linux/drivers/infiniband/hw/bnxt_re/qplib_res.c
Jason Gunthorpe 6ef999f500 RDMA/bnxt_re: Use rdma_umem_for_each_dma_block()
This driver is taking the SGL out of the umem and passing it through a
struct bnxt_qplib_sg_info. Instead of passing the SGL pass the umem and
then use rdma_umem_for_each_dma_block() directly.

Move the calls of ib_umem_num_dma_blocks() closer to their actual point of
use, npages is only set for non-umem pbl flows.

Link: https://lore.kernel.org/r/0-v1-b37437a73f35+49c-bnxt_re_dma_block_jgg@nvidia.com
Acked-by: Selvin Xavier <selvin.xavier@broadcom.com>
Tested-by: Selvin Xavier <selvin.xavier@broadcom.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2020-10-06 16:45:53 -03:00

961 lines
24 KiB
C

/*
* Broadcom NetXtreme-E RoCE driver.
*
* Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term
* Broadcom refers to Broadcom Limited and/or its subsidiaries.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* BSD license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Description: QPLib resource manager
*/
#define dev_fmt(fmt) "QPLIB: " fmt
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/inetdevice.h>
#include <linux/dma-mapping.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_umem.h>
#include "roce_hsi.h"
#include "qplib_res.h"
#include "qplib_sp.h"
#include "qplib_rcfw.h"
static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
struct bnxt_qplib_stats *stats);
static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
struct bnxt_qplib_stats *stats);
/* PBL */
static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl,
bool is_umem)
{
struct pci_dev *pdev = res->pdev;
int i;
if (!is_umem) {
for (i = 0; i < pbl->pg_count; i++) {
if (pbl->pg_arr[i])
dma_free_coherent(&pdev->dev, pbl->pg_size,
(void *)((unsigned long)
pbl->pg_arr[i] &
PAGE_MASK),
pbl->pg_map_arr[i]);
else
dev_warn(&pdev->dev,
"PBL free pg_arr[%d] empty?!\n", i);
pbl->pg_arr[i] = NULL;
}
}
vfree(pbl->pg_arr);
pbl->pg_arr = NULL;
vfree(pbl->pg_map_arr);
pbl->pg_map_arr = NULL;
pbl->pg_count = 0;
pbl->pg_size = 0;
}
static void bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl,
struct bnxt_qplib_sg_info *sginfo)
{
struct ib_block_iter biter;
int i = 0;
rdma_umem_for_each_dma_block(sginfo->umem, &biter, sginfo->pgsize) {
pbl->pg_map_arr[i] = rdma_block_iter_dma_address(&biter);
pbl->pg_arr[i] = NULL;
pbl->pg_count++;
i++;
}
}
static int __alloc_pbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_pbl *pbl,
struct bnxt_qplib_sg_info *sginfo)
{
struct pci_dev *pdev = res->pdev;
bool is_umem = false;
u32 pages;
int i;
if (sginfo->nopte)
return 0;
if (sginfo->umem)
pages = ib_umem_num_dma_blocks(sginfo->umem, sginfo->pgsize);
else
pages = sginfo->npages;
/* page ptr arrays */
pbl->pg_arr = vmalloc(pages * sizeof(void *));
if (!pbl->pg_arr)
return -ENOMEM;
pbl->pg_map_arr = vmalloc(pages * sizeof(dma_addr_t));
if (!pbl->pg_map_arr) {
vfree(pbl->pg_arr);
pbl->pg_arr = NULL;
return -ENOMEM;
}
pbl->pg_count = 0;
pbl->pg_size = sginfo->pgsize;
if (!sginfo->umem) {
for (i = 0; i < pages; i++) {
pbl->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
pbl->pg_size,
&pbl->pg_map_arr[i],
GFP_KERNEL);
if (!pbl->pg_arr[i])
goto fail;
pbl->pg_count++;
}
} else {
is_umem = true;
bnxt_qplib_fill_user_dma_pages(pbl, sginfo);
}
return 0;
fail:
__free_pbl(res, pbl, is_umem);
return -ENOMEM;
}
/* HWQ */
void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res,
struct bnxt_qplib_hwq *hwq)
{
int i;
if (!hwq->max_elements)
return;
if (hwq->level >= PBL_LVL_MAX)
return;
for (i = 0; i < hwq->level + 1; i++) {
if (i == hwq->level)
__free_pbl(res, &hwq->pbl[i], hwq->is_user);
else
__free_pbl(res, &hwq->pbl[i], false);
}
hwq->level = PBL_LVL_MAX;
hwq->max_elements = 0;
hwq->element_size = 0;
hwq->prod = 0;
hwq->cons = 0;
hwq->cp_bit = 0;
}
/* All HWQs are power of 2 in size */
