forked from Minki/linux
04f1e34d3c
Hardware cryptography seems to be working on a 11G network with WPA/WPA2 cryptography enabled. WEP still needs to be tested... Signed-of-by: Ivo van Doorn <IvDoorn@gmail.com> Acked-by: Gertjan van Wingerde <gwingerde@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
1209 lines
35 KiB
C
1209 lines
35 KiB
C
/*
|
|
Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
|
|
Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
|
|
Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
|
|
Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
|
|
Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
|
|
Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
|
|
Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
|
|
Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
|
|
<http://rt2x00.serialmonkey.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the
|
|
Free Software Foundation, Inc.,
|
|
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
Module: rt2800pci
|
|
Abstract: rt2800pci device specific routines.
|
|
Supported chipsets: RT2800E & RT2800ED.
|
|
*/
|
|
|
|
#include <linux/crc-ccitt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/eeprom_93cx6.h>
|
|
|
|
#include "rt2x00.h"
|
|
#include "rt2x00pci.h"
|
|
#include "rt2x00soc.h"
|
|
#include "rt2800lib.h"
|
|
#include "rt2800.h"
|
|
#include "rt2800pci.h"
|
|
|
|
/*
|
|
* Allow hardware encryption to be disabled.
|
|
*/
|
|
static int modparam_nohwcrypt = 0;
|
|
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
|
|
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
|
|
|
|
static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
|
|
{
|
|
unsigned int i;
|
|
u32 reg;
|
|
|
|
/*
|
|
* SOC devices don't support MCU requests.
|
|
*/
|
|
if (rt2x00_is_soc(rt2x00dev))
|
|
return;
|
|
|
|
for (i = 0; i < 200; i++) {
|
|
rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, ®);
|
|
|
|
if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
|
|
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
|
|
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
|
|
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
|
|
break;
|
|
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
if (i == 200)
|
|
ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
|
|
|
|
rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
|
|
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
|
|
}
|
|
|
|
#ifdef CONFIG_RT2800PCI_SOC
|
|
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
|
|
|
|
memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
|
|
}
|
|
#else
|
|
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
}
|
|
#endif /* CONFIG_RT2800PCI_SOC */
|
|
|
|
#ifdef CONFIG_RT2800PCI_PCI
|
|
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = eeprom->data;
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, E2PROM_CSR, ®);
|
|
|
|
eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
|
|
eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
|
|
eeprom->reg_data_clock =
|
|
!!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
|
|
eeprom->reg_chip_select =
|
|
!!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
|
|
}
|
|
|
|
static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = eeprom->data;
|
|
u32 reg = 0;
|
|
|
|
rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
|
|
rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
|
|
rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK,
|
|
!!eeprom->reg_data_clock);
|
|
rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT,
|
|
!!eeprom->reg_chip_select);
|
|
|
|
rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
|
|
}
|
|
|
|
static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct eeprom_93cx6 eeprom;
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, E2PROM_CSR, ®);
|
|
|
|
eeprom.data = rt2x00dev;
|
|
eeprom.register_read = rt2800pci_eepromregister_read;
|
|
eeprom.register_write = rt2800pci_eepromregister_write;
|
|
eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
|
|
PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
|
|
eeprom.reg_data_in = 0;
|
|
eeprom.reg_data_out = 0;
|
|
eeprom.reg_data_clock = 0;
|
|
eeprom.reg_chip_select = 0;
|
|
|
|
eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
|
|
EEPROM_SIZE / sizeof(u16));
|
|
}
|
|
|
|
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
return rt2800_efuse_detect(rt2x00dev);
|
|
}
|
|
|
|
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_read_eeprom_efuse(rt2x00dev);
|
|
}
|
|
#else
|
|
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
}
|
|
|
|
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
}
|
|
#endif /* CONFIG_RT2800PCI_PCI */
|
|
|
|
/*
|
|
* Firmware functions
|
|
*/
|
|
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
return FIRMWARE_RT2860;
|
|
}
|
|
|
|
static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
|
|
const u8 *data, const size_t len)
|
|
{
|
|
u16 fw_crc;
|
|
u16 crc;
|
|
|
|
/*
|
|
* Only support 8kb firmware files.
