
kfree(sdev);
free_svm:
if (list_empty(&svm->devs)) {
if (svm->notifier.ops)
mmu_notifier_unregister(&svm->notifier, mm);
pasid_private_remove(mm->pasid);
kfree(svm);
}
return ERR_PTR(ret);
}
/* Caller must hold pasid_mutex */
static int intel_svm_unbind_mm(struct device *dev, u32 pasid)
{
struct intel_svm_dev *sdev;
struct intel_iommu *iommu;
struct intel_svm *svm;
struct mm_struct *mm;
int ret = -EINVAL;
iommu = device_to_iommu(dev, NULL, NULL);
if (!iommu)
goto out;
ret = pasid_to_svm_sdev(dev, pasid, &svm, &sdev);
if (ret)
goto out;
mm = svm->mm;
if (sdev) {
sdev->users--;
if (!sdev->users) {
list_del_rcu(&sdev->list);
/* Flush the PASID cache and IOTLB for this device.
* Note that we do depend on the hardware *not* using
* the PASID any more. Just as we depend on other
* devices never using PASIDs that they have no right
* to use. We have a *shared* PASID table, because it's
* large and has to be physically contiguous. So it's
* hard to be as defensive as we might like. */
intel_pasid_tear_down_entry(iommu, dev,
svm->pasid, false);
intel_svm_drain_prq(dev, svm->pasid);
kfree_rcu(sdev, rcu);
if (list_empty(&svm->devs)) {
intel_svm_free_pasid(mm);
if (svm->notifier.ops) {
mmu_notifier_unregister(&svm->notifier, mm);
/* Clear mm's pasid. */
load_pasid(mm, PASID_DISABLED);
}
pasid_private_remove(svm->pasid);
/* We mandate that no page faults may be outstanding
* for the PASID when intel_svm_unbind_mm() is called.
* If that is not obeyed, subtle errors will happen.
* Let's make them less subtle... */
memset(svm, 0x6b, sizeof(*svm));
kfree(svm);
}
}
}
out:
return ret;
}
/* Page request queue descriptor */
struct page_req_dsc {
union {
struct {
u64 type:8;
u64 pasid_present:1;
u64 priv_data_present:1;
u64 rsvd:6;
u64 rid:16;
u64 pasid:20;
u64 exe_req:1;
u64 pm_req:1;
u64 rsvd2:10;
};
u64 qw_0;
};
union {
struct {
u64 rd_req:1;
u64 wr_req:1;
u64 lpig:1;
u64 prg_index:9;
u64 addr:52;
};
u64 qw_1;
};
u64 priv_data[2];
};
#define PRQ_RING_MASK ((0x1000 << PRQ_ORDER) - 0x20)
static bool is_canonical_address(u64 addr)
{
int shift = 64 - (__VIRTUAL_MASK_SHIFT + 1);
long saddr = (long) addr;
return (((saddr << shift) >> shift) == saddr);
}
/**
* intel_svm_drain_prq - Drain page requests and responses for a pasid
* @dev: target device
* @pasid: pasid for draining
*
* Drain all pending page requests and responses related to @pasid in both
* software and hardware. This is supposed to be called after the device
* driver has stopped DMA, the pasid entry has been cleared, and both IOTLB
* and DevTLB have been invalidated.
*
* It waits until all pending page requests for @pasid in the page fault
* queue are completed by the prq handling thread. Then follow the steps
* described in VT-d spec CH7.10 to drain all page requests and page
* responses pending in the hardware.
*/
static void intel_svm_drain_prq(struct device *dev, u32 pasid)
{
struct device_domain_info *info;
struct dmar_domain *domain;
struct intel_iommu *iommu;
struct qi_desc desc[3];
struct pci_dev *pdev;
int head, tail;
u16 sid, did;
int qdep;
info = get_domain_info(dev);
if (WARN_ON(!info || !dev_is_pci(dev)))
return;
if (!info->pri_enabled)
return;
iommu = info->iommu;
domain = info->domain;
pdev = to_pci_dev(dev);
sid = PCI_DEVID(info->bus, info->devfn);
did = domain->iommu_did[iommu->seq_id];
qdep = pci_ats_queue_depth(pdev);
/*
* Check and wait until all pending page requests in the queue are
* handled by the prq handling thread.
