forked from Minki/linux
86b9f2eca5
The bytes_used field in root item was originally planned to trace the amount of used data and tree blocks. But it never worked right since we can't trace freeing of data accurately. This patch changes it to only trace the amount of tree blocks. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
7683 lines
201 KiB
C
7683 lines
201 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/kthread.h>
|
|
#include "compat.h"
|
|
#include "hash.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "print-tree.h"
|
|
#include "transaction.h"
|
|
#include "volumes.h"
|
|
#include "locking.h"
|
|
#include "free-space-cache.h"
|
|
|
|
static int update_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, int alloc,
|
|
int mark_free);
|
|
static int update_reserved_extents(struct btrfs_block_group_cache *cache,
|
|
u64 num_bytes, int reserve);
|
|
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner_objectid,
|
|
u64 owner_offset, int refs_to_drop,
|
|
struct btrfs_delayed_extent_op *extra_op);
|
|
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_extent_item *ei);
|
|
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 parent, u64 root_objectid,
|
|
u64 flags, u64 owner, u64 offset,
|
|
struct btrfs_key *ins, int ref_mod);
|
|
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 parent, u64 root_objectid,
|
|
u64 flags, struct btrfs_disk_key *key,
|
|
int level, struct btrfs_key *ins);
|
|
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root, u64 alloc_bytes,
|
|
u64 flags, int force);
|
|
static int pin_down_bytes(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 num_bytes,
|
|
int is_data, int reserved,
|
|
struct extent_buffer **must_clean);
|
|
static int find_next_key(struct btrfs_path *path, int level,
|
|
struct btrfs_key *key);
|
|
static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
|
|
int dump_block_groups);
|
|
|
|
static noinline int
|
|
block_group_cache_done(struct btrfs_block_group_cache *cache)
|
|
{
|
|
smp_mb();
|
|
return cache->cached == BTRFS_CACHE_FINISHED;
|
|
}
|
|
|
|
static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
|
|
{
|
|
return (cache->flags & bits) == bits;
|
|
}
|
|
|
|
/*
|
|
* this adds the block group to the fs_info rb tree for the block group
|
|
* cache
|
|
*/
|
|
static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
|
|
struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
p = &info->block_group_cache_tree.rb_node;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
cache = rb_entry(parent, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
if (block_group->key.objectid < cache->key.objectid) {
|
|
p = &(*p)->rb_left;
|
|
} else if (block_group->key.objectid > cache->key.objectid) {
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
|
|
rb_link_node(&block_group->cache_node, parent, p);
|
|
rb_insert_color(&block_group->cache_node,
|
|
&info->block_group_cache_tree);
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This will return the block group at or after bytenr if contains is 0, else
|
|
* it will return the block group that contains the bytenr
|
|
*/
|
|
static struct btrfs_block_group_cache *
|
|
block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
|
|
int contains)
|
|
{
|
|
struct btrfs_block_group_cache *cache, *ret = NULL;
|
|
struct rb_node *n;
|
|
u64 end, start;
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
n = info->block_group_cache_tree.rb_node;
|
|
|
|
while (n) {
|
|
cache = rb_entry(n, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
end = cache->key.objectid + cache->key.offset - 1;
|
|
start = cache->key.objectid;
|
|
|
|
if (bytenr < start) {
|
|
if (!contains && (!ret || start < ret->key.objectid))
|
|
ret = cache;
|
|
n = n->rb_left;
|
|
} else if (bytenr > start) {
|
|
if (contains && bytenr <= end) {
|
|
ret = cache;
|
|
break;
|
|
}
|
|
n = n->rb_right;
|
|
} else {
|
|
ret = cache;
|
|
break;
|
|
}
|
|
}
|
|
if (ret)
|
|
atomic_inc(&ret->count);
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int add_excluded_extent(struct btrfs_root *root,
|
|
u64 start, u64 num_bytes)
|
|
{
|
|
u64 end = start + num_bytes - 1;
|
|
set_extent_bits(&root->fs_info->freed_extents[0],
|
|
start, end, EXTENT_UPTODATE, GFP_NOFS);
|
|
set_extent_bits(&root->fs_info->freed_extents[1],
|
|
start, end, EXTENT_UPTODATE, GFP_NOFS);
|
|
return 0;
|
|
}
|
|
|
|
static void free_excluded_extents(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
u64 start, end;
|
|
|
|
start = cache->key.objectid;
|
|
end = start + cache->key.offset - 1;
|
|
|
|
clear_extent_bits(&root->fs_info->freed_extents[0],
|
|
start, end, EXTENT_UPTODATE, GFP_NOFS);
|
|
clear_extent_bits(&root->fs_info->freed_extents[1],
|
|
start, end, EXTENT_UPTODATE, GFP_NOFS);
|
|
}
|
|
|
|
static int exclude_super_stripes(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
u64 bytenr;
|
|
u64 *logical;
|
|
int stripe_len;
|
|
int i, nr, ret;
|
|
|
|
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
|
|
cache->key.objectid, bytenr,
|
|
0, &logical, &nr, &stripe_len);
|
|
BUG_ON(ret);
|
|
|
|
while (nr--) {
|
|
cache->bytes_super += stripe_len;
|
|
ret = add_excluded_extent(root, logical[nr],
|
|
stripe_len);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
kfree(logical);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_caching_control *
|
|
get_caching_control(struct btrfs_block_group_cache *cache)
|
|
{
|
|
struct btrfs_caching_control *ctl;
|
|
|
|
spin_lock(&cache->lock);
|
|
if (cache->cached != BTRFS_CACHE_STARTED) {
|
|
spin_unlock(&cache->lock);
|
|
return NULL;
|
|
}
|
|
|
|
ctl = cache->caching_ctl;
|
|
atomic_inc(&ctl->count);
|
|
spin_unlock(&cache->lock);
|
|
return ctl;
|
|
}
|
|
|
|
static void put_caching_control(struct btrfs_caching_control *ctl)
|
|
{
|
|
if (atomic_dec_and_test(&ctl->count))
|
|
kfree(ctl);
|
|
}
|
|
|
|
/*
|
|
* this is only called by cache_block_group, since we could have freed extents
|
|
* we need to check the pinned_extents for any extents that can't be used yet
|
|
* since their free space will be released as soon as the transaction commits.
|
|
*/
|
|
static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_fs_info *info, u64 start, u64 end)
|
|
{
|
|
u64 extent_start, extent_end, size, total_added = 0;
|
|
int ret;
|
|
|
|
while (start < end) {
|
|
ret = find_first_extent_bit(info->pinned_extents, start,
|
|
&extent_start, &extent_end,
|
|
EXTENT_DIRTY | EXTENT_UPTODATE);
|
|
if (ret)
|
|
break;
|
|
|
|
if (extent_start == start) {
|
|
start = extent_end + 1;
|
|
} else if (extent_start > start && extent_start < end) {
|
|
size = extent_start - start;
|
|
total_added += size;
|
|
ret = btrfs_add_free_space(block_group, start,
|
|
size);
|
|
BUG_ON(ret);
|
|
start = extent_end + 1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (start < end) {
|
|
size = end - start;
|
|
total_added += size;
|
|
ret = btrfs_add_free_space(block_group, start, size);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
return total_added;
|
|
}
|
|
|
|
static int caching_kthread(void *data)
|
|
{
|
|
struct btrfs_block_group_cache *block_group = data;
|
|
struct btrfs_fs_info *fs_info = block_group->fs_info;
|
|
struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
|
|
struct btrfs_root *extent_root = fs_info->extent_root;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
u64 total_found = 0;
|
|
u64 last = 0;
|
|
u32 nritems;
|
|
int ret = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
exclude_super_stripes(extent_root, block_group);
|
|
spin_lock(&block_group->space_info->lock);
|
|
block_group->space_info->bytes_super += block_group->bytes_super;
|
|
spin_unlock(&block_group->space_info->lock);
|
|
|
|
last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
|
|
|
|
/*
|
|
* We don't want to deadlock with somebody trying to allocate a new
|
|
* extent for the extent root while also trying to search the extent
|
|
* root to add free space. So we skip locking and search the commit
|
|
* root, since its read-only
|
|
*/
|
|
path->skip_locking = 1;
|
|
path->search_commit_root = 1;
|
|
path->reada = 2;
|
|
|
|
key.objectid = last;
|
|
key.offset = 0;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
again:
|
|
mutex_lock(&caching_ctl->mutex);
|
|
/* need to make sure the commit_root doesn't disappear */
|
|
down_read(&fs_info->extent_commit_sem);
|
|
|
|
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
|
|
while (1) {
|
|
smp_mb();
|
|
if (fs_info->closing > 1) {
|
|
last = (u64)-1;
|
|
break;
|
|
}
|
|
|
|
if (path->slots[0] < nritems) {
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
} else {
|
|
ret = find_next_key(path, 0, &key);
|
|
if (ret)
|
|
break;
|
|
|
|
caching_ctl->progress = last;
|
|
btrfs_release_path(extent_root, path);
|
|
up_read(&fs_info->extent_commit_sem);
|
|
mutex_unlock(&caching_ctl->mutex);
|
|
if (btrfs_transaction_in_commit(fs_info))
|
|
schedule_timeout(1);
|
|
else
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
|
|
if (key.objectid < block_group->key.objectid) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
if (key.objectid >= block_group->key.objectid +
|
|
block_group->key.offset)
|
|
break;
|
|
|
|
if (key.type == BTRFS_EXTENT_ITEM_KEY) {
|
|
total_found += add_new_free_space(block_group,
|
|
fs_info, last,
|
|
key.objectid);
|
|
last = key.objectid + key.offset;
|
|
|
|
if (total_found > (1024 * 1024 * 2)) {
|
|
total_found = 0;
|
|
wake_up(&caching_ctl->wait);
|
|
}
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
ret = 0;
|
|
|
|
total_found += add_new_free_space(block_group, fs_info, last,
|
|
block_group->key.objectid +
|
|
block_group->key.offset);
|
|
caching_ctl->progress = (u64)-1;
|
|
|
|
spin_lock(&block_group->lock);
|
|
block_group->caching_ctl = NULL;
|
|
block_group->cached = BTRFS_CACHE_FINISHED;
|
|
spin_unlock(&block_group->lock);
|
|
|
|
err:
|
|
btrfs_free_path(path);
|
|
up_read(&fs_info->extent_commit_sem);
|
|
|
|
free_excluded_extents(extent_root, block_group);
|
|
|
|
mutex_unlock(&caching_ctl->mutex);
|
|
wake_up(&caching_ctl->wait);
|
|
|
|
put_caching_control(caching_ctl);
|
|
atomic_dec(&block_group->space_info->caching_threads);
|
|
return 0;
|
|
}
|
|
|
|
static int cache_block_group(struct btrfs_block_group_cache *cache)
|
|
{
|
|
struct btrfs_fs_info *fs_info = cache->fs_info;
|
|
struct btrfs_caching_control *caching_ctl;
|
|
struct task_struct *tsk;
|
|
int ret = 0;
|
|
|
|
smp_mb();
|
|
if (cache->cached != BTRFS_CACHE_NO)
|
|
return 0;
|
|
|
|
caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
|
|
BUG_ON(!caching_ctl);
|
|
|
|
INIT_LIST_HEAD(&caching_ctl->list);
|
|
mutex_init(&caching_ctl->mutex);
|
|
init_waitqueue_head(&caching_ctl->wait);
|
|
caching_ctl->block_group = cache;
|
|
caching_ctl->progress = cache->key.objectid;
|
|
/* one for caching kthread, one for caching block group list */
|
|
atomic_set(&caching_ctl->count, 2);
|
|
|
|
spin_lock(&cache->lock);
|
|
if (cache->cached != BTRFS_CACHE_NO) {
|
|
spin_unlock(&cache->lock);
|
|
kfree(caching_ctl);
|
|
return 0;
|
|
}
|
|
cache->caching_ctl = caching_ctl;
|
|
cache->cached = BTRFS_CACHE_STARTED;
|
|
spin_unlock(&cache->lock);
|
|
|
|
down_write(&fs_info->extent_commit_sem);
|
|
list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
|
|
up_write(&fs_info->extent_commit_sem);
|
|
|
|
atomic_inc(&cache->space_info->caching_threads);
|
|
|
|
tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
|
|
cache->key.objectid);
|
|
if (IS_ERR(tsk)) {
|
|
ret = PTR_ERR(tsk);
|
|
printk(KERN_ERR "error running thread %d\n", ret);
|
|
BUG();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return the block group that starts at or after bytenr
|
|
*/
|
|
static struct btrfs_block_group_cache *
|
|
btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
cache = block_group_cache_tree_search(info, bytenr, 0);
|
|
|
|
return cache;
|
|
}
|
|
|
|
/*
|
|
* return the block group that contains the given bytenr
|
|
*/
|
|
struct btrfs_block_group_cache *btrfs_lookup_block_group(
|
|
struct btrfs_fs_info *info,
|
|
u64 bytenr)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
cache = block_group_cache_tree_search(info, bytenr, 1);
|
|
|
|
return cache;
|
|
}
|
|
|
|
void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
|
|
{
|
|
if (atomic_dec_and_test(&cache->count))
|
|
kfree(cache);
|
|
}
|
|
|
|
static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
|
|
u64 flags)
|
|
{
|
|
struct list_head *head = &info->space_info;
|
|
struct btrfs_space_info *found;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(found, head, list) {
|
|
if (found->flags == flags) {
|
|
rcu_read_unlock();
|
|
return found;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* after adding space to the filesystem, we need to clear the full flags
|
|
* on all the space infos.
|
|
*/
|
|
void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
|
|
{
|
|
struct list_head *head = &info->space_info;
|
|
struct btrfs_space_info *found;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(found, head, list)
|
|
found->full = 0;
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static u64 div_factor(u64 num, int factor)
|
|
{
|
|
if (factor == 10)
|
|
return num;
|
|
num *= factor;
|
|
do_div(num, 10);
|
|
return num;
|
|
}
|
|
|
|
u64 btrfs_find_block_group(struct btrfs_root *root,
|
|
u64 search_start, u64 search_hint, int owner)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
u64 used;
|
|
u64 last = max(search_hint, search_start);
|
|
u64 group_start = 0;
|
|
int full_search = 0;
|
|
int factor = 9;
|
|
int wrapped = 0;
|
|
again:
|
|
while (1) {
|
|
cache = btrfs_lookup_first_block_group(root->fs_info, last);
|
|
if (!cache)
|
|
break;
|
|
|
|
spin_lock(&cache->lock);
|
|
last = cache->key.objectid + cache->key.offset;
|
|
used = btrfs_block_group_used(&cache->item);
|
|
|
|
if ((full_search || !cache->ro) &&
|
|
block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
|
|
if (used + cache->pinned + cache->reserved <
|
|
div_factor(cache->key.offset, factor)) {
|
|
group_start = cache->key.objectid;
|
|
spin_unlock(&cache->lock);
|
|
btrfs_put_block_group(cache);
|
|
goto found;
|
|
}
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
btrfs_put_block_group(cache);
|
|
cond_resched();
|
|
}
|
|
if (!wrapped) {
|
|
last = search_start;
|
|
wrapped = 1;
|
|
goto again;
|
|
}
|
|
if (!full_search && factor < 10) {
|
|
last = search_start;
|
|
full_search = 1;
|
|
factor = 10;
|
|
goto again;
|
|
}
|
|
found:
|
|
return group_start;
|
|
}
|
|
|
|
/* simple helper to search for an existing extent at a given offset */
|
|
int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
key.objectid = start;
|
|
key.offset = len;
|
|
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
|
|
ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
|
|
0, 0);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Back reference rules. Back refs have three main goals:
|
|
*
|
|
* 1) differentiate between all holders of references to an extent so that
|
|
* when a reference is dropped we can make sure it was a valid reference
|
|
* before freeing the extent.
|
|
*
|
|
* 2) Provide enough information to quickly find the holders of an extent
|
|
* if we notice a given block is corrupted or bad.
|
|
*
|
|
* 3) Make it easy to migrate blocks for FS shrinking or storage pool
|
|
* maintenance. This is actually the same as #2, but with a slightly
|
|
* different use case.
|
|
*
|
|
* There are two kinds of back refs. The implicit back refs is optimized
|
|
* for pointers in non-shared tree blocks. For a given pointer in a block,
|
|
* back refs of this kind provide information about the block's owner tree
|
|
* and the pointer's key. These information allow us to find the block by
|
|
* b-tree searching. The full back refs is for pointers in tree blocks not
|
|
* referenced by their owner trees. The location of tree block is recorded
|
|
* in the back refs. Actually the full back refs is generic, and can be
|
|
* used in all cases the implicit back refs is used. The major shortcoming
|
|
* of the full back refs is its overhead. Every time a tree block gets
|
|
* COWed, we have to update back refs entry for all pointers in it.
|
|
*
|
|
* For a newly allocated tree block, we use implicit back refs for
|
|
* pointers in it. This means most tree related operations only involve
|
|
* implicit back refs. For a tree block created in old transaction, the
|
|
* only way to drop a reference to it is COW it. So we can detect the
|
|
* event that tree block loses its owner tree's reference and do the
|
|
* back refs conversion.
|
|
*
|
|
* When a tree block is COW'd through a tree, there are four cases:
|
|
*
|
|
* The reference count of the block is one and the tree is the block's
|
|
* owner tree. Nothing to do in this case.
|
|
*
|
|
* The reference count of the block is one and the tree is not the
|
|
* block's owner tree. In this case, full back refs is used for pointers
|
|
* in the block. Remove these full back refs, add implicit back refs for
|
|
* every pointers in the new block.
|
|
*
|
|
* The reference count of the block is greater than one and the tree is
|
|
* the block's owner tree. In this case, implicit back refs is used for
|
|
* pointers in the block. Add full back refs for every pointers in the
|
|
* block, increase lower level extents' reference counts. The original
|
|
* implicit back refs are entailed to the new block.
|
|
*
|
|
* The reference count of the block is greater than one and the tree is
|
|
* not the block's owner tree. Add implicit back refs for every pointer in
|
|
* the new block, increase lower level extents' reference count.
|
|
*
|
|
* Back Reference Key composing:
|
|
*
|
|
* The key objectid corresponds to the first byte in the extent,
|
|
* The key type is used to differentiate between types of back refs.
|
|
* There are different meanings of the key offset for different types
|
|
* of back refs.
|
|
*
|
|
* File extents can be referenced by:
|
|
*
|
|
* - multiple snapshots, subvolumes, or different generations in one subvol
|
|
* - different files inside a single subvolume
|
|
* - different offsets inside a file (bookend extents in file.c)
|
|
*
|
|
* The extent ref structure for the implicit back refs has fields for:
|
|
*
|
|
* - Objectid of the subvolume root
|
|
* - objectid of the file holding the reference
|
|
* - original offset in the file
|
|
* - how many bookend extents
|
|
*
|
|
* The key offset for the implicit back refs is hash of the first
|
|
* three fields.
|
|
*
|
|
* The extent ref structure for the full back refs has field for:
|
|
*
|
|
* - number of pointers in the tree leaf
|
|
*
|
|
* The key offset for the implicit back refs is the first byte of
|
|
* the tree leaf
|
|
*
|
|
* When a file extent is allocated, The implicit back refs is used.