|
|
*/
|
|
if (len != 8192)
|
|
return FW_BAD_LENGTH;
|
|
|
|
/*
|
|
* The last 2 bytes in the firmware array are the crc checksum itself,
|
|
* this means that we should never pass those 2 bytes to the crc
|
|
* algorithm.
|
|
*/
|
|
fw_crc = (data[len - 2] << 8 | data[len - 1]);
|
|
|
|
/*
|
|
* Use the crc ccitt algorithm.
|
|
* This will return the same value as the legacy driver which
|
|
* used bit ordering reversion on the both the firmware bytes
|
|
* before input input as well as on the final output.
|
|
* Obviously using crc ccitt directly is much more efficient.
|
|
*/
|
|
crc = crc_ccitt(~0, data, len - 2);
|
|
|
|
/*
|
|
* There is a small difference between the crc-itu-t + bitrev and
|
|
* the crc-ccitt crc calculation. In the latter method the 2 bytes
|
|
* will be swapped, use swab16 to convert the crc to the correct
|
|
* value.
|
|
*/
|
|
crc = swab16(crc);
|
|
|
|
return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
|
|
}
|
|
|
|
static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
|
|
const u8 *data, const size_t len)
|
|
{
|
|
unsigned int i;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Wait for stable hardware.
|
|
*/
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2800_register_read(rt2x00dev, MAC_CSR0, ®);
|
|
if (reg && reg != ~0)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
if (i == REGISTER_BUSY_COUNT) {
|
|
ERROR(rt2x00dev, "Unstable hardware.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
|
|
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
|
|
|
|
/*
|
|
* Disable DMA, will be reenabled later when enabling
|
|
* the radio.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
|
|
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
|
|
|
|
/*
|
|
* enable Host program ram write selection
|
|
*/
|
|
reg = 0;
|
|
rt2x00_set_field32(®, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
|
|
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
|
|
|
|
/*
|
|
* Write firmware to device.
|
|
*/
|
|
rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
|
|
data, len);
|
|
|
|
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
|
|
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
|
|
|
|
/*
|
|
* Wait for device to stabilize.
|
|
*/
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®);
|
|
if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
if (i == REGISTER_BUSY_COUNT) {
|
|
ERROR(rt2x00dev, "PBF system register not ready.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Disable interrupts
|
|
*/
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
|
|
|
|
/*
|
|
* Initialize BBP R/W access agent
|
|
*/
|
|
rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
|
|
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialization functions.
|
|
*/
|
|
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
|
|
{
|
|
struct queue_entry_priv_pci *entry_priv = entry->priv_data;
|
|
u32 word;
|
|
|
|
if (entry->queue->qid == QID_RX) {
|
|
rt2x00_desc_read(entry_priv->desc, 1, &word);
|
|
|
|
return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
|
|
} else {
|
|
rt2x00_desc_read(entry_priv->desc, 1, &word);
|
|
|
|
return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
|
|
}
|
|
}
|
|
|
|
static void rt2800pci_clear_entry(struct queue_entry *entry)
|
|
{
|
|
struct queue_entry_priv_pci *entry_priv = entry->priv_data;
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
|
u32 word;
|
|
|
|
if (entry->queue->qid == QID_RX) {
|
|
rt2x00_desc_read(entry_priv->desc, 0, &word);
|
|
rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
|
|
rt2x00_desc_write(entry_priv->desc, 0, word);
|
|
|
|
rt2x00_desc_read(entry_priv->desc, 1, &word);
|
|
rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
|
|
rt2x00_desc_write(entry_priv->desc, 1, word);
|
|
} else {
|
|
rt2x00_desc_read(entry_priv->desc, 1, &word);
|
|
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
|
|
rt2x00_desc_write(entry_priv->desc, 1, word);
|
|
}
|
|
}
|
|
|
|
static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct queue_entry_priv_pci *entry_priv;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Initialize registers.