int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq,
struct bnxt_qplib_hwq_attr *hwq_attr)
{
u32 npages, aux_slots, pg_size, aux_pages = 0, aux_size = 0;
struct bnxt_qplib_sg_info sginfo = {};
u32 depth, stride, npbl, npde;
dma_addr_t *src_phys_ptr, **dst_virt_ptr;
struct bnxt_qplib_res *res;
struct pci_dev *pdev;
int i, rc, lvl;
res = hwq_attr->res;
pdev = res->pdev;
pg_size = hwq_attr->sginfo->pgsize;
hwq->level = PBL_LVL_MAX;
depth = roundup_pow_of_two(hwq_attr->depth);
stride = roundup_pow_of_two(hwq_attr->stride);
if (hwq_attr->aux_depth) {
aux_slots = hwq_attr->aux_depth;
aux_size = roundup_pow_of_two(hwq_attr->aux_stride);
aux_pages = (aux_slots * aux_size) / pg_size;
if ((aux_slots * aux_size) % pg_size)
aux_pages++;
}
if (!hwq_attr->sginfo->umem) {
hwq->is_user = false;
npages = (depth * stride) / pg_size + aux_pages;
if ((depth * stride) % pg_size)
npages++;
if (!npages)
return -EINVAL;
hwq_attr->sginfo->npages = npages;
} else {
unsigned long sginfo_num_pages = ib_umem_num_dma_blocks(
hwq_attr->sginfo->umem, hwq_attr->sginfo->pgsize);
hwq->is_user = true;
npages = sginfo_num_pages;
npages = (npages * PAGE_SIZE) /
BIT_ULL(hwq_attr->sginfo->pgshft);
if ((sginfo_num_pages * PAGE_SIZE) %
BIT_ULL(hwq_attr->sginfo->pgshft))
if (!npages)
npages++;
}
if (npages == MAX_PBL_LVL_0_PGS) {
/* This request is Level 0, map PTE */
rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo);
if (rc)
goto fail;
hwq->level = PBL_LVL_0;
}
if (npages > MAX_PBL_LVL_0_PGS) {
if (npages > MAX_PBL_LVL_1_PGS) {
u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
0 : PTU_PTE_VALID;
/* 2 levels of indirection */
npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
npbl++;
npde = npbl >> MAX_PDL_LVL_SHIFT;
if (npbl % BIT(MAX_PDL_LVL_SHIFT))
npde++;
/* Alloc PDE pages */
sginfo.pgsize = npde * pg_size;
sginfo.npages = 1;
rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
/* Alloc PBL pages */
sginfo.npages = npbl;
sginfo.pgsize = PAGE_SIZE;
rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo);
if (rc)
goto fail;
/* Fill PDL with PBL page pointers */
dst_virt_ptr =
(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
if (hwq_attr->type == HWQ_TYPE_MR) {
/* For MR it is expected that we supply only 1 contigous
* page i.e only 1 entry in the PDL that will contain
* all the PBLs for the user supplied memory region
*/
for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
i++)
dst_virt_ptr[0][i] = src_phys_ptr[i] |
flag;
} else {
for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
i++)
dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
src_phys_ptr[i] |
PTU_PDE_VALID;
}
/* Alloc or init PTEs */
rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2],
hwq_attr->sginfo);
if (rc)
goto fail;
hwq->level = PBL_LVL_2;
if (hwq_attr->sginfo->nopte)
goto done;
/* Fill PBLs with PTE pointers */
dst_virt_ptr =
(dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr;
src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr;
for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) {
dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
src_phys_ptr[i] | PTU_PTE_VALID;
}
if (hwq_attr->type == HWQ_TYPE_QUEUE) {
/* Find the last pg of the size */
i = hwq->pbl[PBL_LVL_2].pg_count;
dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
PTU_PTE_LAST;
if (i > 1)
dst_virt_ptr[PTR_PG(i - 2)]
[PTR_IDX(i - 2)] |=
PTU_PTE_NEXT_TO_LAST;
}
} else { /* pages < 512 npbl = 1, npde = 0 */
u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
0 : PTU_PTE_VALID;
/* 1 level of indirection */
npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
npbl++;
sginfo.npages = npbl;
sginfo.pgsize = PAGE_SIZE;
/* Alloc PBL page */
rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
if (rc)
goto fail;
/* Alloc or init PTEs */
rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1],
hwq_attr->sginfo);
if (rc)
goto fail;