|
|
* the fields are filled in:
|
|
*
|
|
* (root_key.objectid, inode objectid, offset in file, 1)
|
|
*
|
|
* When a file extent is removed file truncation, we find the
|
|
* corresponding implicit back refs and check the following fields:
|
|
*
|
|
* (btrfs_header_owner(leaf), inode objectid, offset in file)
|
|
*
|
|
* Btree extents can be referenced by:
|
|
*
|
|
* - Different subvolumes
|
|
*
|
|
* Both the implicit back refs and the full back refs for tree blocks
|
|
* only consist of key. The key offset for the implicit back refs is
|
|
* objectid of block's owner tree. The key offset for the full back refs
|
|
* is the first byte of parent block.
|
|
*
|
|
* When implicit back refs is used, information about the lowest key and
|
|
* level of the tree block are required. These information are stored in
|
|
* tree block info structure.
|
|
*/
|
|
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 owner, u32 extra_size)
|
|
{
|
|
struct btrfs_extent_item *item;
|
|
struct btrfs_extent_item_v0 *ei0;
|
|
struct btrfs_extent_ref_v0 *ref0;
|
|
struct btrfs_tree_block_info *bi;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
u32 new_size = sizeof(*item);
|
|
u64 refs;
|
|
int ret;
|
|
|
|
leaf = path->nodes[0];
|
|
BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
ei0 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item_v0);
|
|
refs = btrfs_extent_refs_v0(leaf, ei0);
|
|
|
|
if (owner == (u64)-1) {
|
|
while (1) {
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
return ret;
|
|
BUG_ON(ret > 0);
|
|
leaf = path->nodes[0];
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key,
|
|
path->slots[0]);
|
|
BUG_ON(key.objectid != found_key.objectid);
|
|
if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
ref0 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref_v0);
|
|
owner = btrfs_ref_objectid_v0(leaf, ref0);
|
|
break;
|
|
}
|
|
}
|
|
btrfs_release_path(root, path);
|
|
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID)
|
|
new_size += sizeof(*bi);
|
|
|
|
new_size -= sizeof(*ei0);
|
|
ret = btrfs_search_slot(trans, root, &key, path,
|
|
new_size + extra_size, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_extend_item(trans, root, path, new_size);
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
btrfs_set_extent_refs(leaf, item, refs);
|
|
/* FIXME: get real generation */
|
|
btrfs_set_extent_generation(leaf, item, 0);
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
btrfs_set_extent_flags(leaf, item,
|
|
BTRFS_EXTENT_FLAG_TREE_BLOCK |
|
|
BTRFS_BLOCK_FLAG_FULL_BACKREF);
|
|
bi = (struct btrfs_tree_block_info *)(item + 1);
|
|
/* FIXME: get first key of the block */
|
|
memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
|
|
btrfs_set_tree_block_level(leaf, bi, (int)owner);
|
|
} else {
|
|
btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
u32 high_crc = ~(u32)0;
|
|
u32 low_crc = ~(u32)0;
|
|
__le64 lenum;
|
|
|
|
lenum = cpu_to_le64(root_objectid);
|
|
high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
|
|
lenum = cpu_to_le64(owner);
|
|
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
|
|
lenum = cpu_to_le64(offset);
|
|
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
|
|
|
|
return ((u64)high_crc << 31) ^ (u64)low_crc;
|
|
}
|
|
|
|
static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
|
|
struct btrfs_extent_data_ref *ref)
|
|
{
|
|
return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
|
|
btrfs_extent_data_ref_objectid(leaf, ref),
|
|
btrfs_extent_data_ref_offset(leaf, ref));
|
|
}
|
|
|
|
static int match_extent_data_ref(struct extent_buffer *leaf,
|
|
struct btrfs_extent_data_ref *ref,
|
|
u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
|
|
btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
|
|
btrfs_extent_data_ref_offset(leaf, ref) != offset)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid,
|
|
u64 owner, u64 offset)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_extent_data_ref *ref;
|
|
struct extent_buffer *leaf;
|
|
u32 nritems;
|
|
int ret;
|
|
int recow;
|
|
int err = -ENOENT;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_DATA_REF_KEY;
|
|
key.offset = parent;
|
|
} else {
|
|
key.type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
key.offset = hash_extent_data_ref(root_objectid,
|
|
owner, offset);
|
|
}
|
|
again:
|
|
recow = 0;
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto fail;
|
|
}
|
|
|
|
if (parent) {
|
|
if (!ret)
|
|
return 0;
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
key.type = BTRFS_EXTENT_REF_V0_KEY;
|
|
btrfs_release_path(root, path);
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto fail;
|
|
}
|
|
if (!ret)
|
|
return 0;
|
|
#endif
|
|
goto fail;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
while (1) {
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
err = ret;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
recow = 1;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid != bytenr ||
|
|
key.type != BTRFS_EXTENT_DATA_REF_KEY)
|
|
goto fail;
|
|
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
|
|
if (match_extent_data_ref(leaf, ref, root_objectid,
|
|
owner, offset)) {
|
|
if (recow) {
|
|
btrfs_release_path(root, path);
|
|
goto again;
|
|
}
|
|
err = 0;
|
|
break;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
fail:
|
|
return err;
|
|
}
|
|
|
|
static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid, u64 owner,
|
|
u64 offset, int refs_to_add)
|
|
{
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
u32 size;
|
|
u32 num_refs;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_DATA_REF_KEY;
|
|
key.offset = parent;
|
|
size = sizeof(struct btrfs_shared_data_ref);
|
|
} else {
|
|
key.type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
key.offset = hash_extent_data_ref(root_objectid,
|
|
owner, offset);
|
|
size = sizeof(struct btrfs_extent_data_ref);
|
|
}
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key, size);
|
|
if (ret && ret != -EEXIST)
|
|
goto fail;
|
|
|
|
leaf = path->nodes[0];
|
|
if (parent) {
|
|
struct btrfs_shared_data_ref *ref;
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_shared_data_ref);
|
|
if (ret == 0) {
|
|
btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
|
|
} else {
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref);
|
|
num_refs += refs_to_add;
|
|
btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
|
|
}
|
|
} else {
|
|
struct btrfs_extent_data_ref *ref;
|
|
while (ret == -EEXIST) {
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
if (match_extent_data_ref(leaf, ref, root_objectid,
|
|
owner, offset))
|
|
break;
|
|
btrfs_release_path(root, path);
|
|
key.offset++;
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
size);
|
|
if (ret && ret != -EEXIST)
|
|
goto fail;
|
|
|
|
leaf = path->nodes[0];
|
|
}
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
if (ret == 0) {
|
|
btrfs_set_extent_data_ref_root(leaf, ref,
|
|
root_objectid);
|
|
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
|
|
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
|
|
btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
|
|
} else {
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref);
|
|
num_refs += refs_to_add;
|
|
btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
|
|
}
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
ret = 0;
|
|
fail:
|
|
btrfs_release_path(root, path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
int refs_to_drop)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_extent_data_ref *ref1 = NULL;
|
|
struct btrfs_shared_data_ref *ref2 = NULL;
|
|
struct extent_buffer *leaf;
|
|
u32 num_refs = 0;
|
|
int ret = 0;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
ref1 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
|
|
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
ref2 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_shared_data_ref);
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
|
|
struct btrfs_extent_ref_v0 *ref0;
|
|
ref0 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref_v0);
|
|
num_refs = btrfs_ref_count_v0(leaf, ref0);
|
|
#endif
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
BUG_ON(num_refs < refs_to_drop);
|
|
num_refs -= refs_to_drop;
|
|
|
|
if (num_refs == 0) {
|
|
ret = btrfs_del_item(trans, root, path);
|
|
} else {
|
|
if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
|
|
btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
|
|
else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
|
|
btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
else {
|
|
struct btrfs_extent_ref_v0 *ref0;
|
|
ref0 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref_v0);
|
|
btrfs_set_ref_count_v0(leaf, ref0, num_refs);
|
|
}
|
|
#endif
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static noinline u32 extent_data_ref_count(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref)
|
|
{
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_data_ref *ref1;
|
|
struct btrfs_shared_data_ref *ref2;
|
|
u32 num_refs = 0;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (iref) {
|
|
if (btrfs_extent_inline_ref_type(leaf, iref) ==
|
|
BTRFS_EXTENT_DATA_REF_KEY) {
|
|
ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
|
|
} else {
|
|
ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
|
|
}
|
|
} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
ref1 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
|
|
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
ref2 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_shared_data_ref);
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
|
|
struct btrfs_extent_ref_v0 *ref0;
|
|
ref0 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref_v0);
|
|
num_refs = btrfs_ref_count_v0(leaf, ref0);
|
|
#endif
|
|
} else {
|
|
WARN_ON(1);
|
|
}
|
|
return num_refs;
|
|
}
|
|
|
|
static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid)
|
|
{
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
|
|
key.offset = parent;
|
|
} else {
|
|
key.type = BTRFS_TREE_BLOCK_REF_KEY;
|
|
key.offset = root_objectid;
|
|
}
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
if (ret == -ENOENT && parent) {
|
|
btrfs_release_path(root, path);
|
|
key.type = BTRFS_EXTENT_REF_V0_KEY;
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid)
|
|
{
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
|
|
key.offset = parent;
|
|
} else {
|
|
key.type = BTRFS_TREE_BLOCK_REF_KEY;
|
|
key.offset = root_objectid;
|
|
}
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
|
|
btrfs_release_path(root, path);
|
|
return ret;
|
|
}
|
|
|
|
static inline int extent_ref_type(u64 parent, u64 owner)
|
|
{
|
|
int type;
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
if (parent > 0)
|
|
type = BTRFS_SHARED_BLOCK_REF_KEY;
|
|
else
|
|
type = BTRFS_TREE_BLOCK_REF_KEY;
|
|
} else {
|
|
if (parent > 0)
|
|
type = BTRFS_SHARED_DATA_REF_KEY;
|
|
else
|
|
type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
static int find_next_key(struct btrfs_path *path, int level,
|
|
struct btrfs_key *key)
|
|
|
|
{
|
|
for (; level < BTRFS_MAX_LEVEL; level++) {
|
|
if (!path->nodes[level])
|
|
break;
|
|
if (path->slots[level] + 1 >=
|
|
btrfs_header_nritems(path->nodes[level]))
|
|
continue;
|
|
if (level == 0)
|
|
btrfs_item_key_to_cpu(path->nodes[level], key,
|
|
path->slots[level] + 1);
|
|
else
|
|
btrfs_node_key_to_cpu(path->nodes[level], key,
|
|
path->slots[level] + 1);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* look for inline back ref. if back ref is found, *ref_ret is set
|
|
* to the address of inline back ref, and 0 is returned.
|
|
*
|
|
* if back ref isn't found, *ref_ret is set to the address where it
|
|
* should be inserted, and -ENOENT is returned.
|
|
*
|
|
* if insert is true and there are too many inline back refs, the path
|
|
* points to the extent item, and -EAGAIN is returned.
|
|
*
|
|
* NOTE: inline back refs are ordered in the same way that back ref
|
|
* items in the tree are ordered.
|
|
*/
|
|
static noinline_for_stack
|
|
int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref **ref_ret,
|
|
u64 bytenr, u64 num_bytes,
|
|
u64 parent, u64 root_objectid,
|
|
u64 owner, u64 offset, int insert)
|
|
{
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
u64 flags;
|
|
u64 item_size;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
int extra_size;
|
|
int type;
|
|
int want;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
|
|
want = extent_ref_type(parent, owner);
|
|
if (insert) {
|
|
extra_size = btrfs_extent_inline_ref_size(want);
|
|
path->keep_locks = 1;
|
|
} else
|
|
extra_size = -1;
|
|
ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
if (item_size < sizeof(*ei)) {
|
|
if (!insert) {
|
|
err = -ENOENT;
|
|
goto out;
|
|
}
|
|
ret = convert_extent_item_v0(trans, root, path, owner,
|
|
extra_size);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
}
|
|
#endif
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(leaf, ei);
|
|
|
|
ptr = (unsigned long)(ei + 1);
|
|
end = (unsigned long)ei + item_size;
|
|
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
|
ptr += sizeof(struct btrfs_tree_block_info);
|
|
BUG_ON(ptr > end);
|
|
} else {
|
|
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
|
|
}
|
|
|
|
err = -ENOENT;
|
|
while (1) {
|
|
if (ptr >= end) {
|
|
WARN_ON(ptr > end);
|
|
break;
|
|
}
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
type = btrfs_extent_inline_ref_type(leaf, iref);
|
|
if (want < type)
|
|
break;
|
|
if (want > type) {
|
|
ptr += btrfs_extent_inline_ref_size(type);
|
|
continue;
|
|
}
|
|
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
struct btrfs_extent_data_ref *dref;
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
if (match_extent_data_ref(leaf, dref, root_objectid,
|
|
owner, offset)) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
if (hash_extent_data_ref_item(leaf, dref) <
|
|
hash_extent_data_ref(root_objectid, owner, offset))
|
|
break;
|
|
} else {
|
|
u64 ref_offset;
|
|
ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
|
|
if (parent > 0) {
|
|
if (parent == ref_offset) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
if (ref_offset < parent)
|
|
break;
|
|
} else {
|
|
if (root_objectid == ref_offset) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
if (ref_offset < root_objectid)
|
|
break;
|
|
}
|
|
}
|
|
ptr += btrfs_extent_inline_ref_size(type);
|
|
}
|
|
if (err == -ENOENT && insert) {
|
|
if (item_size + extra_size >=
|
|
BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
/*
|
|
* To add new inline back ref, we have to make sure
|
|
* there is no corresponding back ref item.