|
|
*/
|
|
entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
|
|
rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
|
|
rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
|
|
rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
|
|
rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
|
|
|
|
entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
|
|
rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
|
|
rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
|
|
rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
|
|
rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
|
|
|
|
entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
|
|
rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
|
|
rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
|
|
rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
|
|
rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
|
|
|
|
entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
|
|
rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
|
|
rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
|
|
rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
|
|
rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
|
|
|
|
entry_priv = rt2x00dev->rx->entries[0].priv_data;
|
|
rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
|
|
rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
|
|
rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
|
|
rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
|
|
|
|
/*
|
|
* Enable global DMA configuration
|
|
*/
|
|
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
|
|
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Device state switch handlers.
|
|
*/
|
|
static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX,
|
|
(state == STATE_RADIO_RX_ON) ||
|
|
(state == STATE_RADIO_RX_ON_LINK));
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
|
|
}
|
|
|
|
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
int mask = (state == STATE_RADIO_IRQ_ON);
|
|
u32 reg;
|
|
|
|
/*
|
|
* When interrupts are being enabled, the interrupt registers
|
|
* should clear the register to assure a clean state.
|
|
*/
|
|
if (state == STATE_RADIO_IRQ_ON) {
|
|
rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
|
|
rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, INT_MASK_CSR, ®);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_RXDELAYINT, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_TXDELAYINT, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_AC0_DMA_DONE, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_AC1_DMA_DONE, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_AC2_DMA_DONE, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_AC3_DMA_DONE, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_HCCA_DMA_DONE, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_MGMT_DMA_DONE, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_MCU_COMMAND, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_RXTX_COHERENT, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_TBTT, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_GPTIMER, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_RX_COHERENT, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_TX_COHERENT, mask);
|
|
rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
|
|
}
|
|
|
|
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Reset DMA indexes
|
|
*/
|
|
rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1);
|
|
rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
|
|
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
|
|
|
|
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
|
|
|
|
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1);
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
u16 word;
|
|
|
|
/*
|
|
* Initialize all registers.
|
|
*/
|
|
if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
|
|
rt2800pci_init_queues(rt2x00dev) ||
|
|
rt2800_init_registers(rt2x00dev) ||
|
|
rt2800_wait_wpdma_ready(rt2x00dev) ||
|
|
rt2800_init_bbp(rt2x00dev) ||
|
|
rt2800_init_rfcsr(rt2x00dev)))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Send signal to firmware during boot time.
|
|
*/
|
|
rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
|
|
|
|
/*
|
|
* Enable RX.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0);
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
|
|
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1);
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
|
|
|
|
/*
|
|
* Initialize LED control
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
|
|
rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
|
|
word & 0xff, (word >> 8) & 0xff);
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
|
|
rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
|
|
word & 0xff, (word >> 8) & 0xff);
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
|
|
rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
|
|
word & 0xff, (word >> 8) & 0xff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
|
|
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
|
|
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
|
|
rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
|
|
|
|
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
|
|
|
|
rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1);
|
|
rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
|
|
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
|
|
|
|
/* Wait for DMA, ignore error */
|
|
rt2800_wait_wpdma_ready(rt2x00dev);
|
|
}
|
|
|
|
static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
/*
|
|
* Always put the device to sleep (even when we intend to wakeup!)
|
|
* if the device is booting and wasn't asleep it will return
|
|
* failure when attempting to wakeup.
|
|
*/
|
|
rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
|
|
|
|
if (state == STATE_AWAKE) {
|
|
rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
|
|
rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
int retval = 0;
|
|
|
|
switch (state) {
|
|
case STATE_RADIO_ON:
|
|
/*
|
|
* Before the radio can be enabled, the device first has
|
|
* to be woken up. After that it needs a bit of time
|
|
* to be fully awake and then the radio can be enabled.