hwq->level = PBL_LVL_1;
if (hwq_attr->sginfo->nopte)
goto done;
/* Fill PBL with PTE pointers */
dst_virt_ptr =
(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)
dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
src_phys_ptr[i] | flag;
if (hwq_attr->type == HWQ_TYPE_QUEUE) {
/* Find the last pg of the size */
i = hwq->pbl[PBL_LVL_1].pg_count;
dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
PTU_PTE_LAST;
if (i > 1)
dst_virt_ptr[PTR_PG(i - 2)]
[PTR_IDX(i - 2)] |=
PTU_PTE_NEXT_TO_LAST;
}
}
}
done:
hwq->prod = 0;
hwq->cons = 0;
hwq->pdev = pdev;
hwq->depth = hwq_attr->depth;
hwq->max_elements = depth;
hwq->element_size = stride;
hwq->qe_ppg = pg_size / stride;
/* For direct access to the elements */
lvl = hwq->level;
if (hwq_attr->sginfo->nopte && hwq->level)
lvl = hwq->level - 1;
hwq->pbl_ptr = hwq->pbl[lvl].pg_arr;
hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr;
spin_lock_init(&hwq->lock);
return 0;
fail:
bnxt_qplib_free_hwq(res, hwq);
return -ENOMEM;
}
/* Context Tables */
void bnxt_qplib_free_ctx(struct bnxt_qplib_res *res,
struct bnxt_qplib_ctx *ctx)
{
int i;
bnxt_qplib_free_hwq(res, &ctx->qpc_tbl);
bnxt_qplib_free_hwq(res, &ctx->mrw_tbl);
bnxt_qplib_free_hwq(res, &ctx->srqc_tbl);
bnxt_qplib_free_hwq(res, &ctx->cq_tbl);
bnxt_qplib_free_hwq(res, &ctx->tim_tbl);
for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.qtbl[i]);
/* restore original pde level before destroy */
ctx->tqm_ctx.pde.level = ctx->tqm_ctx.pde_level;
bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.pde);
bnxt_qplib_free_stats_ctx(res->pdev, &ctx->stats);
}
static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res,
struct bnxt_qplib_ctx *ctx)
{
struct bnxt_qplib_hwq_attr hwq_attr = {};
struct bnxt_qplib_sg_info sginfo = {};
struct bnxt_qplib_tqm_ctx *tqmctx;
int rc = 0;
int i;
tqmctx = &ctx->tqm_ctx;
sginfo.pgsize = PAGE_SIZE;
sginfo.pgshft = PAGE_SHIFT;
hwq_attr.sginfo = &sginfo;
hwq_attr.res = res;
hwq_attr.type = HWQ_TYPE_CTX;
hwq_attr.depth = 512;
hwq_attr.stride = sizeof(u64);
/* Alloc pdl buffer */
rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr);
if (rc)
goto out;
/* Save original pdl level */
tqmctx->pde_level = tqmctx->pde.level;
hwq_attr.stride = 1;
for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) {
if (!tqmctx->qcount[i])
continue;
hwq_attr.depth = ctx->qpc_count * tqmctx->qcount[i];
rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr);
if (rc)
goto out;
}
out:
return rc;
}
static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx)
{
struct bnxt_qplib_hwq *tbl;
dma_addr_t *dma_ptr;
__le64 **pbl_ptr, *ptr;
int i, j, k;
int fnz_idx = -1;
int pg_count;
pbl_ptr = (__le64 **)ctx->pde.pbl_ptr;
for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ;
i++, j += MAX_TQM_ALLOC_BLK_SIZE) {
tbl = &ctx->qtbl[i];
if (!tbl->max_elements)
continue;
if (fnz_idx == -1)
fnz_idx = i; /* first non-zero index */
switch (tbl->level) {
case PBL_LVL_2:
pg_count = tbl->pbl[PBL_LVL_1].pg_count;
for (k = 0; k < pg_count; k++) {
ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)];
dma_ptr = &tbl->pbl[PBL_LVL_1].pg_map_arr[k];
*ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID);
}
break;
case PBL_LVL_1:
case PBL_LVL_0:
default:
ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)];
*ptr = cpu_to_le64(tbl->pbl[PBL_LVL_0].pg_map_arr[0] |
PTU_PTE_VALID);
break;
}
}
if (fnz_idx == -1)
fnz_idx = 0;
/* update pde level as per page table programming */
ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 :
ctx->qtbl[fnz_idx].level + 1;
}
static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res,
struct bnxt_qplib_ctx *ctx)
{
int rc = 0;
rc = bnxt_qplib_alloc_tqm_rings(res, ctx);
if (rc)
goto fail;
bnxt_qplib_map_tqm_pgtbl(&ctx->tqm_ctx);
fail:
return rc;
}
/*
* Routine: bnxt_qplib_alloc_ctx
* Description:
* Context tables are memories which are used by the chip fw.