|
|
* For simplicity, we just do not add new inline back
|
|
* ref if there is any kind of item for this block
|
|
*/
|
|
if (find_next_key(path, 0, &key) == 0 &&
|
|
key.objectid == bytenr &&
|
|
key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
}
|
|
*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
|
|
out:
|
|
if (insert) {
|
|
path->keep_locks = 0;
|
|
btrfs_unlock_up_safe(path, 1);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* helper to add new inline back ref
|
|
*/
|
|
static noinline_for_stack
|
|
int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref,
|
|
u64 parent, u64 root_objectid,
|
|
u64 owner, u64 offset, int refs_to_add,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
unsigned long item_offset;
|
|
u64 refs;
|
|
int size;
|
|
int type;
|
|
int ret;
|
|
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
item_offset = (unsigned long)iref - (unsigned long)ei;
|
|
|
|
type = extent_ref_type(parent, owner);
|
|
size = btrfs_extent_inline_ref_size(type);
|
|
|
|
ret = btrfs_extend_item(trans, root, path, size);
|
|
BUG_ON(ret);
|
|
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
refs = btrfs_extent_refs(leaf, ei);
|
|
refs += refs_to_add;
|
|
btrfs_set_extent_refs(leaf, ei, refs);
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
|
|
ptr = (unsigned long)ei + item_offset;
|
|
end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
|
|
if (ptr < end - size)
|
|
memmove_extent_buffer(leaf, ptr + size, ptr,
|
|
end - size - ptr);
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
btrfs_set_extent_inline_ref_type(leaf, iref, type);
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
struct btrfs_extent_data_ref *dref;
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
|
|
btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
|
|
btrfs_set_extent_data_ref_offset(leaf, dref, offset);
|
|
btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
|
|
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
struct btrfs_shared_data_ref *sref;
|
|
sref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
|
|
} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
|
|
} else {
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
return 0;
|
|
}
|
|
|
|
static int lookup_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref **ref_ret,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
int ret;
|
|
|
|
ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
|
|
bytenr, num_bytes, parent,
|
|
root_objectid, owner, offset, 0);
|
|
if (ret != -ENOENT)
|
|
return ret;
|
|
|
|
btrfs_release_path(root, path);
|
|
*ref_ret = NULL;
|
|
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
|
|
root_objectid);
|
|
} else {
|
|
ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
|
|
root_objectid, owner, offset);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to update/remove inline back ref
|
|
*/
|
|
static noinline_for_stack
|
|
int update_inline_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref,
|
|
int refs_to_mod,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_extent_data_ref *dref = NULL;
|
|
struct btrfs_shared_data_ref *sref = NULL;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
u32 item_size;
|
|
int size;
|
|
int type;
|
|
int ret;
|
|
u64 refs;
|
|
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
refs = btrfs_extent_refs(leaf, ei);
|
|
WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
|
|
refs += refs_to_mod;
|
|
btrfs_set_extent_refs(leaf, ei, refs);
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
|
|
type = btrfs_extent_inline_ref_type(leaf, iref);
|
|
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
refs = btrfs_extent_data_ref_count(leaf, dref);
|
|
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
sref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
refs = btrfs_shared_data_ref_count(leaf, sref);
|
|
} else {
|
|
refs = 1;
|
|
BUG_ON(refs_to_mod != -1);
|
|
}
|
|
|
|
BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
|
|
refs += refs_to_mod;
|
|
|
|
if (refs > 0) {
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY)
|
|
btrfs_set_extent_data_ref_count(leaf, dref, refs);
|
|
else
|
|
btrfs_set_shared_data_ref_count(leaf, sref, refs);
|
|
} else {
|
|
size = btrfs_extent_inline_ref_size(type);
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
ptr = (unsigned long)iref;
|
|
end = (unsigned long)ei + item_size;
|
|
if (ptr + size < end)
|
|
memmove_extent_buffer(leaf, ptr, ptr + size,
|
|
end - ptr - size);
|
|
item_size -= size;
|
|
ret = btrfs_truncate_item(trans, root, path, item_size, 1);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
return 0;
|
|
}
|
|
|
|
static noinline_for_stack
|
|
int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner,
|
|
u64 offset, int refs_to_add,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_extent_inline_ref *iref;
|
|
int ret;
|
|
|
|
ret = lookup_inline_extent_backref(trans, root, path, &iref,
|
|
bytenr, num_bytes, parent,
|
|
root_objectid, owner, offset, 1);
|
|
if (ret == 0) {
|
|
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
|
|
ret = update_inline_extent_backref(trans, root, path, iref,
|
|
refs_to_add, extent_op);
|
|
} else if (ret == -ENOENT) {
|
|
ret = setup_inline_extent_backref(trans, root, path, iref,
|
|
parent, root_objectid,
|
|
owner, offset, refs_to_add,
|
|
extent_op);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int insert_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent, u64 root_objectid,
|
|
u64 owner, u64 offset, int refs_to_add)
|
|
{
|
|
int ret;
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
BUG_ON(refs_to_add != 1);
|
|
ret = insert_tree_block_ref(trans, root, path, bytenr,
|
|
parent, root_objectid);
|
|
} else {
|
|
ret = insert_extent_data_ref(trans, root, path, bytenr,
|
|
parent, root_objectid,
|
|
owner, offset, refs_to_add);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int remove_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref,
|
|
int refs_to_drop, int is_data)
|
|
{
|
|
int ret;
|
|
|
|
BUG_ON(!is_data && refs_to_drop != 1);
|
|
if (iref) {
|
|
ret = update_inline_extent_backref(trans, root, path, iref,
|
|
-refs_to_drop, NULL);
|
|
} else if (is_data) {
|
|
ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
|
|
} else {
|
|
ret = btrfs_del_item(trans, root, path);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_issue_discard(struct block_device *bdev,
|
|
u64 start, u64 len)
|
|
{
|
|
blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL,
|
|
DISCARD_FL_BARRIER);
|
|
}
|
|
|
|
static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
|
|
u64 num_bytes)
|
|
{
|
|
int ret;
|
|
u64 map_length = num_bytes;
|
|
struct btrfs_multi_bio *multi = NULL;
|
|
|
|
if (!btrfs_test_opt(root, DISCARD))
|
|
return 0;
|
|
|
|
/* Tell the block device(s) that the sectors can be discarded */
|
|
ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
|
|
bytenr, &map_length, &multi, 0);
|
|
if (!ret) {
|
|
struct btrfs_bio_stripe *stripe = multi->stripes;
|
|
int i;
|
|
|
|
if (map_length > num_bytes)
|
|
map_length = num_bytes;
|
|
|
|
for (i = 0; i < multi->num_stripes; i++, stripe++) {
|
|
btrfs_issue_discard(stripe->dev->bdev,
|
|
stripe->physical,
|
|
map_length);
|
|
}
|
|
kfree(multi);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
int ret;
|
|
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
|
|
root_objectid == BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
|
|
parent, root_objectid, (int)owner,
|
|
BTRFS_ADD_DELAYED_REF, NULL);
|
|
} else {
|
|
ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
|
|
parent, root_objectid, owner, offset,
|
|
BTRFS_ADD_DELAYED_REF, NULL);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes,
|
|
u64 parent, u64 root_objectid,
|
|
u64 owner, u64 offset, int refs_to_add,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *item;
|
|
u64 refs;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->reada = 1;
|
|
path->leave_spinning = 1;
|
|
/* this will setup the path even if it fails to insert the back ref */
|
|
ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
|
|
path, bytenr, num_bytes, parent,
|
|
root_objectid, owner, offset,
|
|
refs_to_add, extent_op);
|
|
if (ret == 0)
|
|
goto out;
|
|
|
|
if (ret != -EAGAIN) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
refs = btrfs_extent_refs(leaf, item);
|
|
btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, item);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(root->fs_info->extent_root, path);
|
|
|
|
path->reada = 1;
|
|
path->leave_spinning = 1;
|
|
|
|
/* now insert the actual backref */
|
|
ret = insert_extent_backref(trans, root->fs_info->extent_root,
|
|
path, bytenr, parent, root_objectid,
|
|
owner, offset, refs_to_add);
|
|
BUG_ON(ret);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return err;
|
|
}
|
|
|
|
static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op,
|
|
int insert_reserved)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_delayed_data_ref *ref;
|
|
struct btrfs_key ins;
|
|
u64 parent = 0;
|
|
u64 ref_root = 0;
|
|
u64 flags = 0;
|
|
|
|
ins.objectid = node->bytenr;
|
|
ins.offset = node->num_bytes;
|
|
ins.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
ref = btrfs_delayed_node_to_data_ref(node);
|
|
if (node->type == BTRFS_SHARED_DATA_REF_KEY)
|
|
parent = ref->parent;
|
|
else
|
|
ref_root = ref->root;
|
|
|
|
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
|
|
if (extent_op) {
|
|
BUG_ON(extent_op->update_key);
|
|
flags |= extent_op->flags_to_set;
|
|
}
|
|
ret = alloc_reserved_file_extent(trans, root,
|
|
parent, ref_root, flags,
|
|
ref->objectid, ref->offset,
|
|
&ins, node->ref_mod);
|
|
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
|
|
ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
|
|
node->num_bytes, parent,
|
|
ref_root, ref->objectid,
|
|
ref->offset, node->ref_mod,
|
|
extent_op);
|
|
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
|
|
ret = __btrfs_free_extent(trans, root, node->bytenr,
|
|
node->num_bytes, parent,
|
|
ref_root, ref->objectid,
|
|
ref->offset, node->ref_mod,
|
|
extent_op);
|
|
} else {
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_extent_item *ei)
|
|
{
|
|
u64 flags = btrfs_extent_flags(leaf, ei);
|
|
if (extent_op->update_flags) {
|
|
flags |= extent_op->flags_to_set;
|
|
btrfs_set_extent_flags(leaf, ei, flags);
|
|
}
|
|
|
|
if (extent_op->update_key) {
|
|
struct btrfs_tree_block_info *bi;
|
|
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
|
|
bi = (struct btrfs_tree_block_info *)(ei + 1);
|
|
btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
|
|
}
|
|
}
|
|
|
|
static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct btrfs_extent_item *ei;
|
|
struct extent_buffer *leaf;
|
|
u32 item_size;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = node->bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = node->num_bytes;
|
|
|
|
path->reada = 1;
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
|
|
path, 0, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
if (ret > 0) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
if (item_size < sizeof(*ei)) {
|
|
ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
|
|
path, (u64)-1, 0);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
}
|
|
#endif
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return err;
|
|
}
|
|
|
|
static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op,
|
|
int insert_reserved)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_delayed_tree_ref *ref;
|
|
struct btrfs_key ins;
|
|
u64 parent = 0;
|
|
u64 ref_root = 0;
|
|
|
|
ins.objectid = node->bytenr;
|
|
ins.offset = node->num_bytes;
|
|
ins.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
ref = btrfs_delayed_node_to_tree_ref(node);
|
|
if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
|
|
parent = ref->parent;
|
|
else
|
|
ref_root = ref->root;
|
|
|
|
BUG_ON(node->ref_mod != 1);
|
|
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
|
|
BUG_ON(!extent_op || !extent_op->update_flags ||
|
|
!extent_op->update_key);
|
|
ret = alloc_reserved_tree_block(trans, root,
|
|
parent, ref_root,
|
|
extent_op->flags_to_set,
|
|
&extent_op->key,
|
|
ref->level, &ins);
|
|
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
|
|
ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
|
|
node->num_bytes, parent, ref_root,
|
|
ref->level, 0, 1, extent_op);
|
|
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
|
|
ret = __btrfs_free_extent(trans, root, node->bytenr,
|
|
node->num_bytes, parent, ref_root,
|
|
ref->level, 0, 1, extent_op);
|
|
} else {
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* helper function to actually process a single delayed ref entry */
|
|
static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op,
|
|
int insert_reserved)
|
|
{
|
|
int ret;
|
|
if (btrfs_delayed_ref_is_head(node)) {
|
|
struct btrfs_delayed_ref_head *head;
|
|
/*
|
|
* we've hit the end of the chain and we were supposed
|
|
* to insert this extent into the tree. But, it got
|
|
* deleted before we ever needed to insert it, so all
|
|
* we have to do is clean up the accounting
|
|
*/
|
|
BUG_ON(extent_op);
|
|
head = btrfs_delayed_node_to_head(node);
|
|
if (insert_reserved) {
|
|
int mark_free = 0;
|
|
struct extent_buffer *must_clean = NULL;
|
|
|
|
ret = pin_down_bytes(trans, root, NULL,
|
|
node->bytenr, node->num_bytes,
|
|
head->is_data, 1, &must_clean);
|
|
if (ret > 0)
|
|
mark_free = 1;
|
|
|
|
if (must_clean) {
|
|
clean_tree_block(NULL, root, must_clean);
|
|
btrfs_tree_unlock(must_clean);
|
|
free_extent_buffer(must_clean);
|
|
}
|
|
if (head->is_data) {
|
|
ret = btrfs_del_csums(trans, root,
|
|
node->bytenr,
|
|
node->num_bytes);
|
|
BUG_ON(ret);
|
|
}
|
|
if (mark_free) {
|
|
ret = btrfs_free_reserved_extent(root,
|
|
node->bytenr,
|
|
node->num_bytes);
|
|
BUG_ON(ret);
|
|
}
|
|
}
|
|
mutex_unlock(&head->mutex);
|
|
return 0;
|
|
}
|
|
|
|
if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
node->type == BTRFS_SHARED_BLOCK_REF_KEY)
|
|
ret = run_delayed_tree_ref(trans, root, node, extent_op,
|
|
insert_reserved);
|
|
else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
|
|
node->type == BTRFS_SHARED_DATA_REF_KEY)
|
|
ret = run_delayed_data_ref(trans, root, node, extent_op,
|
|
insert_reserved);
|
|
else
|
|
BUG();
|
|
return ret;
|
|
}
|
|
|
|
static noinline struct btrfs_delayed_ref_node *
|
|
select_delayed_ref(struct btrfs_delayed_ref_head *head)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
int action = BTRFS_ADD_DELAYED_REF;
|
|
again:
|
|
/*
|
|
* select delayed ref of type BTRFS_ADD_DELAYED_REF first.
|
|
* this prevents ref count from going down to zero when
|
|
* there still are pending delayed ref.
|
|
*/
|
|
node = rb_prev(&head->node.rb_node);
|
|
while (1) {
|
|
if (!node)
|
|
break;
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node,
|
|
rb_node);
|
|
if (ref->bytenr != head->node.bytenr)
|
|
break;
|
|
if (ref->action == action)
|
|
return ref;
|
|
node = rb_prev(node);
|
|
}
|
|
if (action == BTRFS_ADD_DELAYED_REF) {
|
|
action = BTRFS_DROP_DELAYED_REF;
|
|
goto again;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct list_head *cluster)
|
|
{
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct btrfs_delayed_ref_head *locked_ref = NULL;
|
|
struct btrfs_delayed_extent_op *extent_op;
|
|
int ret;
|
|
int count = 0;
|
|
int must_insert_reserved = 0;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
while (1) {
|
|
if (!locked_ref) {
|
|
/* pick a new head ref from the cluster list */
|
|
if (list_empty(cluster))
|
|
break;
|
|
|
|
locked_ref = list_entry(cluster->next,
|
|
struct btrfs_delayed_ref_head, cluster);
|
|
|
|
/* grab the lock that says we are going to process
|
|
* all the refs for this head */
|
|
ret = btrfs_delayed_ref_lock(trans, locked_ref);
|
|
|
|
/*
|
|
* we may have dropped the spin lock to get the head
|
|
* mutex lock, and that might have given someone else
|
|
* time to free the head. If that's true, it has been
|
|
* removed from our list and we can move on.
|
|
*/
|
|
if (ret == -EAGAIN) {
|
|
locked_ref = NULL;
|
|
count++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* record the must insert reserved flag before we
|
|
* drop the spin lock.
|
|
*/
|
|
must_insert_reserved = locked_ref->must_insert_reserved;
|
|
locked_ref->must_insert_reserved = 0;
|
|
|
|
extent_op = locked_ref->extent_op;
|
|
locked_ref->extent_op = NULL;
|
|
|
|
/*
|
|
* locked_ref is the head node, so we have to go one
|
|
* node back for any delayed ref updates
|
|
*/
|
|
ref = select_delayed_ref(locked_ref);
|
|
if (!ref) {
|
|
/* All delayed refs have been processed, Go ahead
|
|
* and send the head node to run_one_delayed_ref,
|
|
* so that any accounting fixes can happen
|
|
*/
|
|
ref = &locked_ref->node;
|
|
|
|
if (extent_op && must_insert_reserved) {
|
|
kfree(extent_op);
|
|
extent_op = NULL;
|
|
}
|
|
|
|
if (extent_op) {
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
ret = run_delayed_extent_op(trans, root,
|
|
ref, extent_op);
|
|
BUG_ON(ret);
|
|
kfree(extent_op);
|
|
|
|
cond_resched();
|
|
spin_lock(&delayed_refs->lock);
|
|
continue;
|
|
}
|
|
|
|
list_del_init(&locked_ref->cluster);
|
|
locked_ref = NULL;
|
|
}
|
|
|
|
ref->in_tree = 0;
|
|
rb_erase(&ref->rb_node, &delayed_refs->root);
|
|
delayed_refs->num_entries--;
|
|
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
ret = run_one_delayed_ref(trans, root, ref, extent_op,
|
|
must_insert_reserved);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_put_delayed_ref(ref);
|
|
kfree(extent_op);
|
|
count++;
|
|
|
|
cond_resched();
|
|
spin_lock(&delayed_refs->lock);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* this starts processing the delayed reference count updates and
|
|
* extent insertions we have queued up so far. count can be
|
|
* 0, which means to process everything in the tree at the start
|
|
* of the run (but not newly added entries), or it can be some target
|
|
* number you'd like to process.
|
|
*/
|
|
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, unsigned long count)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct list_head cluster;
|
|
int ret;
|
|
int run_all = count == (unsigned long)-1;
|
|
int run_most = 0;
|
|
|
|
if (root == root->fs_info->extent_root)
|
|
root = root->fs_info->tree_root;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
INIT_LIST_HEAD(&cluster);
|
|
again:
|
|
spin_lock(&delayed_refs->lock);
|
|
if (count == 0) {
|
|
count = delayed_refs->num_entries * 2;
|
|
run_most = 1;
|
|
}
|
|
while (1) {
|
|
if (!(run_all || run_most) &&
|
|
delayed_refs->num_heads_ready < 64)
|
|
break;
|
|
|
|
/*
|
|
* go find something we can process in the rbtree. We start at
|
|
* the beginning of the tree, and then build a cluster
|
|
* of refs to process starting at the first one we are able to
|
|
* lock
|
|
*/
|
|
ret = btrfs_find_ref_cluster(trans, &cluster,
|
|
delayed_refs->run_delayed_start);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = run_clustered_refs(trans, root, &cluster);
|
|
BUG_ON(ret < 0);
|
|
|
|
count -= min_t(unsigned long, ret, count);
|
|
|
|
if (count == 0)
|
|
break;
|
|
}
|
|
|
|
if (run_all) {
|
|
node = rb_first(&delayed_refs->root);
|
|
if (!node)
|
|
goto out;
|
|
count = (unsigned long)-1;
|
|
|
|
while (node) {
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node,
|
|
rb_node);
|
|
if (btrfs_delayed_ref_is_head(ref)) {
|
|
struct btrfs_delayed_ref_head *head;
|
|
|
|
head = btrfs_delayed_node_to_head(ref);
|
|
atomic_inc(&ref->refs);
|
|
|
|
spin_unlock(&delayed_refs->lock);
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
|
|
btrfs_put_delayed_ref(ref);
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
node = rb_next(node);
|
|
}
|
|
spin_unlock(&delayed_refs->lock);
|
|
schedule_timeout(1);
|
|
goto again;
|
|
}
|
|
out:
|
|
spin_unlock(&delayed_refs->lock);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 flags,
|
|
int is_data)
|
|
{
|
|
struct btrfs_delayed_extent_op *extent_op;
|
|
int ret;
|
|
|
|
extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
|
|
if (!extent_op)
|
|
return -ENOMEM;
|
|
|
|
extent_op->flags_to_set = flags;
|
|
extent_op->update_flags = 1;
|
|
extent_op->update_key = 0;
|
|
extent_op->is_data = is_data ? 1 : 0;
|
|
|
|
ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
|
|
if (ret)
|
|
kfree(extent_op);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 objectid, u64 offset, u64 bytenr)
|
|
{
|
|
struct btrfs_delayed_ref_head *head;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct btrfs_delayed_data_ref *data_ref;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct rb_node *node;
|
|
int ret = 0;
|
|
|
|
ret = -ENOENT;
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(trans, bytenr);
|
|
if (!head)
|
|
goto out;
|
|
|
|
if (!mutex_trylock(&head->mutex)) {
|
|
atomic_inc(&head->node.refs);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
btrfs_release_path(root->fs_info->extent_root, path);
|
|
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref(&head->node);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
node = rb_prev(&head->node.rb_node);
|
|
if (!node)
|
|
goto out_unlock;
|
|
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
|
|
|
|
if (ref->bytenr != bytenr)
|
|
goto out_unlock;
|
|
|
|
ret = 1;
|
|
if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
|
|
goto out_unlock;
|
|
|
|
data_ref = btrfs_delayed_node_to_data_ref(ref);
|
|
|
|
node = rb_prev(node);
|
|
if (node) {
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
|
|
if (ref->bytenr == bytenr)
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (data_ref->root != root->root_key.objectid ||
|
|
data_ref->objectid != objectid || data_ref->offset != offset)
|
|
goto out_unlock;
|
|
|
|
ret = 0;
|
|
out_unlock:
|
|
mutex_unlock(&head->mutex);
|
|
out:
|
|
spin_unlock(&delayed_refs->lock);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 objectid, u64 offset, u64 bytenr)
|
|
{
|
|
struct btrfs_root *extent_root = root->fs_info->extent_root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_data_ref *ref;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_key key;
|
|
u32 item_size;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret == 0);
|
|
|
|
ret = -ENOENT;
|
|
if (path->slots[0] == 0)
|
|
goto out;
|
|
|
|
path->slots[0]--;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
|
|
goto out;
|
|
|
|
ret = 1;
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
if (item_size < sizeof(*ei)) {
|
|
WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
|
|
goto out;
|
|
}
|
|
#endif
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
|
|
if (item_size != sizeof(*ei) +
|
|
btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
|
|
goto out;
|
|
|
|
if (btrfs_extent_generation(leaf, ei) <=
|
|
btrfs_root_last_snapshot(&root->root_item))
|
|
goto out;
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
|
|
if (btrfs_extent_inline_ref_type(leaf, iref) !=
|
|
BTRFS_EXTENT_DATA_REF_KEY)
|
|
goto out;
|
|
|
|
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
if (btrfs_extent_refs(leaf, ei) !=
|
|
btrfs_extent_data_ref_count(leaf, ref) ||
|
|
btrfs_extent_data_ref_root(leaf, ref) !=
|
|
root->root_key.objectid ||
|
|
btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
|
|
btrfs_extent_data_ref_offset(leaf, ref) != offset)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 objectid, u64 offset, u64 bytenr)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
int ret2;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOENT;
|
|
|
|
do {
|
|
ret = check_committed_ref(trans, root, path, objectid,
|
|
offset, bytenr);
|
|
if (ret && ret != -ENOENT)
|
|
goto out;
|
|
|
|
ret2 = check_delayed_ref(trans, root, path, objectid,
|
|
offset, bytenr);
|
|
} while (ret2 == -EAGAIN);
|
|
|
|
if (ret2 && ret2 != -ENOENT) {
|
|
ret = ret2;
|
|
goto out;
|
|
}
|
|
|
|
if (ret != -ENOENT || ret2 != -ENOENT)
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
#if 0
|
|
int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct extent_buffer *buf, u32 nr_extents)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_file_extent_item *fi;
|
|
u64 root_gen;
|
|
u32 nritems;
|
|
int i;
|
|
int level;
|
|
int ret = 0;
|
|
int shared = 0;
|
|
|
|
if (!root->ref_cows)
|
|
return 0;
|
|
|
|
if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
|
|
shared = 0;
|
|
root_gen = root->root_key.offset;
|
|
} else {
|
|
shared = 1;
|
|
root_gen = trans->transid - 1;
|
|
}
|
|
|
|
level = btrfs_header_level(buf);
|
|
nritems = btrfs_header_nritems(buf);
|
|
|
|
if (level == 0) {
|
|
struct btrfs_leaf_ref *ref;
|
|
struct btrfs_extent_info *info;
|
|
|
|
ref = btrfs_alloc_leaf_ref(root, nr_extents);
|
|
if (!ref) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ref->root_gen = root_gen;
|
|
ref->bytenr = buf->start;
|
|
ref->owner = btrfs_header_owner(buf);
|
|
ref->generation = btrfs_header_generation(buf);
|
|
ref->nritems = nr_extents;
|
|
info = ref->extents;
|
|
|
|
for (i = 0; nr_extents > 0 && i < nritems; i++) {
|
|
u64 disk_bytenr;
|
|
btrfs_item_key_to_cpu(buf, &key, i);
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(buf, i,
|
|
struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(buf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
|
|
if (disk_bytenr == 0)
|
|
continue;
|
|
|
|
info->bytenr = disk_bytenr;
|
|
info->num_bytes =
|
|
btrfs_file_extent_disk_num_bytes(buf, fi);
|
|
info->objectid = key.objectid;
|
|
info->offset = key.offset;
|
|
info++;
|
|
}
|
|
|
|
ret = btrfs_add_leaf_ref(root, ref, shared);
|
|
if (ret == -EEXIST && shared) {
|
|
struct btrfs_leaf_ref *old;
|
|
old = btrfs_lookup_leaf_ref(root, ref->bytenr);
|
|
BUG_ON(!old);
|
|
btrfs_remove_leaf_ref(root, old);
|
|
btrfs_free_leaf_ref(root, old);
|
|
ret = btrfs_add_leaf_ref(root, ref, shared);
|
|
}
|
|
WARN_ON(ret);
|
|
btrfs_free_leaf_ref(root, ref);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* when a block goes through cow, we update the reference counts of
|
|
* everything that block points to. The internal pointers of the block
|
|
* can be in just about any order, and it is likely to have clusters of
|
|
* things that are close together and clusters of things that are not.