|
|
*/
|
|
rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
|
|
msleep(1);
|
|
retval = rt2800pci_enable_radio(rt2x00dev);
|
|
break;
|
|
case STATE_RADIO_OFF:
|
|
/*
|
|
* After the radio has been disabled, the device should
|
|
* be put to sleep for powersaving.
|
|
*/
|
|
rt2800pci_disable_radio(rt2x00dev);
|
|
rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
|
|
break;
|
|
case STATE_RADIO_RX_ON:
|
|
case STATE_RADIO_RX_ON_LINK:
|
|
case STATE_RADIO_RX_OFF:
|
|
case STATE_RADIO_RX_OFF_LINK:
|
|
rt2800pci_toggle_rx(rt2x00dev, state);
|
|
break;
|
|
case STATE_RADIO_IRQ_ON:
|
|
case STATE_RADIO_IRQ_OFF:
|
|
rt2800pci_toggle_irq(rt2x00dev, state);
|
|
break;
|
|
case STATE_DEEP_SLEEP:
|
|
case STATE_SLEEP:
|
|
case STATE_STANDBY:
|
|
case STATE_AWAKE:
|
|
retval = rt2800pci_set_state(rt2x00dev, state);
|
|
break;
|
|
default:
|
|
retval = -ENOTSUPP;
|
|
break;
|
|
}
|
|
|
|
if (unlikely(retval))
|
|
ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
|
|
state, retval);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* TX descriptor initialization
|
|
*/
|
|
static void rt2800pci_write_tx_datadesc(struct queue_entry* entry,
|
|
struct txentry_desc *txdesc)
|
|
{
|
|
rt2800_write_txwi((__le32 *) entry->skb->data, txdesc);
|
|
}
|
|
|
|
|
|
static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
|
|
struct sk_buff *skb,
|
|
struct txentry_desc *txdesc)
|
|
{
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
|
|
struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
|
|
__le32 *txd = entry_priv->desc;
|
|
u32 word;
|
|
|
|
/*
|
|
* The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
|
|
* must contains a TXWI structure + 802.11 header + padding + 802.11
|
|
* data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
|
|
* SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
|
|
* data. It means that LAST_SEC0 is always 0.
|
|
*/
|
|
|
|
/*
|
|
* Initialize TX descriptor
|
|
*/
|
|
rt2x00_desc_read(txd, 0, &word);
|
|
rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
|
|
rt2x00_desc_write(txd, 0, word);
|
|
|
|
rt2x00_desc_read(txd, 1, &word);
|
|
rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
|
|
rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
|
|
!test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXD_W1_BURST,
|
|
test_bit(ENTRY_TXD_BURST, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
|
|
rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
|
|
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
|
|
rt2x00_desc_write(txd, 1, word);
|
|
|
|
rt2x00_desc_read(txd, 2, &word);
|
|
rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
|
|
skbdesc->skb_dma + TXWI_DESC_SIZE);
|
|
rt2x00_desc_write(txd, 2, word);
|
|
|
|
rt2x00_desc_read(txd, 3, &word);
|
|
rt2x00_set_field32(&word, TXD_W3_WIV,
|
|
!test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
|
|
rt2x00_desc_write(txd, 3, word);
|
|
|
|
/*
|
|
* Register descriptor details in skb frame descriptor.