* The 6 tables defined are:
* QPC ctx - holds QP states
* MRW ctx - holds memory region and window
* SRQ ctx - holds shared RQ states
* CQ ctx - holds completion queue states
* TQM ctx - holds Tx Queue Manager context
* TIM ctx - holds timer context
* Depending on the size of the tbl requested, either a 1 Page Buffer List
* or a 1-to-2-stage indirection Page Directory List + 1 PBL is used
* instead.
* Table might be employed as follows:
* For 0 < ctx size <= 1 PAGE, 0 level of ind is used
* For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used
* For 512 < ctx size <= MAX, 2 levels of ind is used
* Returns:
* 0 if success, else -ERRORS
*/
int bnxt_qplib_alloc_ctx(struct bnxt_qplib_res *res,
struct bnxt_qplib_ctx *ctx,
bool virt_fn, bool is_p5)
{
struct bnxt_qplib_hwq_attr hwq_attr = {};
struct bnxt_qplib_sg_info sginfo = {};
int rc = 0;
if (virt_fn || is_p5)
goto stats_alloc;
/* QPC Tables */
sginfo.pgsize = PAGE_SIZE;
sginfo.pgshft = PAGE_SHIFT;
hwq_attr.sginfo = &sginfo;
hwq_attr.res = res;
hwq_attr.depth = ctx->qpc_count;
hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE;
hwq_attr.type = HWQ_TYPE_CTX;
rc = bnxt_qplib_alloc_init_hwq(&ctx->qpc_tbl, &hwq_attr);
if (rc)
goto fail;
/* MRW Tables */
hwq_attr.depth = ctx->mrw_count;
hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE;
rc = bnxt_qplib_alloc_init_hwq(&ctx->mrw_tbl, &hwq_attr);
if (rc)
goto fail;
/* SRQ Tables */
hwq_attr.depth = ctx->srqc_count;
hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE;
rc = bnxt_qplib_alloc_init_hwq(&ctx->srqc_tbl, &hwq_attr);
if (rc)
goto fail;
/* CQ Tables */
hwq_attr.depth = ctx->cq_count;
hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE;
rc = bnxt_qplib_alloc_init_hwq(&ctx->cq_tbl, &hwq_attr);
if (rc)
goto fail;
/* TQM Buffer */
rc = bnxt_qplib_setup_tqm_rings(res, ctx);
if (rc)
goto fail;
/* TIM Buffer */
ctx->tim_tbl.max_elements = ctx->qpc_count * 16;
hwq_attr.depth = ctx->qpc_count * 16;
hwq_attr.stride = 1;
rc = bnxt_qplib_alloc_init_hwq(&ctx->tim_tbl, &hwq_attr);
if (rc)
goto fail;
stats_alloc:
/* Stats */
rc = bnxt_qplib_alloc_stats_ctx(res->pdev, &ctx->stats);
if (rc)
goto fail;
return 0;
fail:
bnxt_qplib_free_ctx(res, ctx);
return rc;
}
/* GUID */
void bnxt_qplib_get_guid(u8 *dev_addr, u8 *guid)
{
u8 mac[ETH_ALEN];
/* MAC-48 to EUI-64 mapping */
memcpy(mac, dev_addr, ETH_ALEN);
guid[0] = mac[0] ^ 2;
guid[1] = mac[1];
guid[2] = mac[2];
guid[3] = 0xff;
guid[4] = 0xfe;
guid[5] = mac[3];
guid[6] = mac[4];
guid[7] = mac[5];
}
static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_sgid_tbl *sgid_tbl)
{
kfree(sgid_tbl->tbl);
kfree(sgid_tbl->hw_id);
kfree(sgid_tbl->ctx);
kfree(sgid_tbl->vlan);
sgid_tbl->tbl = NULL;
sgid_tbl->hw_id = NULL;
sgid_tbl->ctx = NULL;
sgid_tbl->vlan = NULL;
sgid_tbl->max = 0;
sgid_tbl->active = 0;
}
static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_sgid_tbl *sgid_tbl,
u16 max)
{
sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL);
if (!sgid_tbl->tbl)
return -ENOMEM;
sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL);
if (!sgid_tbl->hw_id)
goto out_free1;
sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL);
if (!sgid_tbl->ctx)
goto out_free2;
sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL);
if (!sgid_tbl->vlan)
goto out_free3;
sgid_tbl->max = max;
return 0;
out_free3:
kfree(sgid_tbl->ctx);
sgid_tbl->ctx = NULL;
out_free2:
kfree(sgid_tbl->hw_id);
sgid_tbl->hw_id = NULL;
out_free1:
kfree(sgid_tbl->tbl);
sgid_tbl->tbl = NULL;
return -ENOMEM;
};