*/
prq_retry:
reinit_completion(&iommu->prq_complete);
tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
while (head != tail) {
struct page_req_dsc *req;
req = &iommu->prq[head / sizeof(*req)];
if (!req->pasid_present || req->pasid != pasid) {
head = (head + sizeof(*req)) & PRQ_RING_MASK;
continue;
}
wait_for_completion(&iommu->prq_complete);
goto prq_retry;
}
iopf_queue_flush_dev(dev);
/*
* Perform steps described in VT-d spec CH7.10 to drain page
* requests and responses in hardware.
*/
memset(desc, 0, sizeof(desc));
desc[0].qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
QI_IWD_FENCE |
QI_IWD_TYPE;
desc[1].qw0 = QI_EIOTLB_PASID(pasid) |
QI_EIOTLB_DID(did) |
QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
QI_EIOTLB_TYPE;
desc[2].qw0 = QI_DEV_EIOTLB_PASID(pasid) |
QI_DEV_EIOTLB_SID(sid) |
QI_DEV_EIOTLB_QDEP(qdep) |
QI_DEIOTLB_TYPE |
QI_DEV_IOTLB_PFSID(info->pfsid);
qi_retry:
reinit_completion(&iommu->prq_complete);
qi_submit_sync(iommu, desc, 3, QI_OPT_WAIT_DRAIN);
if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) {
wait_for_completion(&iommu->prq_complete);
goto qi_retry;
}
}
static int prq_to_iommu_prot(struct page_req_dsc *req)
{
int prot = 0;
if (req->rd_req)
prot |= IOMMU_FAULT_PERM_READ;
if (req->wr_req)
prot |= IOMMU_FAULT_PERM_WRITE;
if (req->exe_req)
prot |= IOMMU_FAULT_PERM_EXEC;
if (req->pm_req)
prot |= IOMMU_FAULT_PERM_PRIV;
return prot;
}
static int intel_svm_prq_report(struct intel_iommu *iommu, struct device *dev,
struct page_req_dsc *desc)
{
struct iommu_fault_event event;
if (!dev || !dev_is_pci(dev))
return -ENODEV;
/* Fill in event data for device specific processing */
memset(&event, 0, sizeof(struct iommu_fault_event));
event.fault.type = IOMMU_FAULT_PAGE_REQ;
event.fault.prm.addr = (u64)desc->addr << VTD_PAGE_SHIFT;
event.fault.prm.pasid = desc->pasid;
event.fault.prm.grpid = desc->prg_index;
event.fault.prm.perm = prq_to_iommu_prot(desc);
if (desc->lpig)
event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE;
if (desc->pasid_present) {
event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
event.fault.prm.flags |= IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
}
if (desc->priv_data_present) {
/*
* Set last page in group bit if private data is present,
* page response is required as it does for LPIG.
* iommu_report_device_fault() doesn't understand this vendor
* specific requirement thus we set last_page as a workaround.
*/
event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE;
event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA;
event.fault.prm.private_data[0] = desc->priv_data[0];
event.fault.prm.private_data[1] = desc->priv_data[1];
} else if (dmar_latency_enabled(iommu, DMAR_LATENCY_PRQ)) {
/*
* If the private data fields are not used by hardware, use it
* to monitor the prq handle latency.
*/
event.fault.prm.private_data[0] = ktime_to_ns(ktime_get());
}
return iommu_report_device_fault(dev, &event);
}
static void handle_bad_prq_event(struct intel_iommu *iommu,
struct page_req_dsc *req, int result)
{
struct qi_desc desc;
pr_err("%s: Invalid page request: %08llx %08llx\n",
iommu->name, ((unsigned long long *)req)[0],
((unsigned long long *)req)[1]);
/*
* Per VT-d spec. v3.0 ch7.7, system software must
* respond with page group response if private data
* is present (PDP) or last page in group (LPIG) bit
* is set. This is an additional VT-d feature beyond
* PCI ATS spec.