|
|
*
|
|
* To help reduce the seeks that come with updating all of these reference
|
|
* counts, sort them by byte number before actual updates are done.
|
|
*
|
|
* struct refsort is used to match byte number to slot in the btree block.
|
|
* we sort based on the byte number and then use the slot to actually
|
|
* find the item.
|
|
*
|
|
* struct refsort is smaller than strcut btrfs_item and smaller than
|
|
* struct btrfs_key_ptr. Since we're currently limited to the page size
|
|
* for a btree block, there's no way for a kmalloc of refsorts for a
|
|
* single node to be bigger than a page.
|
|
*/
|
|
struct refsort {
|
|
u64 bytenr;
|
|
u32 slot;
|
|
};
|
|
|
|
/*
|
|
* for passing into sort()
|
|
*/
|
|
static int refsort_cmp(const void *a_void, const void *b_void)
|
|
{
|
|
const struct refsort *a = a_void;
|
|
const struct refsort *b = b_void;
|
|
|
|
if (a->bytenr < b->bytenr)
|
|
return -1;
|
|
if (a->bytenr > b->bytenr)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *buf,
|
|
int full_backref, int inc)
|
|
{
|
|
u64 bytenr;
|
|
u64 num_bytes;
|
|
u64 parent;
|
|
u64 ref_root;
|
|
u32 nritems;
|
|
struct btrfs_key key;
|
|
struct btrfs_file_extent_item *fi;
|
|
int i;
|
|
int level;
|
|
int ret = 0;
|
|
int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
|
|
u64, u64, u64, u64, u64, u64);
|
|
|
|
ref_root = btrfs_header_owner(buf);
|
|
nritems = btrfs_header_nritems(buf);
|
|
level = btrfs_header_level(buf);
|
|
|
|
if (!root->ref_cows && level == 0)
|
|
return 0;
|
|
|
|
if (inc)
|
|
process_func = btrfs_inc_extent_ref;
|
|
else
|
|
process_func = btrfs_free_extent;
|
|
|
|
if (full_backref)
|
|
parent = buf->start;
|
|
else
|
|
parent = 0;
|
|
|
|
for (i = 0; i < nritems; i++) {
|
|
if (level == 0) {
|
|
btrfs_item_key_to_cpu(buf, &key, i);
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(buf, i,
|
|
struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(buf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
|
|
if (bytenr == 0)
|
|
continue;
|
|
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
|
|
key.offset -= btrfs_file_extent_offset(buf, fi);
|
|
ret = process_func(trans, root, bytenr, num_bytes,
|
|
parent, ref_root, key.objectid,
|
|
key.offset);
|
|
if (ret)
|
|
goto fail;
|
|
} else {
|
|
bytenr = btrfs_node_blockptr(buf, i);
|
|
num_bytes = btrfs_level_size(root, level - 1);
|
|
ret = process_func(trans, root, bytenr, num_bytes,
|
|
parent, ref_root, level - 1, 0);
|
|
if (ret)
|
|
goto fail;
|
|
}
|
|
}
|
|
return 0;
|
|
fail:
|
|
BUG();
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct extent_buffer *buf, int full_backref)
|
|
{
|
|
return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
|
|
}
|
|
|
|
int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct extent_buffer *buf, int full_backref)
|
|
{
|
|
return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
|
|
}
|
|
|
|
static int write_one_cache_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *extent_root = root->fs_info->extent_root;
|
|
unsigned long bi;
|
|
struct extent_buffer *leaf;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
|
|
if (ret < 0)
|
|
goto fail;
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(extent_root, path);
|
|
fail:
|
|
if (ret)
|
|
return ret;
|
|
return 0;
|
|
|
|
}
|
|
|
|
static struct btrfs_block_group_cache *
|
|
next_block_group(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
struct rb_node *node;
|
|
spin_lock(&root->fs_info->block_group_cache_lock);
|
|
node = rb_next(&cache->cache_node);
|
|
btrfs_put_block_group(cache);
|
|
if (node) {
|
|
cache = rb_entry(node, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
atomic_inc(&cache->count);
|
|
} else
|
|
cache = NULL;
|
|
spin_unlock(&root->fs_info->block_group_cache_lock);
|
|
return cache;
|
|
}
|
|
|
|
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
int err = 0;
|
|
struct btrfs_path *path;
|
|
u64 last = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
if (last == 0) {
|
|
err = btrfs_run_delayed_refs(trans, root,
|
|
(unsigned long)-1);
|
|
BUG_ON(err);
|
|
}
|
|
|
|
cache = btrfs_lookup_first_block_group(root->fs_info, last);
|
|
while (cache) {
|
|
if (cache->dirty)
|
|
break;
|
|
cache = next_block_group(root, cache);
|
|
}
|
|
if (!cache) {
|
|
if (last == 0)
|
|
break;
|
|
last = 0;
|
|
continue;
|
|
}
|
|
|
|
cache->dirty = 0;
|
|
last = cache->key.objectid + cache->key.offset;
|
|
|
|
err = write_one_cache_group(trans, root, path, cache);
|
|
BUG_ON(err);
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
int readonly = 0;
|
|
|
|
block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
|
|
if (!block_group || block_group->ro)
|
|
readonly = 1;
|
|
if (block_group)
|
|
btrfs_put_block_group(block_group);
|
|
return readonly;
|
|
}
|
|
|
|
static int update_space_info(struct btrfs_fs_info *info, u64 flags,
|
|
u64 total_bytes, u64 bytes_used,
|
|
struct btrfs_space_info **space_info)
|
|
{
|
|
struct btrfs_space_info *found;
|
|
|
|
found = __find_space_info(info, flags);
|
|
if (found) {
|
|
spin_lock(&found->lock);
|
|
found->total_bytes += total_bytes;
|
|
found->bytes_used += bytes_used;
|
|
found->full = 0;
|
|
spin_unlock(&found->lock);
|
|
*space_info = found;
|
|
return 0;
|
|
}
|
|
found = kzalloc(sizeof(*found), GFP_NOFS);
|
|
if (!found)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&found->block_groups);
|
|
init_rwsem(&found->groups_sem);
|
|
spin_lock_init(&found->lock);
|
|
found->flags = flags;
|
|
found->total_bytes = total_bytes;
|
|
found->bytes_used = bytes_used;
|
|
found->bytes_pinned = 0;
|
|
found->bytes_reserved = 0;
|
|
found->bytes_readonly = 0;
|
|
found->bytes_delalloc = 0;
|
|
found->full = 0;
|
|
found->force_alloc = 0;
|
|
*space_info = found;
|
|
list_add_rcu(&found->list, &info->space_info);
|
|
atomic_set(&found->caching_threads, 0);
|
|
return 0;
|
|
}
|
|
|
|
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
|
|
{
|
|
u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
|
|
BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_DUP);
|
|
if (extra_flags) {
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA)
|
|
fs_info->avail_data_alloc_bits |= extra_flags;
|
|
if (flags & BTRFS_BLOCK_GROUP_METADATA)
|
|
fs_info->avail_metadata_alloc_bits |= extra_flags;
|
|
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
fs_info->avail_system_alloc_bits |= extra_flags;
|
|
}
|
|
}
|
|
|
|
static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
|
|
{
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
if (!cache->ro) {
|
|
cache->space_info->bytes_readonly += cache->key.offset -
|
|
btrfs_block_group_used(&cache->item);
|
|
cache->ro = 1;
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
}
|
|
|
|
u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
|
|
{
|
|
u64 num_devices = root->fs_info->fs_devices->rw_devices;
|
|
|
|
if (num_devices == 1)
|
|
flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
|
|
if (num_devices < 4)
|
|
flags &= ~BTRFS_BLOCK_GROUP_RAID10;
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
|
|
(flags & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10))) {
|
|
flags &= ~BTRFS_BLOCK_GROUP_DUP;
|
|
}
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
|
|
(flags & BTRFS_BLOCK_GROUP_RAID10)) {
|
|
flags &= ~BTRFS_BLOCK_GROUP_RAID1;
|
|
}
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
|
|
((flags & BTRFS_BLOCK_GROUP_RAID1) |
|
|
(flags & BTRFS_BLOCK_GROUP_RAID10) |
|
|
(flags & BTRFS_BLOCK_GROUP_DUP)))
|
|
flags &= ~BTRFS_BLOCK_GROUP_RAID0;
|
|
return flags;
|
|
}
|
|
|
|
static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
u64 alloc_profile;
|
|
|
|
if (data) {
|
|
alloc_profile = info->avail_data_alloc_bits &
|
|
info->data_alloc_profile;
|
|
data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
|
|
} else if (root == root->fs_info->chunk_root) {
|
|
alloc_profile = info->avail_system_alloc_bits &
|
|
info->system_alloc_profile;
|
|
data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
|
|
} else {
|
|
alloc_profile = info->avail_metadata_alloc_bits &
|
|
info->metadata_alloc_profile;
|
|
data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
|
|
}
|
|
|
|
return btrfs_reduce_alloc_profile(root, data);
|
|
}
|
|
|
|
void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
|
|
{
|
|
u64 alloc_target;
|
|
|
|
alloc_target = btrfs_get_alloc_profile(root, 1);
|
|
BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
|
|
alloc_target);
|
|
}
|
|
|
|
static u64 calculate_bytes_needed(struct btrfs_root *root, int num_items)
|
|
{
|
|
u64 num_bytes;
|
|
int level;
|
|
|
|
level = BTRFS_MAX_LEVEL - 2;
|
|
/*
|
|
* NOTE: these calculations are absolutely the worst possible case.
|
|
* This assumes that _every_ item we insert will require a new leaf, and
|
|
* that the tree has grown to its maximum level size.
|
|
*/
|
|
|
|
/*
|
|
* for every item we insert we could insert both an extent item and a
|
|
* extent ref item. Then for ever item we insert, we will need to cow
|
|
* both the original leaf, plus the leaf to the left and right of it.
|
|
*
|
|
* Unless we are talking about the extent root, then we just want the
|
|
* number of items * 2, since we just need the extent item plus its ref.
|
|
*/
|
|
if (root == root->fs_info->extent_root)
|
|
num_bytes = num_items * 2;
|
|
else
|
|
num_bytes = (num_items + (2 * num_items)) * 3;
|
|
|
|
/*
|
|
* num_bytes is total number of leaves we could need times the leaf
|
|
* size, and then for every leaf we could end up cow'ing 2 nodes per
|
|
* level, down to the leaf level.
|
|
*/
|
|
num_bytes = (num_bytes * root->leafsize) +
|
|
(num_bytes * (level * 2)) * root->nodesize;
|
|
|
|
return num_bytes;
|
|
}
|
|
|
|
/*
|
|
* Unreserve metadata space for delalloc. If we have less reserved credits than
|
|
* we have extents, this function does nothing.
|
|
*/
|
|
int btrfs_unreserve_metadata_for_delalloc(struct btrfs_root *root,
|
|
struct inode *inode, int num_items)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_space_info *meta_sinfo;
|
|
u64 num_bytes;
|
|
u64 alloc_target;
|
|
bool bug = false;
|
|
|
|
/* get the space info for where the metadata will live */
|
|
alloc_target = btrfs_get_alloc_profile(root, 0);
|
|
meta_sinfo = __find_space_info(info, alloc_target);
|
|
|
|
num_bytes = calculate_bytes_needed(root->fs_info->extent_root,
|
|
num_items);
|
|
|
|
spin_lock(&meta_sinfo->lock);
|
|
spin_lock(&BTRFS_I(inode)->accounting_lock);
|
|
if (BTRFS_I(inode)->reserved_extents <=
|
|
BTRFS_I(inode)->outstanding_extents) {
|
|
spin_unlock(&BTRFS_I(inode)->accounting_lock);
|
|
spin_unlock(&meta_sinfo->lock);
|
|
return 0;
|
|
}
|
|
spin_unlock(&BTRFS_I(inode)->accounting_lock);
|
|
|
|
BTRFS_I(inode)->reserved_extents--;
|
|
BUG_ON(BTRFS_I(inode)->reserved_extents < 0);
|
|
|
|
if (meta_sinfo->bytes_delalloc < num_bytes) {
|
|
bug = true;
|
|
meta_sinfo->bytes_delalloc = 0;
|
|
} else {
|
|
meta_sinfo->bytes_delalloc -= num_bytes;
|
|
}
|
|
spin_unlock(&meta_sinfo->lock);
|
|
|
|
BUG_ON(bug);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void check_force_delalloc(struct btrfs_space_info *meta_sinfo)
|
|
{
|
|
u64 thresh;
|
|
|
|
thresh = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
|
|
meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
|
|
meta_sinfo->bytes_super + meta_sinfo->bytes_root +
|
|
meta_sinfo->bytes_may_use;
|
|
|
|
thresh = meta_sinfo->total_bytes - thresh;
|
|
thresh *= 80;
|
|
do_div(thresh, 100);
|
|
if (thresh <= meta_sinfo->bytes_delalloc)
|
|
meta_sinfo->force_delalloc = 1;
|
|
else
|
|
meta_sinfo->force_delalloc = 0;
|
|
}
|
|
|
|
struct async_flush {
|
|
struct btrfs_root *root;
|
|
struct btrfs_space_info *info;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
static noinline void flush_delalloc_async(struct btrfs_work *work)
|
|
{
|
|
struct async_flush *async;
|
|
struct btrfs_root *root;
|
|
struct btrfs_space_info *info;
|
|
|
|
async = container_of(work, struct async_flush, work);
|
|
root = async->root;
|
|
info = async->info;
|
|
|
|
btrfs_start_delalloc_inodes(root, 0);
|
|
wake_up(&info->flush_wait);
|
|
btrfs_wait_ordered_extents(root, 0, 0);
|
|
|
|
spin_lock(&info->lock);
|
|
info->flushing = 0;
|
|
spin_unlock(&info->lock);
|
|
wake_up(&info->flush_wait);
|
|
|
|
kfree(async);
|
|
}
|
|
|
|
static void wait_on_flush(struct btrfs_space_info *info)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
u64 used;
|
|
|
|
while (1) {
|
|
prepare_to_wait(&info->flush_wait, &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
spin_lock(&info->lock);
|
|
if (!info->flushing) {
|
|
spin_unlock(&info->lock);
|
|
break;
|
|
}
|
|
|
|
used = info->bytes_used + info->bytes_reserved +
|
|
info->bytes_pinned + info->bytes_readonly +
|
|
info->bytes_super + info->bytes_root +
|
|
info->bytes_may_use + info->bytes_delalloc;
|
|
if (used < info->total_bytes) {
|
|
spin_unlock(&info->lock);
|
|
break;
|
|
}
|
|
spin_unlock(&info->lock);
|
|
schedule();
|
|
}
|
|
finish_wait(&info->flush_wait, &wait);
|
|
}
|
|
|
|
static void flush_delalloc(struct btrfs_root *root,
|
|
struct btrfs_space_info *info)
|
|
{
|
|
struct async_flush *async;
|
|
bool wait = false;
|
|
|
|
spin_lock(&info->lock);
|
|
|
|
if (!info->flushing) {
|
|
info->flushing = 1;
|
|
init_waitqueue_head(&info->flush_wait);
|
|
} else {
|
|
wait = true;
|
|
}
|
|
|
|
spin_unlock(&info->lock);
|
|
|
|
if (wait) {
|
|
wait_on_flush(info);
|
|
return;
|
|
}
|
|
|
|
async = kzalloc(sizeof(*async), GFP_NOFS);
|
|
if (!async)
|
|
goto flush;
|
|
|
|
async->root = root;
|
|
async->info = info;
|
|
async->work.func = flush_delalloc_async;
|
|
|
|
btrfs_queue_worker(&root->fs_info->enospc_workers,
|
|
&async->work);
|
|
wait_on_flush(info);
|
|
return;
|
|
|
|
flush:
|
|
btrfs_start_delalloc_inodes(root, 0);
|
|
btrfs_wait_ordered_extents(root, 0, 0);
|
|
|
|
spin_lock(&info->lock);
|
|
info->flushing = 0;
|
|
spin_unlock(&info->lock);
|
|
wake_up(&info->flush_wait);
|
|
}
|
|
|
|
static int maybe_allocate_chunk(struct btrfs_root *root,
|
|
struct btrfs_space_info *info)
|
|
{
|
|
struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
|
|
struct btrfs_trans_handle *trans;
|
|
bool wait = false;
|
|
int ret = 0;
|
|
u64 min_metadata;
|
|
u64 free_space;
|
|
|
|
free_space = btrfs_super_total_bytes(disk_super);
|
|
/*
|
|
* we allow the metadata to grow to a max of either 10gb or 5% of the
|
|
* space in the volume.
|
|
*/
|
|
min_metadata = min((u64)10 * 1024 * 1024 * 1024,
|
|
div64_u64(free_space * 5, 100));
|
|
if (info->total_bytes >= min_metadata) {
|
|
spin_unlock(&info->lock);
|
|
return 0;
|
|
}
|
|
|
|
if (info->full) {
|
|
spin_unlock(&info->lock);
|
|
return 0;
|
|
}
|
|
|
|
if (!info->allocating_chunk) {
|
|
info->force_alloc = 1;
|
|
info->allocating_chunk = 1;
|
|
init_waitqueue_head(&info->allocate_wait);
|
|
} else {
|
|
wait = true;
|
|
}
|
|
|
|
spin_unlock(&info->lock);
|
|
|
|
if (wait) {
|
|
wait_event(info->allocate_wait,
|
|
!info->allocating_chunk);
|
|
return 1;
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (!trans) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
4096 + 2 * 1024 * 1024,
|
|
info->flags, 0);
|
|
btrfs_end_transaction(trans, root);
|
|
if (ret)
|
|
goto out;
|
|
out:
|
|
spin_lock(&info->lock);
|
|
info->allocating_chunk = 0;
|
|
spin_unlock(&info->lock);
|
|
wake_up(&info->allocate_wait);
|
|
|
|
if (ret)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Reserve metadata space for delalloc.