static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_sgid_tbl *sgid_tbl)
{
int i;
for (i = 0; i < sgid_tbl->max; i++) {
if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
sizeof(bnxt_qplib_gid_zero)))
bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid,
sgid_tbl->tbl[i].vlan_id, true);
}
memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max);
memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max);
sgid_tbl->active = 0;
}
static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl,
struct net_device *netdev)
{
u32 i;
for (i = 0; i < sgid_tbl->max; i++)
sgid_tbl->tbl[i].vlan_id = 0xffff;
memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
}
static void bnxt_qplib_free_pkey_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_pkey_tbl *pkey_tbl)
{
if (!pkey_tbl->tbl)
dev_dbg(&res->pdev->dev, "PKEY tbl not present\n");
else
kfree(pkey_tbl->tbl);
pkey_tbl->tbl = NULL;
pkey_tbl->max = 0;
pkey_tbl->active = 0;
}
static int bnxt_qplib_alloc_pkey_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_pkey_tbl *pkey_tbl,
u16 max)
{
pkey_tbl->tbl = kcalloc(max, sizeof(u16), GFP_KERNEL);
if (!pkey_tbl->tbl)
return -ENOMEM;
pkey_tbl->max = max;
return 0;
};
/* PDs */
int bnxt_qplib_alloc_pd(struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd)
{
u32 bit_num;
bit_num = find_first_bit(pdt->tbl, pdt->max);
if (bit_num == pdt->max)
return -ENOMEM;
/* Found unused PD */
clear_bit(bit_num, pdt->tbl);
pd->id = bit_num;
return 0;
}
int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res,
struct bnxt_qplib_pd_tbl *pdt,
struct bnxt_qplib_pd *pd)
{
if (test_and_set_bit(pd->id, pdt->tbl)) {
dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n",
pd->id);
return -EINVAL;
}
pd->id = 0;
return 0;
}
static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt)
{
kfree(pdt->tbl);
pdt->tbl = NULL;
pdt->max = 0;
}
static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_pd_tbl *pdt,
u32 max)
{
u32 bytes;
bytes = max >> 3;
if (!bytes)
bytes = 1;
pdt->tbl = kmalloc(bytes, GFP_KERNEL);
if (!pdt->tbl)
return -ENOMEM;
pdt->max = max;
memset((u8 *)pdt->tbl, 0xFF, bytes);
return 0;
}
/* DPIs */
int bnxt_qplib_alloc_dpi(struct bnxt_qplib_dpi_tbl *dpit,
struct bnxt_qplib_dpi *dpi,
void *app)
{
u32 bit_num;
bit_num = find_first_bit(dpit->tbl, dpit->max);
if (bit_num == dpit->max)
return -ENOMEM;
/* Found unused DPI */
clear_bit(bit_num, dpit->tbl);
dpit->app_tbl[bit_num] = app;
dpi->dpi = bit_num;
dpi->dbr = dpit->dbr_bar_reg_iomem + (bit_num * PAGE_SIZE);
dpi->umdbr = dpit->unmapped_dbr + (bit_num * PAGE_SIZE);
return 0;
}
int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res,
struct bnxt_qplib_dpi_tbl *dpit,
struct bnxt_qplib_dpi *dpi)
{
if (dpi->dpi >= dpit->max) {
dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d\n", dpi->dpi);
return -EINVAL;
}
if (test_and_set_bit(dpi->dpi, dpit->tbl)) {
dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d\n",
dpi->dpi);
return -EINVAL;
}
if (dpit->app_tbl)
dpit->app_tbl[dpi->dpi] = NULL;
memset(dpi, 0, sizeof(*dpi));
return 0;
}
static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_dpi_tbl *dpit)
{
kfree(dpit->tbl);
kfree(dpit->app_tbl);
if (dpit->dbr_bar_reg_iomem)
pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
memset(dpit, 0, sizeof(*dpit));
}
static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_dpi_tbl *dpit,
u32 dbr_offset)
{
u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION;
resource_size_t bar_reg_base;
u32 dbr_len, bytes;
if (dpit->dbr_bar_reg_iomem) {