*/
if (!req->lpig && !req->priv_data_present)
return;
desc.qw0 = QI_PGRP_PASID(req->pasid) |
QI_PGRP_DID(req->rid) |
QI_PGRP_PASID_P(req->pasid_present) |
QI_PGRP_PDP(req->priv_data_present) |
QI_PGRP_RESP_CODE(result) |
QI_PGRP_RESP_TYPE;
desc.qw1 = QI_PGRP_IDX(req->prg_index) |
QI_PGRP_LPIG(req->lpig);
if (req->priv_data_present) {
desc.qw2 = req->priv_data[0];
desc.qw3 = req->priv_data[1];
} else {
desc.qw2 = 0;
desc.qw3 = 0;
}
qi_submit_sync(iommu, &desc, 1, 0);
}
static irqreturn_t prq_event_thread(int irq, void *d)
{
struct intel_svm_dev *sdev = NULL;
struct intel_iommu *iommu = d;
struct intel_svm *svm = NULL;
struct page_req_dsc *req;
int head, tail, handled;
u64 address;
/*
* Clear PPR bit before reading head/tail registers, to ensure that
* we get a new interrupt if needed.
*/
writel(DMA_PRS_PPR, iommu->reg + DMAR_PRS_REG);
tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
handled = (head != tail);
while (head != tail) {
req = &iommu->prq[head / sizeof(*req)];
address = (u64)req->addr << VTD_PAGE_SHIFT;
if (unlikely(!req->pasid_present)) {
pr_err("IOMMU: %s: Page request without PASID\n",
iommu->name);
bad_req:
svm = NULL;
sdev = NULL;
handle_bad_prq_event(iommu, req, QI_RESP_INVALID);
goto prq_advance;
}
if (unlikely(!is_canonical_address(address))) {
pr_err("IOMMU: %s: Address is not canonical\n",
iommu->name);
goto bad_req;
}
if (unlikely(req->pm_req && (req->rd_req | req->wr_req))) {
pr_err("IOMMU: %s: Page request in Privilege Mode\n",
iommu->name);
goto bad_req;
}
if (unlikely(req->exe_req && req->rd_req)) {
pr_err("IOMMU: %s: Execution request not supported\n",
iommu->name);
goto bad_req;
}
if (!svm || svm->pasid != req->pasid) {
/*
* It can't go away, because the driver is not permitted
* to unbind the mm while any page faults are outstanding.
*/
svm = pasid_private_find(req->pasid);
if (IS_ERR_OR_NULL(svm) || (svm->flags & SVM_FLAG_SUPERVISOR_MODE))
goto bad_req;
}
if (!sdev || sdev->sid != req->rid) {
sdev = svm_lookup_device_by_sid(svm, req->rid);
if (!sdev)
goto bad_req;
}
sdev->prq_seq_number++;
/*
* If prq is to be handled outside iommu driver via receiver of
* the fault notifiers, we skip the page response here.
*/
if (intel_svm_prq_report(iommu, sdev->dev, req))
handle_bad_prq_event(iommu, req, QI_RESP_INVALID);
trace_prq_report(iommu, sdev->dev, req->qw_0, req->qw_1,
req->priv_data[0], req->priv_data[1],
sdev->prq_seq_number);
prq_advance:
head = (head + sizeof(*req)) & PRQ_RING_MASK;
}
dmar_writeq(iommu->reg + DMAR_PQH_REG, tail);
/*
* Clear the page request overflow bit and wake up all threads that
* are waiting for the completion of this handling.