|
|
*/
|
|
int btrfs_reserve_metadata_for_delalloc(struct btrfs_root *root,
|
|
struct inode *inode, int num_items)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_space_info *meta_sinfo;
|
|
u64 num_bytes;
|
|
u64 used;
|
|
u64 alloc_target;
|
|
int flushed = 0;
|
|
int force_delalloc;
|
|
|
|
/* get the space info for where the metadata will live */
|
|
alloc_target = btrfs_get_alloc_profile(root, 0);
|
|
meta_sinfo = __find_space_info(info, alloc_target);
|
|
|
|
num_bytes = calculate_bytes_needed(root->fs_info->extent_root,
|
|
num_items);
|
|
again:
|
|
spin_lock(&meta_sinfo->lock);
|
|
|
|
force_delalloc = meta_sinfo->force_delalloc;
|
|
|
|
if (unlikely(!meta_sinfo->bytes_root))
|
|
meta_sinfo->bytes_root = calculate_bytes_needed(root, 6);
|
|
|
|
if (!flushed)
|
|
meta_sinfo->bytes_delalloc += num_bytes;
|
|
|
|
used = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
|
|
meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
|
|
meta_sinfo->bytes_super + meta_sinfo->bytes_root +
|
|
meta_sinfo->bytes_may_use + meta_sinfo->bytes_delalloc;
|
|
|
|
if (used > meta_sinfo->total_bytes) {
|
|
flushed++;
|
|
|
|
if (flushed == 1) {
|
|
if (maybe_allocate_chunk(root, meta_sinfo))
|
|
goto again;
|
|
flushed++;
|
|
} else {
|
|
spin_unlock(&meta_sinfo->lock);
|
|
}
|
|
|
|
if (flushed == 2) {
|
|
filemap_flush(inode->i_mapping);
|
|
goto again;
|
|
} else if (flushed == 3) {
|
|
flush_delalloc(root, meta_sinfo);
|
|
goto again;
|
|
}
|
|
spin_lock(&meta_sinfo->lock);
|
|
meta_sinfo->bytes_delalloc -= num_bytes;
|
|
spin_unlock(&meta_sinfo->lock);
|
|
printk(KERN_ERR "enospc, has %d, reserved %d\n",
|
|
BTRFS_I(inode)->outstanding_extents,
|
|
BTRFS_I(inode)->reserved_extents);
|
|
dump_space_info(meta_sinfo, 0, 0);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
BTRFS_I(inode)->reserved_extents++;
|
|
check_force_delalloc(meta_sinfo);
|
|
spin_unlock(&meta_sinfo->lock);
|
|
|
|
if (!flushed && force_delalloc)
|
|
filemap_flush(inode->i_mapping);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* unreserve num_items number of items worth of metadata space. This needs to
|
|
* be paired with btrfs_reserve_metadata_space.
|
|
*
|
|
* NOTE: if you have the option, run this _AFTER_ you do a
|
|
* btrfs_end_transaction, since btrfs_end_transaction will run delayed ref
|
|
* oprations which will result in more used metadata, so we want to make sure we
|
|
* can do that without issue.
|
|
*/
|
|
int btrfs_unreserve_metadata_space(struct btrfs_root *root, int num_items)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_space_info *meta_sinfo;
|
|
u64 num_bytes;
|
|
u64 alloc_target;
|
|
bool bug = false;
|
|
|
|
/* get the space info for where the metadata will live */
|
|
alloc_target = btrfs_get_alloc_profile(root, 0);
|
|
meta_sinfo = __find_space_info(info, alloc_target);
|
|
|
|
num_bytes = calculate_bytes_needed(root, num_items);
|
|
|
|
spin_lock(&meta_sinfo->lock);
|
|
if (meta_sinfo->bytes_may_use < num_bytes) {
|
|
bug = true;
|
|
meta_sinfo->bytes_may_use = 0;
|
|
} else {
|
|
meta_sinfo->bytes_may_use -= num_bytes;
|
|
}
|
|
spin_unlock(&meta_sinfo->lock);
|
|
|
|
BUG_ON(bug);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reserve some metadata space for use. We'll calculate the worste case number
|
|
* of bytes that would be needed to modify num_items number of items. If we
|
|
* have space, fantastic, if not, you get -ENOSPC. Please call
|
|
* btrfs_unreserve_metadata_space when you are done for the _SAME_ number of
|
|
* items you reserved, since whatever metadata you needed should have already
|
|
* been allocated.
|
|
*
|
|
* This will commit the transaction to make more space if we don't have enough
|
|
* metadata space. THe only time we don't do this is if we're reserving space
|
|
* inside of a transaction, then we will just return -ENOSPC and it is the
|
|
* callers responsibility to handle it properly.
|
|
*/
|
|
int btrfs_reserve_metadata_space(struct btrfs_root *root, int num_items)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_space_info *meta_sinfo;
|
|
u64 num_bytes;
|
|
u64 used;
|
|
u64 alloc_target;
|
|
int retries = 0;
|
|
|
|
/* get the space info for where the metadata will live */
|
|
alloc_target = btrfs_get_alloc_profile(root, 0);
|
|
meta_sinfo = __find_space_info(info, alloc_target);
|
|
|
|
num_bytes = calculate_bytes_needed(root, num_items);
|
|
again:
|
|
spin_lock(&meta_sinfo->lock);
|
|
|
|
if (unlikely(!meta_sinfo->bytes_root))
|
|
meta_sinfo->bytes_root = calculate_bytes_needed(root, 6);
|
|
|
|
if (!retries)
|
|
meta_sinfo->bytes_may_use += num_bytes;
|
|
|
|
used = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
|
|
meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
|
|
meta_sinfo->bytes_super + meta_sinfo->bytes_root +
|
|
meta_sinfo->bytes_may_use + meta_sinfo->bytes_delalloc;
|
|
|
|
if (used > meta_sinfo->total_bytes) {
|
|
retries++;
|
|
if (retries == 1) {
|
|
if (maybe_allocate_chunk(root, meta_sinfo))
|
|
goto again;
|
|
retries++;
|
|
} else {
|
|
spin_unlock(&meta_sinfo->lock);
|
|
}
|
|
|
|
if (retries == 2) {
|
|
flush_delalloc(root, meta_sinfo);
|
|
goto again;
|
|
}
|
|
spin_lock(&meta_sinfo->lock);
|
|
meta_sinfo->bytes_may_use -= num_bytes;
|
|
spin_unlock(&meta_sinfo->lock);
|
|
|
|
dump_space_info(meta_sinfo, 0, 0);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
check_force_delalloc(meta_sinfo);
|
|
spin_unlock(&meta_sinfo->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This will check the space that the inode allocates from to make sure we have
|
|
* enough space for bytes.
|
|
*/
|
|
int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_space_info *data_sinfo;
|
|
int ret = 0, committed = 0;
|
|
|
|
/* make sure bytes are sectorsize aligned */
|
|
bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
|
|
|
|
data_sinfo = BTRFS_I(inode)->space_info;
|
|
if (!data_sinfo)
|
|
goto alloc;
|
|
|
|
again:
|
|
/* make sure we have enough space to handle the data first */
|
|
spin_lock(&data_sinfo->lock);
|
|
if (data_sinfo->total_bytes - data_sinfo->bytes_used -
|
|
data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved -
|
|
data_sinfo->bytes_pinned - data_sinfo->bytes_readonly -
|
|
data_sinfo->bytes_may_use - data_sinfo->bytes_super < bytes) {
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
/*
|
|
* if we don't have enough free bytes in this space then we need
|
|
* to alloc a new chunk.
|
|
*/
|
|
if (!data_sinfo->full) {
|
|
u64 alloc_target;
|
|
|
|
data_sinfo->force_alloc = 1;
|
|
spin_unlock(&data_sinfo->lock);
|
|
alloc:
|
|
alloc_target = btrfs_get_alloc_profile(root, 1);
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (!trans)
|
|
return -ENOMEM;
|
|
|
|
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
bytes + 2 * 1024 * 1024,
|
|
alloc_target, 0);
|
|
btrfs_end_transaction(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!data_sinfo) {
|
|
btrfs_set_inode_space_info(root, inode);
|
|
data_sinfo = BTRFS_I(inode)->space_info;
|
|
}
|
|
goto again;
|
|
}
|
|
spin_unlock(&data_sinfo->lock);
|
|
|
|
/* commit the current transaction and try again */
|
|
if (!committed && !root->fs_info->open_ioctl_trans) {
|
|
committed = 1;
|
|
trans = btrfs_join_transaction(root, 1);
|
|
if (!trans)
|
|
return -ENOMEM;
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
goto again;
|
|
}
|
|
|
|
printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes"
|
|
", %llu bytes_used, %llu bytes_reserved, "
|
|
"%llu bytes_pinned, %llu bytes_readonly, %llu may use "
|
|
"%llu total\n", (unsigned long long)bytes,
|
|
(unsigned long long)data_sinfo->bytes_delalloc,
|
|
(unsigned long long)data_sinfo->bytes_used,
|
|
(unsigned long long)data_sinfo->bytes_reserved,
|
|
(unsigned long long)data_sinfo->bytes_pinned,
|
|
(unsigned long long)data_sinfo->bytes_readonly,
|
|
(unsigned long long)data_sinfo->bytes_may_use,
|
|
(unsigned long long)data_sinfo->total_bytes);
|
|
return -ENOSPC;
|
|
}
|
|
data_sinfo->bytes_may_use += bytes;
|
|
BTRFS_I(inode)->reserved_bytes += bytes;
|
|
spin_unlock(&data_sinfo->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* if there was an error for whatever reason after calling
|
|
* btrfs_check_data_free_space, call this so we can cleanup the counters.
|
|
*/
|
|
void btrfs_free_reserved_data_space(struct btrfs_root *root,
|
|
struct inode *inode, u64 bytes)
|
|
{
|
|
struct btrfs_space_info *data_sinfo;
|
|
|
|
/* make sure bytes are sectorsize aligned */
|
|
bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
|
|
|
|
data_sinfo = BTRFS_I(inode)->space_info;
|
|
spin_lock(&data_sinfo->lock);
|
|
data_sinfo->bytes_may_use -= bytes;
|
|
BTRFS_I(inode)->reserved_bytes -= bytes;
|
|
spin_unlock(&data_sinfo->lock);
|
|
}
|
|
|
|
/* called when we are adding a delalloc extent to the inode's io_tree */
|
|
void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_space_info *data_sinfo;
|
|
|
|
/* get the space info for where this inode will be storing its data */
|
|
data_sinfo = BTRFS_I(inode)->space_info;
|
|
|
|
/* make sure we have enough space to handle the data first */
|
|
spin_lock(&data_sinfo->lock);
|
|
data_sinfo->bytes_delalloc += bytes;
|
|
|
|
/*
|
|
* we are adding a delalloc extent without calling
|
|
* btrfs_check_data_free_space first. This happens on a weird
|
|
* writepage condition, but shouldn't hurt our accounting
|
|
*/
|
|
if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) {
|
|
data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes;
|
|
BTRFS_I(inode)->reserved_bytes = 0;
|
|
} else {
|
|
data_sinfo->bytes_may_use -= bytes;
|
|
BTRFS_I(inode)->reserved_bytes -= bytes;
|
|
}
|
|
|
|
spin_unlock(&data_sinfo->lock);
|
|
}
|
|
|
|
/* called when we are clearing an delalloc extent from the inode's io_tree */
|
|
void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_space_info *info;
|
|
|
|
info = BTRFS_I(inode)->space_info;
|
|
|
|
spin_lock(&info->lock);
|
|
info->bytes_delalloc -= bytes;
|
|
spin_unlock(&info->lock);
|
|
}
|
|
|
|
static void force_metadata_allocation(struct btrfs_fs_info *info)
|
|
{
|
|
struct list_head *head = &info->space_info;
|
|
struct btrfs_space_info *found;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(found, head, list) {
|
|
if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
|
|
found->force_alloc = 1;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root, u64 alloc_bytes,
|
|
u64 flags, int force)
|
|
{
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_fs_info *fs_info = extent_root->fs_info;
|
|
u64 thresh;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
|
|
flags = btrfs_reduce_alloc_profile(extent_root, flags);
|
|
|
|
space_info = __find_space_info(extent_root->fs_info, flags);
|
|
if (!space_info) {
|
|
ret = update_space_info(extent_root->fs_info, flags,
|
|
0, 0, &space_info);
|
|
BUG_ON(ret);
|
|
}
|
|
BUG_ON(!space_info);
|
|
|
|
spin_lock(&space_info->lock);
|
|
if (space_info->force_alloc)
|
|
force = 1;
|
|
if (space_info->full) {
|
|
spin_unlock(&space_info->lock);
|
|
goto out;
|
|
}
|
|
|
|
thresh = space_info->total_bytes - space_info->bytes_readonly;
|
|
thresh = div_factor(thresh, 8);
|
|
if (!force &&
|
|
(space_info->bytes_used + space_info->bytes_pinned +
|
|
space_info->bytes_reserved + alloc_bytes) < thresh) {
|
|
spin_unlock(&space_info->lock);
|
|
goto out;
|
|
}
|
|
spin_unlock(&space_info->lock);
|
|
|
|
/*
|
|
* if we're doing a data chunk, go ahead and make sure that
|
|
* we keep a reasonable number of metadata chunks allocated in the
|
|
* FS as well.
|
|
*/
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
|
|
fs_info->data_chunk_allocations++;
|
|
if (!(fs_info->data_chunk_allocations %
|
|
fs_info->metadata_ratio))
|
|
force_metadata_allocation(fs_info);
|
|
}
|
|
|
|
ret = btrfs_alloc_chunk(trans, extent_root, flags);
|
|
spin_lock(&space_info->lock);
|
|
if (ret)
|
|
space_info->full = 1;
|
|
space_info->force_alloc = 0;
|
|
spin_unlock(&space_info->lock);
|
|
out:
|
|
mutex_unlock(&extent_root->fs_info->chunk_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int update_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, int alloc,
|
|
int mark_free)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
u64 total = num_bytes;
|
|
u64 old_val;
|
|
u64 byte_in_group;
|
|
|
|
/* block accounting for super block */
|
|
spin_lock(&info->delalloc_lock);
|
|
old_val = btrfs_super_bytes_used(&info->super_copy);
|
|
if (alloc)
|
|
old_val += num_bytes;
|
|
else
|
|
old_val -= num_bytes;
|
|
btrfs_set_super_bytes_used(&info->super_copy, old_val);
|
|
spin_unlock(&info->delalloc_lock);
|
|
|
|
while (total) {
|
|
cache = btrfs_lookup_block_group(info, bytenr);
|
|
if (!cache)
|
|
return -1;
|
|
byte_in_group = bytenr - cache->key.objectid;
|
|
WARN_ON(byte_in_group > cache->key.offset);
|
|
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
cache->dirty = 1;
|
|
old_val = btrfs_block_group_used(&cache->item);
|
|
num_bytes = min(total, cache->key.offset - byte_in_group);
|
|
if (alloc) {
|
|
old_val += num_bytes;
|
|
btrfs_set_block_group_used(&cache->item, old_val);
|
|
cache->reserved -= num_bytes;
|
|
cache->space_info->bytes_used += num_bytes;
|
|
cache->space_info->bytes_reserved -= num_bytes;
|
|
if (cache->ro)
|
|
cache->space_info->bytes_readonly -= num_bytes;
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
} else {
|
|
old_val -= num_bytes;
|
|
cache->space_info->bytes_used -= num_bytes;
|
|
if (cache->ro)
|
|
cache->space_info->bytes_readonly += num_bytes;
|
|
btrfs_set_block_group_used(&cache->item, old_val);
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
if (mark_free) {
|
|
int ret;
|
|
|
|
ret = btrfs_discard_extent(root, bytenr,
|
|
num_bytes);
|
|
WARN_ON(ret);
|
|
|
|
ret = btrfs_add_free_space(cache, bytenr,
|
|
num_bytes);
|
|
WARN_ON(ret);
|
|
}
|
|
}
|
|
btrfs_put_block_group(cache);
|
|
total -= num_bytes;
|
|
bytenr += num_bytes;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
u64 bytenr;
|
|
|
|
cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
|
|
if (!cache)
|
|
return 0;
|
|
|
|
bytenr = cache->key.objectid;
|
|
btrfs_put_block_group(cache);
|
|
|
|
return bytenr;
|
|
}
|
|
|
|
/*
|
|
* this function must be called within transaction
|
|
*/
|
|
int btrfs_pin_extent(struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, int reserved)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, bytenr);
|
|
BUG_ON(!cache);
|
|
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
cache->pinned += num_bytes;
|
|
cache->space_info->bytes_pinned += num_bytes;
|
|
if (reserved) {
|
|
cache->reserved -= num_bytes;
|
|
cache->space_info->bytes_reserved -= num_bytes;
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
|
|
btrfs_put_block_group(cache);
|
|
|
|
set_extent_dirty(fs_info->pinned_extents,
|
|
bytenr, bytenr + num_bytes - 1, GFP_NOFS);
|
|
return 0;
|
|
}
|
|
|
|
static int update_reserved_extents(struct btrfs_block_group_cache *cache,
|
|
u64 num_bytes, int reserve)
|
|
{
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
if (reserve) {
|
|
cache->reserved += num_bytes;
|
|
cache->space_info->bytes_reserved += num_bytes;
|
|
} else {
|
|
cache->reserved -= num_bytes;
|
|
cache->space_info->bytes_reserved -= num_bytes;
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_caching_control *next;
|
|
struct btrfs_caching_control *caching_ctl;
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
down_write(&fs_info->extent_commit_sem);
|
|
|
|
list_for_each_entry_safe(caching_ctl, next,
|
|
&fs_info->caching_block_groups, list) {
|
|
cache = caching_ctl->block_group;
|
|
if (block_group_cache_done(cache)) {
|
|
cache->last_byte_to_unpin = (u64)-1;
|
|
list_del_init(&caching_ctl->list);
|
|
put_caching_control(caching_ctl);
|
|
} else {
|
|
cache->last_byte_to_unpin = caching_ctl->progress;
|
|
}
|
|
}
|
|
|
|
if (fs_info->pinned_extents == &fs_info->freed_extents[0])
|
|
fs_info->pinned_extents = &fs_info->freed_extents[1];
|
|
else
|
|
fs_info->pinned_extents = &fs_info->freed_extents[0];
|
|
|
|
up_write(&fs_info->extent_commit_sem);
|
|
return 0;
|
|
}
|
|
|
|
static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_block_group_cache *cache = NULL;
|
|
u64 len;
|
|
|
|
while (start <= end) {
|
|
if (!cache ||
|
|
start >= cache->key.objectid + cache->key.offset) {
|
|
if (cache)
|
|
btrfs_put_block_group(cache);
|
|
cache = btrfs_lookup_block_group(fs_info, start);
|
|
BUG_ON(!cache);
|
|
}
|
|
|
|
len = cache->key.objectid + cache->key.offset - start;
|
|
len = min(len, end + 1 - start);
|
|
|
|
if (start < cache->last_byte_to_unpin) {
|
|
len = min(len, cache->last_byte_to_unpin - start);
|
|
btrfs_add_free_space(cache, start, len);
|
|
}
|
|
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
cache->pinned -= len;
|
|
cache->space_info->bytes_pinned -= len;
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
|
|
start += len;
|
|
}
|
|
|
|
if (cache)
|
|
btrfs_put_block_group(cache);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct extent_io_tree *unpin;
|
|
u64 start;
|
|
u64 end;
|
|
int ret;
|
|
|
|
if (fs_info->pinned_extents == &fs_info->freed_extents[0])
|
|
unpin = &fs_info->freed_extents[1];
|
|
else
|
|
unpin = &fs_info->freed_extents[0];
|
|
|
|
while (1) {
|
|
ret = find_first_extent_bit(unpin, 0, &start, &end,
|
|
EXTENT_DIRTY);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = btrfs_discard_extent(root, start, end + 1 - start);
|
|
|
|
clear_extent_dirty(unpin, start, end, GFP_NOFS);
|
|
unpin_extent_range(root, start, end);
|
|
cond_resched();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pin_down_bytes(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 num_bytes,
|
|
int is_data, int reserved,
|
|
struct extent_buffer **must_clean)
|
|
{
|
|
int err = 0;
|
|
struct extent_buffer *buf;
|
|
|
|
if (is_data)
|
|
goto pinit;
|
|
|
|
/*
|
|
* discard is sloooow, and so triggering discards on
|
|
* individual btree blocks isn't a good plan. Just
|
|
* pin everything in discard mode.
