a7495c28c8
The implementation of efi_high_alloc() uses a complicated way of traversing the memory map to find an available region that is located as close as possible to the provided upper limit, and calls AllocatePages subsequently to create the allocation at that exact address. This is precisely what the EFI_ALLOCATE_MAX_ADDRESS allocation type argument to AllocatePages() does, and considering that EFI_ALLOC_ALIGN only exceeds EFI_PAGE_SIZE on arm64, let's use AllocatePages() directly and implement the alignment using code that the compiler can remove if it does not exceed EFI_PAGE_SIZE. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
372 lines
9.7 KiB
C
372 lines
9.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* FDT related Helper functions used by the EFI stub on multiple
|
|
* architectures. This should be #included by the EFI stub
|
|
* implementation files.
|
|
*
|
|
* Copyright 2013 Linaro Limited; author Roy Franz
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/libfdt.h>
|
|
#include <asm/efi.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
#define EFI_DT_ADDR_CELLS_DEFAULT 2
|
|
#define EFI_DT_SIZE_CELLS_DEFAULT 2
|
|
|
|
static void fdt_update_cell_size(void *fdt)
|
|
{
|
|
int offset;
|
|
|
|
offset = fdt_path_offset(fdt, "/");
|
|
/* Set the #address-cells and #size-cells values for an empty tree */
|
|
|
|
fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
|
|
fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
|
|
}
|
|
|
|
static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
|
|
void *fdt, int new_fdt_size, char *cmdline_ptr,
|
|
u64 initrd_addr, u64 initrd_size)
|
|
{
|
|
int node, num_rsv;
|
|
int status;
|
|
u32 fdt_val32;
|
|
u64 fdt_val64;
|
|
|
|
/* Do some checks on provided FDT, if it exists: */
|
|
if (orig_fdt) {
|
|
if (fdt_check_header(orig_fdt)) {
|
|
pr_efi_err("Device Tree header not valid!\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
/*
|
|
* We don't get the size of the FDT if we get if from a
|
|
* configuration table:
|
|
*/
|
|
if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
|
|
pr_efi_err("Truncated device tree! foo!\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
}
|
|
|
|
if (orig_fdt) {
|
|
status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
|
|
} else {
|
|
status = fdt_create_empty_tree(fdt, new_fdt_size);
|
|
if (status == 0) {
|
|
/*
|
|
* Any failure from the following function is
|
|
* non-critical:
|
|
*/
|
|
fdt_update_cell_size(fdt);
|
|
}
|
|
}
|
|
|
|
if (status != 0)
|
|
goto fdt_set_fail;
|
|
|
|
/*
|
|
* Delete all memory reserve map entries. When booting via UEFI,
|
|
* kernel will use the UEFI memory map to find reserved regions.
|
|
*/
|
|
num_rsv = fdt_num_mem_rsv(fdt);
|
|
while (num_rsv-- > 0)
|
|
fdt_del_mem_rsv(fdt, num_rsv);
|
|
|
|
node = fdt_subnode_offset(fdt, 0, "chosen");
|
|
if (node < 0) {
|
|
node = fdt_add_subnode(fdt, 0, "chosen");
|
|
if (node < 0) {
|
|
/* 'node' is an error code when negative: */
|
|
status = node;
|
|
goto fdt_set_fail;
|
|
}
|
|
}
|
|
|
|
if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
|
|
status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
|
|
strlen(cmdline_ptr) + 1);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
}
|
|
|
|
/* Set initrd address/end in device tree, if present */
|
|
if (initrd_size != 0) {
|
|
u64 initrd_image_end;
|
|
u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
|
|
status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
}
|
|
|
|
/* Add FDT entries for EFI runtime services in chosen node. */
|
|
node = fdt_subnode_offset(fdt, 0, "chosen");
|
|
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table());
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val64 = U64_MAX; /* placeholder */
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val32 = U32_MAX; /* placeholder */
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
|
|
efi_status_t efi_status;
|
|
|
|
efi_status = efi_get_random_bytes(sizeof(fdt_val64),
|
|
(u8 *)&fdt_val64);
|
|
if (efi_status == EFI_SUCCESS) {
|
|
status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
} else if (efi_status != EFI_NOT_FOUND) {
|
|
return efi_status;
|
|
}
|
|
}
|
|
|
|
/* Shrink the FDT back to its minimum size: */
|
|
fdt_pack(fdt);
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
fdt_set_fail:
|
|
if (status == -FDT_ERR_NOSPACE)
|
|
return EFI_BUFFER_TOO_SMALL;
|
|
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
|
|
{
|
|
int node = fdt_path_offset(fdt, "/chosen");
|
|
u64 fdt_val64;
|
|
u32 fdt_val32;
|
|
int err;
|
|
|
|
if (node < 0)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
|
|
|
|
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
|
|
if (err)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
fdt_val32 = cpu_to_fdt32(*map->map_size);
|
|
|
|
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
|
|
if (err)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
fdt_val32 = cpu_to_fdt32(*map->desc_size);
|
|
|
|
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
|
|
if (err)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
fdt_val32 = cpu_to_fdt32(*map->desc_ver);
|
|
|
|
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
|
|
if (err)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
struct exit_boot_struct {
|
|
efi_memory_desc_t *runtime_map;
|
|
int *runtime_entry_count;
|
|
void *new_fdt_addr;
|
|
};
|
|
|
|
static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
|
|
void *priv)
|
|
{
|
|
struct exit_boot_struct *p = priv;
|
|
/*
|
|
* Update the memory map with virtual addresses. The function will also
|
|
* populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
|
|
* entries so that we can pass it straight to SetVirtualAddressMap()
|
|
*/
|
|
efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
|
|
p->runtime_map, p->runtime_entry_count);
|
|
|
|
return update_fdt_memmap(p->new_fdt_addr, map);
|
|
}
|
|
|
|
#ifndef MAX_FDT_SIZE
|
|
# define MAX_FDT_SIZE SZ_2M
|
|
#endif
|
|
|
|
/*
|
|
* Allocate memory for a new FDT, then add EFI, commandline, and
|
|
* initrd related fields to the FDT. This routine increases the
|
|
* FDT allocation size until the allocated memory is large
|
|
* enough. EFI allocations are in EFI_PAGE_SIZE granules,
|
|
* which are fixed at 4K bytes, so in most cases the first
|
|
* allocation should succeed.