*/
if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) {
pr_info_ratelimited("IOMMU: %s: PRQ overflow detected\n",
iommu->name);
head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
if (head == tail) {
iopf_queue_discard_partial(iommu->iopf_queue);
writel(DMA_PRS_PRO, iommu->reg + DMAR_PRS_REG);
pr_info_ratelimited("IOMMU: %s: PRQ overflow cleared",
iommu->name);
}
}
if (!completion_done(&iommu->prq_complete))
complete(&iommu->prq_complete);
return IRQ_RETVAL(handled);
}
struct iommu_sva *intel_svm_bind(struct device *dev, struct mm_struct *mm, void *drvdata)
{
struct intel_iommu *iommu = device_to_iommu(dev, NULL, NULL);
unsigned int flags = 0;
struct iommu_sva *sva;
int ret;
if (drvdata)
flags = *(unsigned int *)drvdata;
if (flags & SVM_FLAG_SUPERVISOR_MODE) {
if (!ecap_srs(iommu->ecap)) {
dev_err(dev, "%s: Supervisor PASID not supported\n",
iommu->name);
return ERR_PTR(-EOPNOTSUPP);
}
if (mm) {
dev_err(dev, "%s: Supervisor PASID with user provided mm\n",
iommu->name);
return ERR_PTR(-EINVAL);
}
mm = &init_mm;
}
mutex_lock(&pasid_mutex);
ret = intel_svm_alloc_pasid(dev, mm, flags);
if (ret) {
mutex_unlock(&pasid_mutex);
return ERR_PTR(ret);
}
sva = intel_svm_bind_mm(iommu, dev, mm, flags);
if (IS_ERR_OR_NULL(sva))
intel_svm_free_pasid(mm);
mutex_unlock(&pasid_mutex);
return sva;
}
void intel_svm_unbind(struct iommu_sva *sva)
{
struct intel_svm_dev *sdev = to_intel_svm_dev(sva);
mutex_lock(&pasid_mutex);
intel_svm_unbind_mm(sdev->dev, sdev->pasid);
mutex_unlock(&pasid_mutex);
}
u32 intel_svm_get_pasid(struct iommu_sva *sva)
{
struct intel_svm_dev *sdev;
u32 pasid;
mutex_lock(&pasid_mutex);
sdev = to_intel_svm_dev(sva);
pasid = sdev->pasid;
mutex_unlock(&pasid_mutex);
return pasid;
}
int intel_svm_page_response(struct device *dev,
struct iommu_fault_event *evt,
struct iommu_page_response *msg)
{
struct iommu_fault_page_request *prm;
struct intel_svm_dev *sdev = NULL;
struct intel_svm *svm = NULL;
struct intel_iommu *iommu;
bool private_present;
bool pasid_present;
bool last_page;
u8 bus, devfn;
int ret = 0;
u16 sid;
if (!dev || !dev_is_pci(dev))
return -ENODEV;
iommu = device_to_iommu(dev, &bus, &devfn);
if (!iommu)
return -ENODEV;
if (!msg || !evt)
return -EINVAL;
mutex_lock(&pasid_mutex);
prm = &evt->fault.prm;
sid = PCI_DEVID(bus, devfn);
pasid_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
private_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA;
last_page = prm->flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE;
if (!pasid_present) {
ret = -EINVAL;
goto out;
}
if (prm->pasid == 0 || prm->pasid >= PASID_MAX) {
ret = -EINVAL;
goto out;
}
ret = pasid_to_svm_sdev(dev, prm->pasid, &svm, &sdev);
if (ret || !sdev) {
ret = -ENODEV;
goto out;
}
/*
* For responses from userspace, need to make sure that the
* pasid has been bound to its mm.
*/
if (svm->flags & SVM_FLAG_GUEST_MODE) {
struct mm_struct *mm;
mm = get_task_mm(current);
if (!mm) {
ret = -EINVAL;
goto out;
}
if (mm != svm->mm) {
ret = -ENODEV;
mmput(mm);
goto out;
}
mmput(mm);
}
/*
* Per VT-d spec. v3.0 ch7.7, system software must respond
* with page group response if private data is present (PDP)
* or last page in group (LPIG) bit is set. This is an
* additional VT-d requirement beyond PCI ATS spec.
*/
if (last_page || private_present) {
struct qi_desc desc;
desc.qw0 = QI_PGRP_PASID(prm->pasid) | QI_PGRP_DID(sid) |
QI_PGRP_PASID_P(pasid_present) |
QI_PGRP_PDP(private_present) |
QI_PGRP_RESP_CODE(msg->code) |
QI_PGRP_RESP_TYPE;
desc.qw1 = QI_PGRP_IDX(prm->grpid) | QI_PGRP_LPIG(last_page);
desc.qw2 = 0;
desc.qw3 = 0;
if (private_present) {
desc.qw2 = prm->private_data[0];
desc.qw3 = prm->private_data[1];
} else if (prm->private_data[0]) {
dmar_latency_update(iommu, DMAR_LATENCY_PRQ,
ktime_to_ns(ktime_get()) - prm->private_data[0]);
}
qi_submit_sync(iommu, &desc, 1, 0);
}
out:
mutex_unlock(&pasid_mutex);
return ret;
}