|
|
*/
|
|
if (btrfs_test_opt(root, DISCARD))
|
|
goto pinit;
|
|
|
|
buf = btrfs_find_tree_block(root, bytenr, num_bytes);
|
|
if (!buf)
|
|
goto pinit;
|
|
|
|
/* we can reuse a block if it hasn't been written
|
|
* and it is from this transaction. We can't
|
|
* reuse anything from the tree log root because
|
|
* it has tiny sub-transactions.
|
|
*/
|
|
if (btrfs_buffer_uptodate(buf, 0) &&
|
|
btrfs_try_tree_lock(buf)) {
|
|
u64 header_owner = btrfs_header_owner(buf);
|
|
u64 header_transid = btrfs_header_generation(buf);
|
|
if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
|
|
header_transid == trans->transid &&
|
|
!btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
|
|
*must_clean = buf;
|
|
return 1;
|
|
}
|
|
btrfs_tree_unlock(buf);
|
|
}
|
|
free_extent_buffer(buf);
|
|
pinit:
|
|
if (path)
|
|
btrfs_set_path_blocking(path);
|
|
/* unlocks the pinned mutex */
|
|
btrfs_pin_extent(root, bytenr, num_bytes, reserved);
|
|
|
|
BUG_ON(err < 0);
|
|
return 0;
|
|
}
|
|
|
|
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner_objectid,
|
|
u64 owner_offset, int refs_to_drop,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_root *extent_root = info->extent_root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
int ret;
|
|
int is_data;
|
|
int extent_slot = 0;
|
|
int found_extent = 0;
|
|
int num_to_del = 1;
|
|
u32 item_size;
|
|
u64 refs;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->reada = 1;
|
|
path->leave_spinning = 1;
|
|
|
|
is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
|
|
BUG_ON(!is_data && refs_to_drop != 1);
|
|
|
|
ret = lookup_extent_backref(trans, extent_root, path, &iref,
|
|
bytenr, num_bytes, parent,
|
|
root_objectid, owner_objectid,
|
|
owner_offset);
|
|
if (ret == 0) {
|
|
extent_slot = path->slots[0];
|
|
while (extent_slot >= 0) {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
extent_slot);
|
|
if (key.objectid != bytenr)
|
|
break;
|
|
if (key.type == BTRFS_EXTENT_ITEM_KEY &&
|
|
key.offset == num_bytes) {
|
|
found_extent = 1;
|
|
break;
|
|
}
|
|
if (path->slots[0] - extent_slot > 5)
|
|
break;
|
|
extent_slot--;
|
|
}
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
|
|
if (found_extent && item_size < sizeof(*ei))
|
|
found_extent = 0;
|
|
#endif
|
|
if (!found_extent) {
|
|
BUG_ON(iref);
|
|
ret = remove_extent_backref(trans, extent_root, path,
|
|
NULL, refs_to_drop,
|
|
is_data);
|
|
BUG_ON(ret);
|
|
btrfs_release_path(extent_root, path);
|
|
path->leave_spinning = 1;
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root,
|
|
&key, path, -1, 1);
|
|
if (ret) {
|
|
printk(KERN_ERR "umm, got %d back from search"
|
|
", was looking for %llu\n", ret,
|
|
(unsigned long long)bytenr);
|
|
btrfs_print_leaf(extent_root, path->nodes[0]);
|
|
}
|
|
BUG_ON(ret);
|
|
extent_slot = path->slots[0];
|
|
}
|
|
} else {
|
|
btrfs_print_leaf(extent_root, path->nodes[0]);
|
|
WARN_ON(1);
|
|
printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
|
|
"parent %llu root %llu owner %llu offset %llu\n",
|
|
(unsigned long long)bytenr,
|
|
(unsigned long long)parent,
|
|
(unsigned long long)root_objectid,
|
|
(unsigned long long)owner_objectid,
|
|
(unsigned long long)owner_offset);
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, extent_slot);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
if (item_size < sizeof(*ei)) {
|
|
BUG_ON(found_extent || extent_slot != path->slots[0]);
|
|
ret = convert_extent_item_v0(trans, extent_root, path,
|
|
owner_objectid, 0);
|
|
BUG_ON(ret < 0);
|
|
|
|
btrfs_release_path(extent_root, path);
|
|
path->leave_spinning = 1;
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root, &key, path,
|
|
-1, 1);
|
|
if (ret) {
|
|
printk(KERN_ERR "umm, got %d back from search"
|
|
", was looking for %llu\n", ret,
|
|
(unsigned long long)bytenr);
|
|
btrfs_print_leaf(extent_root, path->nodes[0]);
|
|
}
|
|
BUG_ON(ret);
|
|
extent_slot = path->slots[0];
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, extent_slot);
|
|
}
|
|
#endif
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
ei = btrfs_item_ptr(leaf, extent_slot,
|
|
struct btrfs_extent_item);
|
|
if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
|
|
struct btrfs_tree_block_info *bi;
|
|
BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
|
|
bi = (struct btrfs_tree_block_info *)(ei + 1);
|
|
WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
|
|
}
|
|
|
|
refs = btrfs_extent_refs(leaf, ei);
|
|
BUG_ON(refs < refs_to_drop);
|
|
refs -= refs_to_drop;
|
|
|
|
if (refs > 0) {
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
/*
|
|
* In the case of inline back ref, reference count will
|
|
* be updated by remove_extent_backref
|
|
*/
|
|
if (iref) {
|
|
BUG_ON(!found_extent);
|
|
} else {
|
|
btrfs_set_extent_refs(leaf, ei, refs);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
if (found_extent) {
|
|
ret = remove_extent_backref(trans, extent_root, path,
|
|
iref, refs_to_drop,
|
|
is_data);
|
|
BUG_ON(ret);
|
|
}
|
|
} else {
|
|
int mark_free = 0;
|
|
struct extent_buffer *must_clean = NULL;
|
|
|
|
if (found_extent) {
|
|
BUG_ON(is_data && refs_to_drop !=
|
|
extent_data_ref_count(root, path, iref));
|
|
if (iref) {
|
|
BUG_ON(path->slots[0] != extent_slot);
|
|
} else {
|
|
BUG_ON(path->slots[0] != extent_slot + 1);
|
|
path->slots[0] = extent_slot;
|
|
num_to_del = 2;
|
|
}
|
|
}
|
|
|
|
ret = pin_down_bytes(trans, root, path, bytenr,
|
|
num_bytes, is_data, 0, &must_clean);
|
|
if (ret > 0)
|
|
mark_free = 1;
|
|
BUG_ON(ret < 0);
|
|
/*
|
|
* it is going to be very rare for someone to be waiting
|
|
* on the block we're freeing. del_items might need to
|
|
* schedule, so rather than get fancy, just force it
|
|
* to blocking here
|
|
*/
|
|
if (must_clean)
|
|
btrfs_set_lock_blocking(must_clean);
|
|
|
|
ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
|
|
num_to_del);
|
|
BUG_ON(ret);
|
|
btrfs_release_path(extent_root, path);
|
|
|
|
if (must_clean) {
|
|
clean_tree_block(NULL, root, must_clean);
|
|
btrfs_tree_unlock(must_clean);
|
|
free_extent_buffer(must_clean);
|
|
}
|
|
|
|
if (is_data) {
|
|
ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
|
|
BUG_ON(ret);
|
|
} else {
|
|
invalidate_mapping_pages(info->btree_inode->i_mapping,
|
|
bytenr >> PAGE_CACHE_SHIFT,
|
|
(bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
|
|
}
|
|
|
|
ret = update_block_group(trans, root, bytenr, num_bytes, 0,
|
|
mark_free);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* when we free an extent, it is possible (and likely) that we free the last
|
|
* delayed ref for that extent as well. This searches the delayed ref tree for
|
|
* a given extent, and if there are no other delayed refs to be processed, it
|
|
* removes it from the tree.
|
|
*/
|
|
static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytenr)
|
|
{
|
|
struct btrfs_delayed_ref_head *head;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct rb_node *node;
|
|
int ret;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(trans, bytenr);
|
|
if (!head)
|
|
goto out;
|
|
|
|
node = rb_prev(&head->node.rb_node);
|
|
if (!node)
|
|
goto out;
|
|
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
|
|
|
|
/* there are still entries for this ref, we can't drop it */
|
|
if (ref->bytenr == bytenr)
|
|
goto out;
|
|
|
|
if (head->extent_op) {
|
|
if (!head->must_insert_reserved)
|
|
goto out;
|
|
kfree(head->extent_op);
|
|
head->extent_op = NULL;
|
|
}
|
|
|
|
/*
|
|
* waiting for the lock here would deadlock. If someone else has it
|
|
* locked they are already in the process of dropping it anyway
|
|
*/
|
|
if (!mutex_trylock(&head->mutex))
|
|
goto out;
|
|
|
|
/*
|
|
* at this point we have a head with no other entries. Go
|
|
* ahead and process it.
|
|
*/
|
|
head->node.in_tree = 0;
|
|
rb_erase(&head->node.rb_node, &delayed_refs->root);
|
|
|
|
delayed_refs->num_entries--;
|
|
|
|
/*
|
|
* we don't take a ref on the node because we're removing it from the
|
|
* tree, so we just steal the ref the tree was holding.
|
|
*/
|
|
delayed_refs->num_heads--;
|
|
if (list_empty(&head->cluster))
|
|
delayed_refs->num_heads_ready--;
|
|
|
|
list_del_init(&head->cluster);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
ret = run_one_delayed_ref(trans, root->fs_info->tree_root,
|
|
&head->node, head->extent_op,
|
|
head->must_insert_reserved);
|
|
BUG_ON(ret);
|
|
btrfs_put_delayed_ref(&head->node);
|
|
return 0;
|
|
out:
|
|
spin_unlock(&delayed_refs->lock);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* tree log blocks never actually go into the extent allocation
|
|
* tree, just update pinning info and exit early.
|
|
*/
|
|
if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
|
|
WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
|
|
/* unlocks the pinned mutex */
|
|
btrfs_pin_extent(root, bytenr, num_bytes, 1);
|
|
ret = 0;
|
|
} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
|
|
parent, root_objectid, (int)owner,
|
|
BTRFS_DROP_DELAYED_REF, NULL);
|
|
BUG_ON(ret);
|
|
ret = check_ref_cleanup(trans, root, bytenr);
|
|
BUG_ON(ret);
|
|
} else {
|
|
ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
|
|
parent, root_objectid, owner,
|
|
offset, BTRFS_DROP_DELAYED_REF, NULL);
|
|
BUG_ON(ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u32 blocksize,
|
|
u64 parent, u64 root_objectid, int level)
|
|
{
|
|
u64 used;
|
|
spin_lock(&root->node_lock);
|
|
used = btrfs_root_used(&root->root_item) - blocksize;
|
|
btrfs_set_root_used(&root->root_item, used);
|
|
spin_unlock(&root->node_lock);
|
|
|
|
return btrfs_free_extent(trans, root, bytenr, blocksize,
|
|
parent, root_objectid, level, 0);
|
|
}
|
|
|
|
static u64 stripe_align(struct btrfs_root *root, u64 val)
|
|
{
|
|
u64 mask = ((u64)root->stripesize - 1);
|
|
u64 ret = (val + mask) & ~mask;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* when we wait for progress in the block group caching, its because
|
|
* our allocation attempt failed at least once. So, we must sleep
|
|
* and let some progress happen before we try again.
|
|
*
|
|
* This function will sleep at least once waiting for new free space to
|
|
* show up, and then it will check the block group free space numbers
|
|
* for our min num_bytes. Another option is to have it go ahead
|
|
* and look in the rbtree for a free extent of a given size, but this
|
|
* is a good start.
|
|
*/
|
|
static noinline int
|
|
wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
|
|
u64 num_bytes)
|
|
{
|
|
struct btrfs_caching_control *caching_ctl;
|
|
DEFINE_WAIT(wait);
|
|
|
|
caching_ctl = get_caching_control(cache);
|
|
if (!caching_ctl)
|
|
return 0;
|
|
|
|
wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
|
|
(cache->free_space >= num_bytes));
|
|
|
|
put_caching_control(caching_ctl);
|
|
return 0;
|
|
}
|
|
|
|
static noinline int
|
|
wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
|
|
{
|
|
struct btrfs_caching_control *caching_ctl;
|
|
DEFINE_WAIT(wait);
|
|
|
|
caching_ctl = get_caching_control(cache);
|
|
if (!caching_ctl)
|
|
return 0;
|
|
|
|
wait_event(caching_ctl->wait, block_group_cache_done(cache));
|
|
|
|
put_caching_control(caching_ctl);
|
|
return 0;
|
|
}
|
|
|
|
enum btrfs_loop_type {
|
|
LOOP_FIND_IDEAL = 0,
|
|
LOOP_CACHING_NOWAIT = 1,
|
|
LOOP_CACHING_WAIT = 2,
|
|
LOOP_ALLOC_CHUNK = 3,
|
|
LOOP_NO_EMPTY_SIZE = 4,
|
|
};
|
|
|
|
/*
|
|
* walks the btree of allocated extents and find a hole of a given size.
|
|
* The key ins is changed to record the hole:
|
|
* ins->objectid == block start
|
|
* ins->flags = BTRFS_EXTENT_ITEM_KEY
|
|
* ins->offset == number of blocks
|
|
* Any available blocks before search_start are skipped.
|
|
*/
|
|
static noinline int find_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *orig_root,
|
|
u64 num_bytes, u64 empty_size,
|
|
u64 search_start, u64 search_end,
|
|
u64 hint_byte, struct btrfs_key *ins,
|
|
u64 exclude_start, u64 exclude_nr,
|
|
int data)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_root *root = orig_root->fs_info->extent_root;
|
|
struct btrfs_free_cluster *last_ptr = NULL;
|
|
struct btrfs_block_group_cache *block_group = NULL;
|
|
int empty_cluster = 2 * 1024 * 1024;
|
|
int allowed_chunk_alloc = 0;
|
|
int done_chunk_alloc = 0;
|
|
struct btrfs_space_info *space_info;
|
|
int last_ptr_loop = 0;
|
|
int loop = 0;
|
|
bool found_uncached_bg = false;
|
|
bool failed_cluster_refill = false;
|
|
bool failed_alloc = false;
|
|
u64 ideal_cache_percent = 0;
|
|
u64 ideal_cache_offset = 0;
|
|
|
|
WARN_ON(num_bytes < root->sectorsize);
|
|
btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
|
|
ins->objectid = 0;
|
|
ins->offset = 0;
|
|
|
|
space_info = __find_space_info(root->fs_info, data);
|
|
|
|
if (orig_root->ref_cows || empty_size)
|
|
allowed_chunk_alloc = 1;
|
|
|
|
if (data & BTRFS_BLOCK_GROUP_METADATA) {
|
|
last_ptr = &root->fs_info->meta_alloc_cluster;
|
|
if (!btrfs_test_opt(root, SSD))
|
|
empty_cluster = 64 * 1024;
|
|
}
|
|
|
|
if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
|
|
last_ptr = &root->fs_info->data_alloc_cluster;
|
|
}
|
|
|
|
if (last_ptr) {
|
|
spin_lock(&last_ptr->lock);
|
|
if (last_ptr->block_group)
|
|
hint_byte = last_ptr->window_start;
|
|
spin_unlock(&last_ptr->lock);
|
|
}
|
|
|
|
search_start = max(search_start, first_logical_byte(root, 0));
|
|
search_start = max(search_start, hint_byte);
|
|
|
|
if (!last_ptr)
|
|
empty_cluster = 0;
|
|
|
|
if (search_start == hint_byte) {
|
|
ideal_cache:
|
|
block_group = btrfs_lookup_block_group(root->fs_info,
|
|
search_start);
|
|
/*
|
|
* we don't want to use the block group if it doesn't match our
|
|
* allocation bits, or if its not cached.
|
|
*
|
|
* However if we are re-searching with an ideal block group
|
|
* picked out then we don't care that the block group is cached.
|
|
*/
|
|
if (block_group && block_group_bits(block_group, data) &&
|
|
(block_group->cached != BTRFS_CACHE_NO ||
|
|
search_start == ideal_cache_offset)) {
|
|
down_read(&space_info->groups_sem);
|
|
if (list_empty(&block_group->list) ||
|
|
block_group->ro) {
|
|
/*
|
|
* someone is removing this block group,
|
|
* we can't jump into the have_block_group
|
|
* target because our list pointers are not
|
|
* valid
|
|
*/
|
|
btrfs_put_block_group(block_group);
|
|
up_read(&space_info->groups_sem);
|
|
} else {
|
|
goto have_block_group;
|
|
}
|
|
} else if (block_group) {
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
}
|
|
search:
|
|
down_read(&space_info->groups_sem);
|
|
list_for_each_entry(block_group, &space_info->block_groups, list) {
|
|
u64 offset;
|
|
int cached;
|
|
|
|
atomic_inc(&block_group->count);
|
|
search_start = block_group->key.objectid;
|
|
|
|
have_block_group:
|
|
if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
|
|
u64 free_percent;
|
|
|
|
free_percent = btrfs_block_group_used(&block_group->item);
|
|
free_percent *= 100;
|
|
free_percent = div64_u64(free_percent,
|
|
block_group->key.offset);
|
|
free_percent = 100 - free_percent;
|
|
if (free_percent > ideal_cache_percent &&
|
|
likely(!block_group->ro)) {
|
|
ideal_cache_offset = block_group->key.objectid;
|
|
ideal_cache_percent = free_percent;
|
|
}
|
|
|
|
/*
|
|
* We only want to start kthread caching if we are at
|
|
* the point where we will wait for caching to make
|
|
* progress, or if our ideal search is over and we've
|
|
* found somebody to start caching.