|
|
* EFI boot services are exited at the end of this function.
|
|
* There must be no allocations between the get_memory_map()
|
|
* call and the exit_boot_services() call, so the exiting of
|
|
* boot services is very tightly tied to the creation of the FDT
|
|
* with the final memory map in it.
|
|
*/
|
|
|
|
efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
|
|
unsigned long *new_fdt_addr,
|
|
unsigned long max_addr,
|
|
u64 initrd_addr, u64 initrd_size,
|
|
char *cmdline_ptr,
|
|
unsigned long fdt_addr,
|
|
unsigned long fdt_size)
|
|
{
|
|
unsigned long map_size, desc_size, buff_size;
|
|
u32 desc_ver;
|
|
unsigned long mmap_key;
|
|
efi_memory_desc_t *memory_map, *runtime_map;
|
|
efi_status_t status;
|
|
int runtime_entry_count;
|
|
struct efi_boot_memmap map;
|
|
struct exit_boot_struct priv;
|
|
|
|
map.map = &runtime_map;
|
|
map.map_size = &map_size;
|
|
map.desc_size = &desc_size;
|
|
map.desc_ver = &desc_ver;
|
|
map.key_ptr = &mmap_key;
|
|
map.buff_size = &buff_size;
|
|
|
|
/*
|
|
* Get a copy of the current memory map that we will use to prepare
|
|
* the input for SetVirtualAddressMap(). We don't have to worry about
|
|
* subsequent allocations adding entries, since they could not affect
|
|
* the number of EFI_MEMORY_RUNTIME regions.
|
|
*/
|
|
status = efi_get_memory_map(&map);
|
|
if (status != EFI_SUCCESS) {
|
|
pr_efi_err("Unable to retrieve UEFI memory map.\n");
|
|
return status;
|
|
}
|
|
|
|
pr_efi("Exiting boot services and installing virtual address map...\n");
|
|
|
|
map.map = &memory_map;
|
|
status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, max_addr);
|
|
if (status != EFI_SUCCESS) {
|
|
pr_efi_err("Unable to allocate memory for new device tree.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Now that we have done our final memory allocation (and free)
|
|
* we can get the memory map key needed for exit_boot_services().
|
|
*/
|
|
status = efi_get_memory_map(&map);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail_free_new_fdt;
|
|
|
|
status = update_fdt((void *)fdt_addr, fdt_size,
|
|
(void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
|
|
initrd_addr, initrd_size);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
pr_efi_err("Unable to construct new device tree.\n");
|
|
goto fail_free_new_fdt;
|
|
}
|
|
|
|
runtime_entry_count = 0;
|
|
priv.runtime_map = runtime_map;
|
|
priv.runtime_entry_count = &runtime_entry_count;
|
|
priv.new_fdt_addr = (void *)*new_fdt_addr;
|
|
|
|
status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
|
|
|
|
if (status == EFI_SUCCESS) {
|
|
efi_set_virtual_address_map_t *svam;
|
|
|
|
if (novamap())
|
|
return EFI_SUCCESS;
|
|
|
|
/* Install the new virtual address map */
|
|
svam = efi_system_table()->runtime->set_virtual_address_map;
|
|
status = svam(runtime_entry_count * desc_size, desc_size,
|
|
desc_ver, runtime_map);
|
|
|
|
/*
|
|
* We are beyond the point of no return here, so if the call to
|
|
* SetVirtualAddressMap() failed, we need to signal that to the
|
|
* incoming kernel but proceed normally otherwise.
|
|
*/
|
|
if (status != EFI_SUCCESS) {
|
|
int l;
|
|
|
|
/*
|
|
* Set the virtual address field of all
|
|
* EFI_MEMORY_RUNTIME entries to 0. This will signal
|
|
* the incoming kernel that no virtual translation has
|
|
* been installed.
|
|
*/
|
|
for (l = 0; l < map_size; l += desc_size) {
|
|
efi_memory_desc_t *p = (void *)memory_map + l;
|
|
|
|
if (p->attribute & EFI_MEMORY_RUNTIME)
|
|
p->virt_addr = 0;
|
|
}
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
pr_efi_err("Exit boot services failed.\n");
|
|
|
|
fail_free_new_fdt:
|
|
efi_free(MAX_FDT_SIZE, *new_fdt_addr);
|
|
|
|
fail:
|
|
efi_system_table()->boottime->free_pool(runtime_map);
|
|
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
void *get_fdt(unsigned long *fdt_size)
|
|
{
|
|
void *fdt;
|
|
|
|
fdt = get_efi_config_table(DEVICE_TREE_GUID);
|
|
|
|
if (!fdt)
|
|
return NULL;
|
|
|
|
if (fdt_check_header(fdt) != 0) {
|
|
pr_efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n");
|
|
return NULL;
|
|
}
|
|
*fdt_size = fdt_totalsize(fdt);
|
|
return fdt;
|
|
}
|