dev_err(&res->pdev->dev, "DBR BAR region %d already mapped\n",
dbr_bar_reg);
return -EALREADY;
}
bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg);
if (!bar_reg_base) {
dev_err(&res->pdev->dev, "BAR region %d resc start failed\n",
dbr_bar_reg);
return -ENOMEM;
}
dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset;
if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) {
dev_err(&res->pdev->dev, "Invalid DBR length %d\n", dbr_len);
return -ENOMEM;
}
dpit->dbr_bar_reg_iomem = ioremap(bar_reg_base + dbr_offset,
dbr_len);
if (!dpit->dbr_bar_reg_iomem) {
dev_err(&res->pdev->dev,
"FP: DBR BAR region %d mapping failed\n", dbr_bar_reg);
return -ENOMEM;
}
dpit->unmapped_dbr = bar_reg_base + dbr_offset;
dpit->max = dbr_len / PAGE_SIZE;
dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL);
if (!dpit->app_tbl)
goto unmap_io;
bytes = dpit->max >> 3;
if (!bytes)
bytes = 1;
dpit->tbl = kmalloc(bytes, GFP_KERNEL);
if (!dpit->tbl) {
kfree(dpit->app_tbl);
dpit->app_tbl = NULL;
goto unmap_io;
}
memset((u8 *)dpit->tbl, 0xFF, bytes);
return 0;
unmap_io:
pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
return -ENOMEM;
}
/* PKEYs */
static void bnxt_qplib_cleanup_pkey_tbl(struct bnxt_qplib_pkey_tbl *pkey_tbl)
{
memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
pkey_tbl->active = 0;
}
static void bnxt_qplib_init_pkey_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_pkey_tbl *pkey_tbl)
{
u16 pkey = 0xFFFF;
memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
/* pkey default = 0xFFFF */
bnxt_qplib_add_pkey(res, pkey_tbl, &pkey, false);
}
/* Stats */
static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
struct bnxt_qplib_stats *stats)
{
if (stats->dma) {
dma_free_coherent(&pdev->dev, stats->size,
stats->dma, stats->dma_map);
}
memset(stats, 0, sizeof(*stats));
stats->fw_id = -1;
}
static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
struct bnxt_qplib_stats *stats)
{
memset(stats, 0, sizeof(*stats));
stats->fw_id = -1;
/* 128 byte aligned context memory is required only for 57500.
* However making this unconditional, it does not harm previous
* generation.
*/
stats->size = ALIGN(sizeof(struct ctx_hw_stats), 128);
stats->dma = dma_alloc_coherent(&pdev->dev, stats->size,
&stats->dma_map, GFP_KERNEL);
if (!stats->dma) {
dev_err(&pdev->dev, "Stats DMA allocation failed\n");
return -ENOMEM;
}
return 0;
}
void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res)
{
bnxt_qplib_cleanup_pkey_tbl(&res->pkey_tbl);
bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl);
}
int bnxt_qplib_init_res(struct bnxt_qplib_res *res)
{
bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev);
bnxt_qplib_init_pkey_tbl(res, &res->pkey_tbl);
return 0;
}
void bnxt_qplib_free_res(struct bnxt_qplib_res *res)
{
bnxt_qplib_free_pkey_tbl(res, &res->pkey_tbl);
bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl);
bnxt_qplib_free_pd_tbl(&res->pd_tbl);
bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl);
}
int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev,
struct net_device *netdev,
struct bnxt_qplib_dev_attr *dev_attr)
{
int rc = 0;
res->pdev = pdev;
res->netdev = netdev;
rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid);
if (rc)
goto fail;
rc = bnxt_qplib_alloc_pkey_tbl(res, &res->pkey_tbl, dev_attr->max_pkey);
if (rc)
goto fail;
rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd);
if (rc)
goto fail;
rc = bnxt_qplib_alloc_dpi_tbl(res, &res->dpi_tbl, dev_attr->l2_db_size);
if (rc)
goto fail;
return 0;
fail:
bnxt_qplib_free_res(res);
return rc;
}