|
|
*/
|
|
if (loop > LOOP_CACHING_NOWAIT ||
|
|
(loop > LOOP_FIND_IDEAL &&
|
|
atomic_read(&space_info->caching_threads) < 2)) {
|
|
ret = cache_block_group(block_group);
|
|
BUG_ON(ret);
|
|
}
|
|
found_uncached_bg = true;
|
|
|
|
/*
|
|
* If loop is set for cached only, try the next block
|
|
* group.
|
|
*/
|
|
if (loop == LOOP_FIND_IDEAL)
|
|
goto loop;
|
|
}
|
|
|
|
cached = block_group_cache_done(block_group);
|
|
if (unlikely(!cached))
|
|
found_uncached_bg = true;
|
|
|
|
if (unlikely(block_group->ro))
|
|
goto loop;
|
|
|
|
/*
|
|
* Ok we want to try and use the cluster allocator, so lets look
|
|
* there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
|
|
* have tried the cluster allocator plenty of times at this
|
|
* point and not have found anything, so we are likely way too
|
|
* fragmented for the clustering stuff to find anything, so lets
|
|
* just skip it and let the allocator find whatever block it can
|
|
* find
|
|
*/
|
|
if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
|
|
/*
|
|
* the refill lock keeps out other
|
|
* people trying to start a new cluster
|
|
*/
|
|
spin_lock(&last_ptr->refill_lock);
|
|
if (last_ptr->block_group &&
|
|
(last_ptr->block_group->ro ||
|
|
!block_group_bits(last_ptr->block_group, data))) {
|
|
offset = 0;
|
|
goto refill_cluster;
|
|
}
|
|
|
|
offset = btrfs_alloc_from_cluster(block_group, last_ptr,
|
|
num_bytes, search_start);
|
|
if (offset) {
|
|
/* we have a block, we're done */
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
goto checks;
|
|
}
|
|
|
|
spin_lock(&last_ptr->lock);
|
|
/*
|
|
* whoops, this cluster doesn't actually point to
|
|
* this block group. Get a ref on the block
|
|
* group is does point to and try again
|
|
*/
|
|
if (!last_ptr_loop && last_ptr->block_group &&
|
|
last_ptr->block_group != block_group) {
|
|
|
|
btrfs_put_block_group(block_group);
|
|
block_group = last_ptr->block_group;
|
|
atomic_inc(&block_group->count);
|
|
spin_unlock(&last_ptr->lock);
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
|
|
last_ptr_loop = 1;
|
|
search_start = block_group->key.objectid;
|
|
/*
|
|
* we know this block group is properly
|
|
* in the list because
|
|
* btrfs_remove_block_group, drops the
|
|
* cluster before it removes the block
|
|
* group from the list
|
|
*/
|
|
goto have_block_group;
|
|
}
|
|
spin_unlock(&last_ptr->lock);
|
|
refill_cluster:
|
|
/*
|
|
* this cluster didn't work out, free it and
|
|
* start over
|
|
*/
|
|
btrfs_return_cluster_to_free_space(NULL, last_ptr);
|
|
|
|
last_ptr_loop = 0;
|
|
|
|
/* allocate a cluster in this block group */
|
|
ret = btrfs_find_space_cluster(trans, root,
|
|
block_group, last_ptr,
|
|
offset, num_bytes,
|
|
empty_cluster + empty_size);
|
|
if (ret == 0) {
|
|
/*
|
|
* now pull our allocation out of this
|
|
* cluster
|
|
*/
|
|
offset = btrfs_alloc_from_cluster(block_group,
|
|
last_ptr, num_bytes,
|
|
search_start);
|
|
if (offset) {
|
|
/* we found one, proceed */
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
goto checks;
|
|
}
|
|
} else if (!cached && loop > LOOP_CACHING_NOWAIT
|
|
&& !failed_cluster_refill) {
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
|
|
failed_cluster_refill = true;
|
|
wait_block_group_cache_progress(block_group,
|
|
num_bytes + empty_cluster + empty_size);
|
|
goto have_block_group;
|
|
}
|
|
|
|
/*
|
|
* at this point we either didn't find a cluster
|
|
* or we weren't able to allocate a block from our
|
|
* cluster. Free the cluster we've been trying
|
|
* to use, and go to the next block group
|
|
*/
|
|
btrfs_return_cluster_to_free_space(NULL, last_ptr);
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
goto loop;
|
|
}
|
|
|
|
offset = btrfs_find_space_for_alloc(block_group, search_start,
|
|
num_bytes, empty_size);
|
|
/*
|
|
* If we didn't find a chunk, and we haven't failed on this
|
|
* block group before, and this block group is in the middle of
|
|
* caching and we are ok with waiting, then go ahead and wait
|
|
* for progress to be made, and set failed_alloc to true.
|
|
*
|
|
* If failed_alloc is true then we've already waited on this
|
|
* block group once and should move on to the next block group.
|
|
*/
|
|
if (!offset && !failed_alloc && !cached &&
|
|
loop > LOOP_CACHING_NOWAIT) {
|
|
wait_block_group_cache_progress(block_group,
|
|
num_bytes + empty_size);
|
|
failed_alloc = true;
|
|
goto have_block_group;
|
|
} else if (!offset) {
|
|
goto loop;
|
|
}
|
|
checks:
|
|
search_start = stripe_align(root, offset);
|
|
/* move on to the next group */
|
|
if (search_start + num_bytes >= search_end) {
|
|
btrfs_add_free_space(block_group, offset, num_bytes);
|
|
goto loop;
|
|
}
|
|
|
|
/* move on to the next group */
|
|
if (search_start + num_bytes >
|
|
block_group->key.objectid + block_group->key.offset) {
|
|
btrfs_add_free_space(block_group, offset, num_bytes);
|
|
goto loop;
|
|
}
|
|
|
|
if (exclude_nr > 0 &&
|
|
(search_start + num_bytes > exclude_start &&
|
|
search_start < exclude_start + exclude_nr)) {
|
|
search_start = exclude_start + exclude_nr;
|
|
|
|
btrfs_add_free_space(block_group, offset, num_bytes);
|
|
/*
|
|
* if search_start is still in this block group
|
|
* then we just re-search this block group
|
|
*/
|
|
if (search_start >= block_group->key.objectid &&
|
|
search_start < (block_group->key.objectid +
|
|
block_group->key.offset))
|
|
goto have_block_group;
|
|
goto loop;
|
|
}
|
|
|
|
ins->objectid = search_start;
|
|
ins->offset = num_bytes;
|
|
|
|
if (offset < search_start)
|
|
btrfs_add_free_space(block_group, offset,
|
|
search_start - offset);
|
|
BUG_ON(offset > search_start);
|
|
|
|
update_reserved_extents(block_group, num_bytes, 1);
|
|
|
|
/* we are all good, lets return */
|
|
break;
|
|
loop:
|
|
failed_cluster_refill = false;
|
|
failed_alloc = false;
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
up_read(&space_info->groups_sem);
|
|
|
|
/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
|
|
* for them to make caching progress. Also
|
|
* determine the best possible bg to cache
|
|
* LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
|
|
* caching kthreads as we move along
|
|
* LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
|
|
* LOOP_ALLOC_CHUNK, force a chunk allocation and try again
|
|
* LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
|
|
* again
|
|
*/
|
|
if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
|
|
(found_uncached_bg || empty_size || empty_cluster ||
|
|
allowed_chunk_alloc)) {
|
|
if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
|
|
found_uncached_bg = false;
|
|
loop++;
|
|
if (!ideal_cache_percent &&
|
|
atomic_read(&space_info->caching_threads))
|
|
goto search;
|
|
|
|
/*
|
|
* 1 of the following 2 things have happened so far
|
|
*
|
|
* 1) We found an ideal block group for caching that
|
|
* is mostly full and will cache quickly, so we might
|
|
* as well wait for it.
|
|
*
|
|
* 2) We searched for cached only and we didn't find
|
|
* anything, and we didn't start any caching kthreads
|
|
* either, so chances are we will loop through and
|
|
* start a couple caching kthreads, and then come back
|
|
* around and just wait for them. This will be slower
|
|
* because we will have 2 caching kthreads reading at
|
|
* the same time when we could have just started one
|
|
* and waited for it to get far enough to give us an
|
|
* allocation, so go ahead and go to the wait caching
|
|
* loop.
|
|
*/
|
|
loop = LOOP_CACHING_WAIT;
|
|
search_start = ideal_cache_offset;
|
|
ideal_cache_percent = 0;
|
|
goto ideal_cache;
|
|
} else if (loop == LOOP_FIND_IDEAL) {
|
|
/*
|
|
* Didn't find a uncached bg, wait on anything we find
|
|
* next.
|
|
*/
|
|
loop = LOOP_CACHING_WAIT;
|
|
goto search;
|
|
}
|
|
|
|
if (loop < LOOP_CACHING_WAIT) {
|
|
loop++;
|
|
goto search;
|
|
}
|
|
|
|
if (loop == LOOP_ALLOC_CHUNK) {
|
|
empty_size = 0;
|
|
empty_cluster = 0;
|
|
}
|
|
|
|
if (allowed_chunk_alloc) {
|
|
ret = do_chunk_alloc(trans, root, num_bytes +
|
|
2 * 1024 * 1024, data, 1);
|
|
allowed_chunk_alloc = 0;
|
|
done_chunk_alloc = 1;
|
|
} else if (!done_chunk_alloc) {
|
|
space_info->force_alloc = 1;
|
|
}
|
|
|
|
if (loop < LOOP_NO_EMPTY_SIZE) {
|
|
loop++;
|
|
goto search;
|
|
}
|
|
ret = -ENOSPC;
|
|
} else if (!ins->objectid) {
|
|
ret = -ENOSPC;
|
|
}
|
|
|
|
/* we found what we needed */
|
|
if (ins->objectid) {
|
|
if (!(data & BTRFS_BLOCK_GROUP_DATA))
|
|
trans->block_group = block_group->key.objectid;
|
|
|
|
btrfs_put_block_group(block_group);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
|
|
int dump_block_groups)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
spin_lock(&info->lock);
|
|
printk(KERN_INFO "space_info has %llu free, is %sfull\n",
|
|
(unsigned long long)(info->total_bytes - info->bytes_used -
|
|
info->bytes_pinned - info->bytes_reserved -
|
|
info->bytes_super),
|
|
(info->full) ? "" : "not ");
|
|
printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu,"
|
|
" may_use=%llu, used=%llu, root=%llu, super=%llu, reserved=%llu"
|
|
"\n",
|
|
(unsigned long long)info->total_bytes,
|
|
(unsigned long long)info->bytes_pinned,
|
|
(unsigned long long)info->bytes_delalloc,
|
|
(unsigned long long)info->bytes_may_use,
|
|
(unsigned long long)info->bytes_used,
|
|
(unsigned long long)info->bytes_root,
|
|
(unsigned long long)info->bytes_super,
|
|
(unsigned long long)info->bytes_reserved);
|
|
spin_unlock(&info->lock);
|
|
|
|
if (!dump_block_groups)
|
|
return;
|
|
|
|
down_read(&info->groups_sem);
|
|
list_for_each_entry(cache, &info->block_groups, list) {
|
|
spin_lock(&cache->lock);
|
|
printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
|
|
"%llu pinned %llu reserved\n",
|
|
(unsigned long long)cache->key.objectid,
|
|
(unsigned long long)cache->key.offset,
|
|
(unsigned long long)btrfs_block_group_used(&cache->item),
|
|
(unsigned long long)cache->pinned,
|
|
(unsigned long long)cache->reserved);
|
|
btrfs_dump_free_space(cache, bytes);
|
|
spin_unlock(&cache->lock);
|
|
}
|
|
up_read(&info->groups_sem);
|
|
}
|
|
|
|
int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 num_bytes, u64 min_alloc_size,
|
|
u64 empty_size, u64 hint_byte,
|
|
u64 search_end, struct btrfs_key *ins,
|
|
u64 data)
|
|
{
|
|
int ret;
|
|
u64 search_start = 0;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
|
|
data = btrfs_get_alloc_profile(root, data);
|
|
again:
|
|
/*
|
|
* the only place that sets empty_size is btrfs_realloc_node, which
|
|
* is not called recursively on allocations
|
|
*/
|
|
if (empty_size || root->ref_cows) {
|
|
if (!(data & BTRFS_BLOCK_GROUP_METADATA)) {
|
|
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
2 * 1024 * 1024,
|
|
BTRFS_BLOCK_GROUP_METADATA |
|
|
(info->metadata_alloc_profile &
|
|
info->avail_metadata_alloc_bits), 0);
|
|
}
|
|
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
num_bytes + 2 * 1024 * 1024, data, 0);
|
|
}
|
|
|
|
WARN_ON(num_bytes < root->sectorsize);
|
|
ret = find_free_extent(trans, root, num_bytes, empty_size,
|
|
search_start, search_end, hint_byte, ins,
|
|
trans->alloc_exclude_start,
|
|
trans->alloc_exclude_nr, data);
|
|
|
|
if (ret == -ENOSPC && num_bytes > min_alloc_size) {
|
|
num_bytes = num_bytes >> 1;
|
|
num_bytes = num_bytes & ~(root->sectorsize - 1);
|
|
num_bytes = max(num_bytes, min_alloc_size);
|
|
do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
num_bytes, data, 1);
|
|
goto again;
|
|
}
|
|
if (ret == -ENOSPC) {
|
|
struct btrfs_space_info *sinfo;
|
|
|
|
sinfo = __find_space_info(root->fs_info, data);
|
|
printk(KERN_ERR "btrfs allocation failed flags %llu, "
|
|
"wanted %llu\n", (unsigned long long)data,
|
|
(unsigned long long)num_bytes);
|
|
dump_space_info(sinfo, num_bytes, 1);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
int ret = 0;
|
|
|
|
cache = btrfs_lookup_block_group(root->fs_info, start);
|
|
if (!cache) {
|
|
printk(KERN_ERR "Unable to find block group for %llu\n",
|
|
(unsigned long long)start);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
ret = btrfs_discard_extent(root, start, len);
|
|
|
|
btrfs_add_free_space(cache, start, len);
|
|
update_reserved_extents(cache, len, 0);
|
|
btrfs_put_block_group(cache);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 parent, u64 root_objectid,
|
|
u64 flags, u64 owner, u64 offset,
|
|
struct btrfs_key *ins, int ref_mod)
|
|
{
|
|
int ret;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_extent_item *extent_item;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
int type;
|
|
u32 size;
|
|
|
|
if (parent > 0)
|
|
type = BTRFS_SHARED_DATA_REF_KEY;
|
|
else
|
|
type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
|
|
size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
|
|
ins, size);
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
extent_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item);
|
|
btrfs_set_extent_refs(leaf, extent_item, ref_mod);
|
|
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
|
|
btrfs_set_extent_flags(leaf, extent_item,
|
|
flags | BTRFS_EXTENT_FLAG_DATA);
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
|
|
btrfs_set_extent_inline_ref_type(leaf, iref, type);
|
|
if (parent > 0) {
|
|
struct btrfs_shared_data_ref *ref;
|
|
ref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
|
|
btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
|
|
} else {
|
|
struct btrfs_extent_data_ref *ref;
|
|
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
|
|
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
|
|
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
|
|
btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
btrfs_free_path(path);
|
|
|
|
ret = update_block_group(trans, root, ins->objectid, ins->offset,
|
|
1, 0);
|
|
if (ret) {
|
|
printk(KERN_ERR "btrfs update block group failed for %llu "
|
|
"%llu\n", (unsigned long long)ins->objectid,
|
|
(unsigned long long)ins->offset);
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 parent, u64 root_objectid,
|
|
u64 flags, struct btrfs_disk_key *key,
|
|
int level, struct btrfs_key *ins)
|
|
{
|
|
int ret;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_extent_item *extent_item;
|
|
struct btrfs_tree_block_info *block_info;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
|
|
ins, size);
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
extent_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item);
|
|
btrfs_set_extent_refs(leaf, extent_item, 1);
|
|
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
|
|
btrfs_set_extent_flags(leaf, extent_item,
|
|
flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
|
|
block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
|
|
|
|
btrfs_set_tree_block_key(leaf, block_info, key);
|
|
btrfs_set_tree_block_level(leaf, block_info, level);
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
|
|
if (parent > 0) {
|
|
BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
|
|
btrfs_set_extent_inline_ref_type(leaf, iref,
|
|
BTRFS_SHARED_BLOCK_REF_KEY);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
|
|
} else {
|
|
btrfs_set_extent_inline_ref_type(leaf, iref,
|
|
BTRFS_TREE_BLOCK_REF_KEY);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_free_path(path);
|
|
|
|
ret = update_block_group(trans, root, ins->objectid, ins->offset,
|
|
1, 0);
|
|
if (ret) {
|
|
printk(KERN_ERR "btrfs update block group failed for %llu "
|
|
"%llu\n", (unsigned long long)ins->objectid,
|
|
(unsigned long long)ins->offset);
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 root_objectid, u64 owner,
|
|
u64 offset, struct btrfs_key *ins)
|
|
{
|
|
int ret;
|
|
|
|
BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
|
|
0, root_objectid, owner, offset,
|
|
BTRFS_ADD_DELAYED_EXTENT, NULL);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this is used by the tree logging recovery code. It records that
|
|
* an extent has been allocated and makes sure to clear the free
|
|
* space cache bits as well
|
|
*/
|
|
int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 root_objectid, u64 owner, u64 offset,
|
|
struct btrfs_key *ins)
|
|
{
|
|
int ret;
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_caching_control *caching_ctl;
|
|
u64 start = ins->objectid;
|
|
u64 num_bytes = ins->offset;
|
|
|
|
block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
|
|
cache_block_group(block_group);
|
|
caching_ctl = get_caching_control(block_group);
|
|
|
|
if (!caching_ctl) {
|
|
BUG_ON(!block_group_cache_done(block_group));
|
|
ret = btrfs_remove_free_space(block_group, start, num_bytes);
|
|
BUG_ON(ret);
|
|
} else {
|
|
mutex_lock(&caching_ctl->mutex);
|
|
|
|
if (start >= caching_ctl->progress) {
|
|
ret = add_excluded_extent(root, start, num_bytes);
|
|
BUG_ON(ret);
|
|
} else if (start + num_bytes <= caching_ctl->progress) {
|
|
ret = btrfs_remove_free_space(block_group,
|
|
start, num_bytes);
|
|
BUG_ON(ret);
|
|
} else {
|
|
num_bytes = caching_ctl->progress - start;
|
|
ret = btrfs_remove_free_space(block_group,
|
|
start, num_bytes);
|
|
BUG_ON(ret);
|
|
|
|
start = caching_ctl->progress;
|
|
num_bytes = ins->objectid + ins->offset -
|
|
caching_ctl->progress;
|
|
ret = add_excluded_extent(root, start, num_bytes);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
mutex_unlock(&caching_ctl->mutex);
|
|
put_caching_control(caching_ctl);
|
|
}
|
|
|
|
update_reserved_extents(block_group, ins->offset, 1);
|
|
btrfs_put_block_group(block_group);
|
|
ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
|
|
0, owner, offset, ins, 1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* finds a free extent and does all the dirty work required for allocation
|
|
* returns the key for the extent through ins, and a tree buffer for
|
|
* the first block of the extent through buf.