|
|
*/
|
|
skbdesc->desc = txd;
|
|
skbdesc->desc_len = TXD_DESC_SIZE;
|
|
}
|
|
|
|
/*
|
|
* TX data initialization
|
|
*/
|
|
static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
|
|
const enum data_queue_qid queue_idx)
|
|
{
|
|
struct data_queue *queue;
|
|
unsigned int idx, qidx = 0;
|
|
|
|
if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
|
|
return;
|
|
|
|
queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
|
|
idx = queue->index[Q_INDEX];
|
|
|
|
if (queue_idx == QID_MGMT)
|
|
qidx = 5;
|
|
else
|
|
qidx = queue_idx;
|
|
|
|
rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
|
|
}
|
|
|
|
static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
|
|
const enum data_queue_qid qid)
|
|
{
|
|
u32 reg;
|
|
|
|
if (qid == QID_BEACON) {
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
|
|
return;
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
|
|
rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
|
|
}
|
|
|
|
/*
|
|
* RX control handlers
|
|
*/
|
|
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
|
|
struct rxdone_entry_desc *rxdesc)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
struct queue_entry_priv_pci *entry_priv = entry->priv_data;
|
|
__le32 *rxd = entry_priv->desc;
|
|
u32 word;
|
|
|
|
rt2x00_desc_read(rxd, 3, &word);
|
|
|
|
if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
|
|
rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
|
|
|
|
/*
|
|
* Unfortunately we don't know the cipher type used during
|
|
* decryption. This prevents us from correct providing
|
|
* correct statistics through debugfs.
|
|
*/
|
|
rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
|
|
|
|
if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
|
|
/*
|
|
* Hardware has stripped IV/EIV data from 802.11 frame during
|
|
* decryption. Unfortunately the descriptor doesn't contain
|
|
* any fields with the EIV/IV data either, so they can't
|
|
* be restored by rt2x00lib.
|
|
*/
|
|
rxdesc->flags |= RX_FLAG_IV_STRIPPED;
|
|
|
|
if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
|
|
rxdesc->flags |= RX_FLAG_DECRYPTED;
|
|
else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
|
|
rxdesc->flags |= RX_FLAG_MMIC_ERROR;
|
|
}
|
|
|
|
if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
|
|
rxdesc->dev_flags |= RXDONE_MY_BSS;
|
|
|
|
if (rt2x00_get_field32(word, RXD_W3_L2PAD))
|
|
rxdesc->dev_flags |= RXDONE_L2PAD;
|
|
|
|
/*
|
|
* Process the RXWI structure that is at the start of the buffer.
|
|
*/
|
|
rt2800_process_rxwi(entry->skb, rxdesc);
|
|
|
|
/*
|
|
* Set RX IDX in register to inform hardware that we have handled
|
|
* this entry and it is available for reuse again.
|
|
*/
|
|
rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
|
|
}
|
|
|
|
/*
|
|
* Interrupt functions.
|
|
*/
|
|
static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_queue *queue;
|
|
struct queue_entry *entry;
|
|
__le32 *txwi;
|
|
struct txdone_entry_desc txdesc;
|
|
u32 word;
|
|
u32 reg;
|
|
int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
|
|
u16 mcs, real_mcs;
|
|
int i;
|
|
|
|
/*
|
|
* TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
|
|
* at most X times and also stop processing once the TX_STA_FIFO_VALID
|
|
* flag is not set anymore.
|
|
*
|
|
* The legacy drivers use X=TX_RING_SIZE but state in a comment
|
|
* that the TX_STA_FIFO stack has a size of 16. We stick to our
|
|
* tx ring size for now.
|
|
*/
|
|
for (i = 0; i < TX_ENTRIES; i++) {
|
|
rt2800_register_read(rt2x00dev, TX_STA_FIFO, ®);
|
|
if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
|
|
break;
|
|
|
|
wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
|
|
ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
|
|
pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
|
|
|
|
/*
|
|
* Skip this entry when it contains an invalid
|
|
* queue identication number.
|
|
*/
|
|
if (pid <= 0 || pid > QID_RX)
|
|
continue;
|
|
|
|
queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
|
|
if (unlikely(!queue))
|
|
continue;
|
|
|
|
/*
|
|
* Inside each queue, we process each entry in a chronological
|
|
* order. We first check that the queue is not empty.
|
|
*/
|
|
if (rt2x00queue_empty(queue))
|
|
continue;
|
|
entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
|
|
|
|
/* Check if we got a match by looking at WCID/ACK/PID
|
|
* fields */
|
|
txwi = (__le32 *) entry->skb->data;
|
|
|
|
rt2x00_desc_read(txwi, 1, &word);
|
|
tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
|
|
tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
|
|
tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
|
|
|
|
if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
|
|
WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
|
|
|
|
/*
|
|
* Obtain the status about this packet.
|
|
*/
|
|
txdesc.flags = 0;
|
|
rt2x00_desc_read(txwi, 0, &word);
|
|
mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
|
|
real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
|
|
|
|
/*
|
|
* Ralink has a retry mechanism using a global fallback
|
|
* table. We setup this fallback table to try the immediate
|
|
* lower rate for all rates. In the TX_STA_FIFO, the MCS field
|
|
* always contains the MCS used for the last transmission, be
|
|
* it successful or not.
|
|
*/
|
|
if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
|
|
/*
|
|
* Transmission succeeded. The number of retries is
|
|
* mcs - real_mcs
|
|
*/
|
|
__set_bit(TXDONE_SUCCESS, &txdesc.flags);
|
|
txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
|
|
} else {
|
|
/*
|
|
* Transmission failed. The number of retries is
|
|
* always 7 in this case (for a total number of 8
|
|
* frames sent).
|
|
*/
|
|
__set_bit(TXDONE_FAILURE, &txdesc.flags);
|
|
txdesc.retry = 7;
|
|
}
|
|
|
|
/*
|
|
* the frame was retried at least once
|
|
* -> hw used fallback rates
|
|
*/
|
|
if (txdesc.retry)
|
|
__set_bit(TXDONE_FALLBACK, &txdesc.flags);
|
|
|
|
rt2x00pci_txdone(entry, &txdesc);
|
|
}
|
|
}
|
|
|
|
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct ieee80211_conf conf = { .flags = 0 };
|
|
struct rt2x00lib_conf libconf = { .conf = &conf };
|
|
|
|
rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
|
|
}
|
|
|
|
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = dev_instance;
|
|
u32 reg;
|
|
|
|
/* Read status and ACK all interrupts */
|
|
rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
|
|
rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
|
|
|
|
if (!reg)
|
|
return IRQ_NONE;
|
|
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return IRQ_HANDLED;
|
|
|
|
/*
|
|
* 1 - Rx ring done interrupt.
|
|
*/
|
|
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
|
|
rt2x00pci_rxdone(rt2x00dev);
|
|
|
|
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
|
|
rt2800pci_txdone(rt2x00dev);
|
|
|
|
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
|
|
rt2800pci_wakeup(rt2x00dev);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Device probe functions.
|
|
*/
|
|
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
/*
|
|
* Read EEPROM into buffer
|
|
*/
|
|
if (rt2x00_is_soc(rt2x00dev))
|
|
rt2800pci_read_eeprom_soc(rt2x00dev);
|
|
else if (rt2800pci_efuse_detect(rt2x00dev))
|
|
rt2800pci_read_eeprom_efuse(rt2x00dev);
|
|
else
|
|
rt2800pci_read_eeprom_pci(rt2x00dev);
|
|
|
|
return rt2800_validate_eeprom(rt2x00dev);
|
|
}
|
|
|
|
static const struct rt2800_ops rt2800pci_rt2800_ops = {
|
|
.register_read = rt2x00pci_register_read,
|
|
.register_read_lock = rt2x00pci_register_read, /* same for PCI */
|
|
.register_write = rt2x00pci_register_write,
|
|
.register_write_lock = rt2x00pci_register_write, /* same for PCI */
|
|
|
|
.register_multiread = rt2x00pci_register_multiread,
|
|
.register_multiwrite = rt2x00pci_register_multiwrite,
|
|
|
|
.regbusy_read = rt2x00pci_regbusy_read,
|
|
|
|
.drv_init_registers = rt2800pci_init_registers,
|
|
};
|
|
|
|
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval;
|
|
|
|
rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
|
|
|
|
/*
|
|
* Allocate eeprom data.
|
|
*/
|
|
retval = rt2800pci_validate_eeprom(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = rt2800_init_eeprom(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Initialize hw specifications.
|
|
*/
|
|
retval = rt2800_probe_hw_mode(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* This device has multiple filters for control frames
|
|
* and has a separate filter for PS Poll frames.
|
|
*/
|
|
__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
|
|
__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* This device requires firmware.
|
|
*/
|
|
if (!rt2x00_is_soc(rt2x00dev))
|
|
__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
|
|
__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
|
|
__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
|
|
if (!modparam_nohwcrypt)
|
|
__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Set the rssi offset.
|
|
*/
|
|
rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
|
|
.irq_handler = rt2800pci_interrupt,
|
|
.probe_hw = rt2800pci_probe_hw,
|
|
.get_firmware_name = rt2800pci_get_firmware_name,
|
|
.check_firmware = rt2800pci_check_firmware,
|
|
.load_firmware = rt2800pci_load_firmware,
|
|
.initialize = rt2x00pci_initialize,
|
|
.uninitialize = rt2x00pci_uninitialize,
|
|
.get_entry_state = rt2800pci_get_entry_state,
|
|
.clear_entry = rt2800pci_clear_entry,
|
|
.set_device_state = rt2800pci_set_device_state,
|
|
.rfkill_poll = rt2800_rfkill_poll,
|
|
.link_stats = rt2800_link_stats,
|
|
.reset_tuner = rt2800_reset_tuner,
|
|
.link_tuner = rt2800_link_tuner,
|
|
.write_tx_desc = rt2800pci_write_tx_desc,
|
|
.write_tx_data = rt2x00pci_write_tx_data,
|
|
.write_tx_datadesc = rt2800pci_write_tx_datadesc,
|
|
.write_beacon = rt2800_write_beacon,
|
|
.kick_tx_queue = rt2800pci_kick_tx_queue,
|
|
.kill_tx_queue = rt2800pci_kill_tx_queue,
|
|
.fill_rxdone = rt2800pci_fill_rxdone,
|
|
.config_shared_key = rt2800_config_shared_key,
|
|
.config_pairwise_key = rt2800_config_pairwise_key,
|
|
.config_filter = rt2800_config_filter,
|
|
.config_intf = rt2800_config_intf,
|
|
.config_erp = rt2800_config_erp,
|
|
.config_ant = rt2800_config_ant,
|
|
.config = rt2800_config,
|
|
};
|
|
|
|
static const struct data_queue_desc rt2800pci_queue_rx = {
|
|
.entry_num = RX_ENTRIES,
|
|
.data_size = AGGREGATION_SIZE,
|
|
.desc_size = RXD_DESC_SIZE,
|
|
.priv_size = sizeof(struct queue_entry_priv_pci),
|
|
};
|
|
|
|
static const struct data_queue_desc rt2800pci_queue_tx = {
|
|
.entry_num = TX_ENTRIES,
|
|
.data_size = AGGREGATION_SIZE,
|
|
.desc_size = TXD_DESC_SIZE,
|
|
.priv_size = sizeof(struct queue_entry_priv_pci),
|
|
};
|
|
|
|
static const struct data_queue_desc rt2800pci_queue_bcn = {
|
|
.entry_num = 8 * BEACON_ENTRIES,
|
|
.data_size = 0, /* No DMA required for beacons */
|
|
.desc_size = TXWI_DESC_SIZE,
|
|
.priv_size = sizeof(struct queue_entry_priv_pci),
|
|
};
|
|
|
|
static const struct rt2x00_ops rt2800pci_ops = {
|
|
.name = KBUILD_MODNAME,
|
|
.max_sta_intf = 1,
|
|
.max_ap_intf = 8,
|
|
.eeprom_size = EEPROM_SIZE,
|
|
.rf_size = RF_SIZE,
|
|
.tx_queues = NUM_TX_QUEUES,
|
|
.extra_tx_headroom = TXWI_DESC_SIZE,
|
|
.rx = &rt2800pci_queue_rx,
|
|
.tx = &rt2800pci_queue_tx,
|
|
.bcn = &rt2800pci_queue_bcn,
|
|
.lib = &rt2800pci_rt2x00_ops,
|
|
.hw = &rt2800_mac80211_ops,
|
|
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
|
|
.debugfs = &rt2800_rt2x00debug,
|
|
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
|
|
};
|
|
|
|
/*
|
|
* RT2800pci module information.
|
|
*/
|
|
#ifdef CONFIG_RT2800PCI_PCI
|
|
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
|
|
{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
#ifdef CONFIG_RT2800PCI_RT30XX
|
|
{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
#endif
|
|
#ifdef CONFIG_RT2800PCI_RT35XX
|
|
{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
{ PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
|
|
#endif
|
|
{ 0, }
|
|
};
|
|
#endif /* CONFIG_RT2800PCI_PCI */
|
|
|
|
MODULE_AUTHOR(DRV_PROJECT);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
|
|
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
|
|
#ifdef CONFIG_RT2800PCI_PCI
|
|
MODULE_FIRMWARE(FIRMWARE_RT2860);
|
|
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
|
|
#endif /* CONFIG_RT2800PCI_PCI */
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#ifdef CONFIG_RT2800PCI_SOC
|
|
static int rt2800soc_probe(struct platform_device *pdev)
|
|
{
|
|
return rt2x00soc_probe(pdev, &rt2800pci_ops);
|
|
}
|
|
|
|
static struct platform_driver rt2800soc_driver = {
|
|
.driver = {
|
|
.name = "rt2800_wmac",
|
|
.owner = THIS_MODULE,
|
|
.mod_name = KBUILD_MODNAME,
|
|
},
|
|
.probe = rt2800soc_probe,
|
|
.remove = __devexit_p(rt2x00soc_remove),
|
|
.suspend = rt2x00soc_suspend,
|
|
.resume = rt2x00soc_resume,
|
|
};
|
|
#endif /* CONFIG_RT2800PCI_SOC */
|
|
|
|
#ifdef CONFIG_RT2800PCI_PCI
|
|
static struct pci_driver rt2800pci_driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.id_table = rt2800pci_device_table,
|
|
.probe = rt2x00pci_probe,
|
|
.remove = __devexit_p(rt2x00pci_remove),
|
|
.suspend = rt2x00pci_suspend,
|
|
.resume = rt2x00pci_resume,
|
|
};
|
|
#endif /* CONFIG_RT2800PCI_PCI */
|
|
|
|
static int __init rt2800pci_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
#ifdef CONFIG_RT2800PCI_SOC
|
|
ret = platform_driver_register(&rt2800soc_driver);
|
|
if (ret)
|
|
return ret;
|
|
#endif
|
|
#ifdef CONFIG_RT2800PCI_PCI
|
|
ret = pci_register_driver(&rt2800pci_driver);
|
|
if (ret) {
|
|
#ifdef CONFIG_RT2800PCI_SOC
|
|
platform_driver_unregister(&rt2800soc_driver);
|
|
#endif
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit rt2800pci_exit(void)
|
|
{
|
|
#ifdef CONFIG_RT2800PCI_PCI
|
|
pci_unregister_driver(&rt2800pci_driver);
|
|
#endif
|
|
#ifdef CONFIG_RT2800PCI_SOC
|
|
platform_driver_unregister(&rt2800soc_driver);
|
|
#endif
|
|
}
|
|
|
|
module_init(rt2800pci_init);
|
|
module_exit(rt2800pci_exit);
|