|
|
*
|
|
* returns 0 if everything worked, non-zero otherwise.
|
|
*/
|
|
static int alloc_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 num_bytes, u64 parent, u64 root_objectid,
|
|
struct btrfs_disk_key *key, int level,
|
|
u64 empty_size, u64 hint_byte, u64 search_end,
|
|
struct btrfs_key *ins)
|
|
{
|
|
int ret;
|
|
u64 flags = 0;
|
|
|
|
ret = btrfs_reserve_extent(trans, root, num_bytes, num_bytes,
|
|
empty_size, hint_byte, search_end,
|
|
ins, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
|
|
if (parent == 0)
|
|
parent = ins->objectid;
|
|
flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
} else
|
|
BUG_ON(parent > 0);
|
|
|
|
if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
struct btrfs_delayed_extent_op *extent_op;
|
|
extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
|
|
BUG_ON(!extent_op);
|
|
if (key)
|
|
memcpy(&extent_op->key, key, sizeof(extent_op->key));
|
|
else
|
|
memset(&extent_op->key, 0, sizeof(extent_op->key));
|
|
extent_op->flags_to_set = flags;
|
|
extent_op->update_key = 1;
|
|
extent_op->update_flags = 1;
|
|
extent_op->is_data = 0;
|
|
|
|
ret = btrfs_add_delayed_tree_ref(trans, ins->objectid,
|
|
ins->offset, parent, root_objectid,
|
|
level, BTRFS_ADD_DELAYED_EXTENT,
|
|
extent_op);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
if (root_objectid == root->root_key.objectid) {
|
|
u64 used;
|
|
spin_lock(&root->node_lock);
|
|
used = btrfs_root_used(&root->root_item) + num_bytes;
|
|
btrfs_set_root_used(&root->root_item, used);
|
|
spin_unlock(&root->node_lock);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u32 blocksize,
|
|
int level)
|
|
{
|
|
struct extent_buffer *buf;
|
|
|
|
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
|
|
if (!buf)
|
|
return ERR_PTR(-ENOMEM);
|
|
btrfs_set_header_generation(buf, trans->transid);
|
|
btrfs_set_buffer_lockdep_class(buf, level);
|
|
btrfs_tree_lock(buf);
|
|
clean_tree_block(trans, root, buf);
|
|
|
|
btrfs_set_lock_blocking(buf);
|
|
btrfs_set_buffer_uptodate(buf);
|
|
|
|
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
|
|
/*
|
|
* we allow two log transactions at a time, use different
|
|
* EXENT bit to differentiate dirty pages.
|
|
*/
|
|
if (root->log_transid % 2 == 0)
|
|
set_extent_dirty(&root->dirty_log_pages, buf->start,
|
|
buf->start + buf->len - 1, GFP_NOFS);
|
|
else
|
|
set_extent_new(&root->dirty_log_pages, buf->start,
|
|
buf->start + buf->len - 1, GFP_NOFS);
|
|
} else {
|
|
set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
|
|
buf->start + buf->len - 1, GFP_NOFS);
|
|
}
|
|
trans->blocks_used++;
|
|
/* this returns a buffer locked for blocking */
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* helper function to allocate a block for a given tree
|
|
* returns the tree buffer or NULL.
|
|
*/
|
|
struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u32 blocksize,
|
|
u64 parent, u64 root_objectid,
|
|
struct btrfs_disk_key *key, int level,
|
|
u64 hint, u64 empty_size)
|
|
{
|
|
struct btrfs_key ins;
|
|
int ret;
|
|
struct extent_buffer *buf;
|
|
|
|
ret = alloc_tree_block(trans, root, blocksize, parent, root_objectid,
|
|
key, level, empty_size, hint, (u64)-1, &ins);
|
|
if (ret) {
|
|
BUG_ON(ret > 0);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
buf = btrfs_init_new_buffer(trans, root, ins.objectid,
|
|
blocksize, level);
|
|
return buf;
|
|
}
|
|
|
|
struct walk_control {
|
|
u64 refs[BTRFS_MAX_LEVEL];
|
|
u64 flags[BTRFS_MAX_LEVEL];
|
|
struct btrfs_key update_progress;
|
|
int stage;
|
|
int level;
|
|
int shared_level;
|
|
int update_ref;
|
|
int keep_locks;
|
|
int reada_slot;
|
|
int reada_count;
|
|
};
|
|
|
|
#define DROP_REFERENCE 1
|
|
#define UPDATE_BACKREF 2
|
|
|
|
static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct walk_control *wc,
|
|
struct btrfs_path *path)
|
|
{
|
|
u64 bytenr;
|
|
u64 generation;
|
|
u64 refs;
|
|
u64 flags;
|
|
u64 last = 0;
|
|
u32 nritems;
|
|
u32 blocksize;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *eb;
|
|
int ret;
|
|
int slot;
|
|
int nread = 0;
|
|
|
|
if (path->slots[wc->level] < wc->reada_slot) {
|
|
wc->reada_count = wc->reada_count * 2 / 3;
|
|
wc->reada_count = max(wc->reada_count, 2);
|
|
} else {
|
|
wc->reada_count = wc->reada_count * 3 / 2;
|
|
wc->reada_count = min_t(int, wc->reada_count,
|
|
BTRFS_NODEPTRS_PER_BLOCK(root));
|
|
}
|
|
|
|
eb = path->nodes[wc->level];
|
|
nritems = btrfs_header_nritems(eb);
|
|
blocksize = btrfs_level_size(root, wc->level - 1);
|
|
|
|
for (slot = path->slots[wc->level]; slot < nritems; slot++) {
|
|
if (nread >= wc->reada_count)
|
|
break;
|
|
|
|
cond_resched();
|
|
bytenr = btrfs_node_blockptr(eb, slot);
|
|
generation = btrfs_node_ptr_generation(eb, slot);
|
|
|
|
if (slot == path->slots[wc->level])
|
|
goto reada;
|
|
|
|
if (wc->stage == UPDATE_BACKREF &&
|
|
generation <= root->root_key.offset)
|
|
continue;
|
|
|
|
/* We don't lock the tree block, it's OK to be racy here */
|
|
ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
|
|
&refs, &flags);
|
|
BUG_ON(ret);
|
|
BUG_ON(refs == 0);
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (refs == 1)
|
|
goto reada;
|
|
|
|
if (wc->level == 1 &&
|
|
(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
continue;
|
|
if (!wc->update_ref ||
|
|
generation <= root->root_key.offset)
|
|
continue;
|
|
btrfs_node_key_to_cpu(eb, &key, slot);
|
|
ret = btrfs_comp_cpu_keys(&key,
|
|
&wc->update_progress);
|
|
if (ret < 0)
|
|
continue;
|
|
} else {
|
|
if (wc->level == 1 &&
|
|
(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
continue;
|
|
}
|
|
reada:
|
|
ret = readahead_tree_block(root, bytenr, blocksize,
|
|
generation);
|
|
if (ret)
|
|
break;
|
|
last = bytenr + blocksize;
|
|
nread++;
|
|
}
|
|
wc->reada_slot = slot;
|
|
}
|
|
|
|
/*
|
|
* hepler to process tree block while walking down the tree.
|
|
*
|
|
* when wc->stage == UPDATE_BACKREF, this function updates
|
|
* back refs for pointers in the block.
|
|
*
|
|
* NOTE: return value 1 means we should stop walking down.
|
|
*/
|
|
static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc, int lookup_info)
|
|
{
|
|
int level = wc->level;
|
|
struct extent_buffer *eb = path->nodes[level];
|
|
u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
int ret;
|
|
|
|
if (wc->stage == UPDATE_BACKREF &&
|
|
btrfs_header_owner(eb) != root->root_key.objectid)
|
|
return 1;
|
|
|
|
/*
|
|
* when reference count of tree block is 1, it won't increase
|
|
* again. once full backref flag is set, we never clear it.
|
|
*/
|
|
if (lookup_info &&
|
|
((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
|
|
(wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
|
|
BUG_ON(!path->locks[level]);
|
|
ret = btrfs_lookup_extent_info(trans, root,
|
|
eb->start, eb->len,
|
|
&wc->refs[level],
|
|
&wc->flags[level]);
|
|
BUG_ON(ret);
|
|
BUG_ON(wc->refs[level] == 0);
|
|
}
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (wc->refs[level] > 1)
|
|
return 1;
|
|
|
|
if (path->locks[level] && !wc->keep_locks) {
|
|
btrfs_tree_unlock(eb);
|
|
path->locks[level] = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* wc->stage == UPDATE_BACKREF */
|
|
if (!(wc->flags[level] & flag)) {
|
|
BUG_ON(!path->locks[level]);
|
|
ret = btrfs_inc_ref(trans, root, eb, 1);
|
|
BUG_ON(ret);
|
|
ret = btrfs_dec_ref(trans, root, eb, 0);
|
|
BUG_ON(ret);
|
|
ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
|
|
eb->len, flag, 0);
|
|
BUG_ON(ret);
|
|
wc->flags[level] |= flag;
|
|
}
|
|
|
|
/*
|
|
* the block is shared by multiple trees, so it's not good to
|
|
* keep the tree lock
|
|
*/
|
|
if (path->locks[level] && level > 0) {
|
|
btrfs_tree_unlock(eb);
|
|
path->locks[level] = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hepler to process tree block pointer.
|
|
*
|
|
* when wc->stage == DROP_REFERENCE, this function checks
|
|
* reference count of the block pointed to. if the block
|
|
* is shared and we need update back refs for the subtree
|
|
* rooted at the block, this function changes wc->stage to
|
|
* UPDATE_BACKREF. if the block is shared and there is no
|
|
* need to update back, this function drops the reference
|
|
* to the block.
|
|
*
|
|
* NOTE: return value 1 means we should stop walking down.
|
|
*/
|
|
static noinline int do_walk_down(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc, int *lookup_info)
|
|
{
|
|
u64 bytenr;
|
|
u64 generation;
|
|
u64 parent;
|
|
u32 blocksize;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *next;
|
|
int level = wc->level;
|
|
int reada = 0;
|
|
int ret = 0;
|
|
|
|
generation = btrfs_node_ptr_generation(path->nodes[level],
|
|
path->slots[level]);
|
|
/*
|
|
* if the lower level block was created before the snapshot
|
|
* was created, we know there is no need to update back refs
|
|
* for the subtree
|
|
*/
|
|
if (wc->stage == UPDATE_BACKREF &&
|
|
generation <= root->root_key.offset) {
|
|
*lookup_info = 1;
|
|
return 1;
|
|
}
|
|
|
|
bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
|
|
blocksize = btrfs_level_size(root, level - 1);
|
|
|
|
next = btrfs_find_tree_block(root, bytenr, blocksize);
|
|
if (!next) {
|
|
next = btrfs_find_create_tree_block(root, bytenr, blocksize);
|
|
reada = 1;
|
|
}
|
|
btrfs_tree_lock(next);
|
|
btrfs_set_lock_blocking(next);
|
|
|
|
ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
|
|
&wc->refs[level - 1],
|
|
&wc->flags[level - 1]);
|
|
BUG_ON(ret);
|
|
BUG_ON(wc->refs[level - 1] == 0);
|
|
*lookup_info = 0;
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (wc->refs[level - 1] > 1) {
|
|
if (level == 1 &&
|
|
(wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
goto skip;
|
|
|
|
if (!wc->update_ref ||
|
|
generation <= root->root_key.offset)
|
|
goto skip;
|
|
|
|
btrfs_node_key_to_cpu(path->nodes[level], &key,
|
|
path->slots[level]);
|
|
ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
|
|
if (ret < 0)
|
|
goto skip;
|
|
|
|
wc->stage = UPDATE_BACKREF;
|
|
wc->shared_level = level - 1;
|
|
}
|
|
} else {
|
|
if (level == 1 &&
|
|
(wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
goto skip;
|
|
}
|
|
|
|
if (!btrfs_buffer_uptodate(next, generation)) {
|
|
btrfs_tree_unlock(next);
|
|
free_extent_buffer(next);
|
|
next = NULL;
|
|
*lookup_info = 1;
|
|
}
|
|
|
|
if (!next) {
|
|
if (reada && level == 1)
|
|
reada_walk_down(trans, root, wc, path);
|
|
next = read_tree_block(root, bytenr, blocksize, generation);
|
|
btrfs_tree_lock(next);
|
|
btrfs_set_lock_blocking(next);
|
|
}
|
|
|
|
level--;
|
|
BUG_ON(level != btrfs_header_level(next));
|
|
path->nodes[level] = next;
|
|
path->slots[level] = 0;
|
|
path->locks[level] = 1;
|
|
wc->level = level;
|
|
if (wc->level == 1)
|
|
wc->reada_slot = 0;
|
|
return 0;
|
|
skip:
|
|
wc->refs[level - 1] = 0;
|
|
wc->flags[level - 1] = 0;
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
|
|
parent = path->nodes[level]->start;
|
|
} else {
|
|
BUG_ON(root->root_key.objectid !=
|
|
btrfs_header_owner(path->nodes[level]));
|
|
parent = 0;
|
|
}
|
|
|
|
ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
|
|
root->root_key.objectid, level - 1, 0);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_tree_unlock(next);
|
|
free_extent_buffer(next);
|
|
*lookup_info = 1;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* hepler to process tree block while walking up the tree.
|
|
*
|
|
* when wc->stage == DROP_REFERENCE, this function drops
|
|
* reference count on the block.
|
|
*
|
|
* when wc->stage == UPDATE_BACKREF, this function changes
|
|
* wc->stage back to DROP_REFERENCE if we changed wc->stage
|
|
* to UPDATE_BACKREF previously while processing the block.
|
|
*
|
|
* NOTE: return value 1 means we should stop walking up.
|
|
*/
|
|
static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc)
|
|
{
|
|
int ret = 0;
|
|
int level = wc->level;
|
|
struct extent_buffer *eb = path->nodes[level];
|
|
u64 parent = 0;
|
|
|
|
if (wc->stage == UPDATE_BACKREF) {
|
|
BUG_ON(wc->shared_level < level);
|
|
if (level < wc->shared_level)
|
|
goto out;
|
|
|
|
ret = find_next_key(path, level + 1, &wc->update_progress);
|
|
if (ret > 0)
|
|
wc->update_ref = 0;
|
|
|
|
wc->stage = DROP_REFERENCE;
|
|
wc->shared_level = -1;
|
|
path->slots[level] = 0;
|
|
|
|
/*
|
|
* check reference count again if the block isn't locked.
|
|
* we should start walking down the tree again if reference
|
|
* count is one.
|
|
*/
|
|
if (!path->locks[level]) {
|
|
BUG_ON(level == 0);
|
|
btrfs_tree_lock(eb);
|
|
btrfs_set_lock_blocking(eb);
|
|
path->locks[level] = 1;
|
|
|
|
ret = btrfs_lookup_extent_info(trans, root,
|
|
eb->start, eb->len,
|
|
&wc->refs[level],
|
|
&wc->flags[level]);
|
|
BUG_ON(ret);
|
|
BUG_ON(wc->refs[level] == 0);
|
|
if (wc->refs[level] == 1) {
|
|
btrfs_tree_unlock(eb);
|
|
path->locks[level] = 0;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* wc->stage == DROP_REFERENCE */
|
|
BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
|
|
|
|
if (wc->refs[level] == 1) {
|
|
if (level == 0) {
|
|
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
|
|
ret = btrfs_dec_ref(trans, root, eb, 1);
|
|
else
|
|
ret = btrfs_dec_ref(trans, root, eb, 0);
|
|
BUG_ON(ret);
|
|
}
|
|
/* make block locked assertion in clean_tree_block happy */
|
|
if (!path->locks[level] &&
|
|
btrfs_header_generation(eb) == trans->transid) {
|
|
btrfs_tree_lock(eb);
|
|
btrfs_set_lock_blocking(eb);
|
|
path->locks[level] = 1;
|
|
}
|
|
clean_tree_block(trans, root, eb);
|
|
}
|
|
|
|
if (eb == root->node) {
|
|
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
|
|
parent = eb->start;
|
|
else
|
|
BUG_ON(root->root_key.objectid !=
|
|
btrfs_header_owner(eb));
|
|
} else {
|
|
if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
|
|
parent = path->nodes[level + 1]->start;
|
|
else
|
|
BUG_ON(root->root_key.objectid !=
|
|
btrfs_header_owner(path->nodes[level + 1]));
|
|
}
|
|
|
|
ret = btrfs_free_extent(trans, root, eb->start, eb->len, parent,
|
|
root->root_key.objectid, level, 0);
|
|
BUG_ON(ret);
|
|
out:
|
|
wc->refs[level] = 0;
|
|
wc->flags[level] = 0;
|
|
return ret;
|
|
}
|
|
|
|
static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc)
|
|
{
|
|
int level = wc->level;
|
|
int lookup_info = 1;
|
|
int ret;
|
|
|
|
while (level >= 0) {
|
|
if (path->slots[level] >=
|
|
btrfs_header_nritems(path->nodes[level]))
|
|
break;
|
|
|
|
ret = walk_down_proc(trans, root, path, wc, lookup_info);
|
|
if (ret > 0)
|
|
break;
|
|
|
|
if (level == 0)
|
|
break;
|
|
|
|
ret = do_walk_down(trans, root, path, wc, &lookup_info);
|
|
if (ret > 0) {
|
|
path->slots[level]++;
|
|
continue;
|
|
}
|
|
level = wc->level;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc, int max_level)
|
|
{
|
|
int level = wc->level;
|
|
int ret;
|
|
|
|
path->slots[level] = btrfs_header_nritems(path->nodes[level]);
|
|
while (level < max_level && path->nodes[level]) {
|
|
wc->level = level;
|
|
if (path->slots[level] + 1 <
|
|
btrfs_header_nritems(path->nodes[level])) {
|
|
path->slots[level]++;
|
|
return 0;
|
|
} else {
|
|
ret = walk_up_proc(trans, root, path, wc);
|
|
if (ret > 0)
|
|
return 0;
|
|
|
|
if (path->locks[level]) {
|
|
btrfs_tree_unlock(path->nodes[level]);
|
|
path->locks[level] = 0;
|
|
}
|
|
free_extent_buffer(path->nodes[level]);
|
|
path->nodes[level] = NULL;
|
|
level++;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* drop a subvolume tree.
|
|
*
|
|
* this function traverses the tree freeing any blocks that only
|
|
* referenced by the tree.
|
|
*
|
|
* when a shared tree block is found. this function decreases its
|
|
* reference count by one. if update_ref is true, this function
|
|
* also make sure backrefs for the shared block and all lower level
|
|
* blocks are properly updated.
|
|
*/
|
|
int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *tree_root = root->fs_info->tree_root;
|
|
struct btrfs_root_item *root_item = &root->root_item;
|
|
struct walk_control *wc;
|
|
struct btrfs_key key;
|
|
int err = 0;
|
|
int ret;
|
|
int level;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
wc = kzalloc(sizeof(*wc), GFP_NOFS);
|
|
BUG_ON(!wc);
|
|
|
|
trans = btrfs_start_transaction(tree_root, 1);
|
|
|
|
if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
|
|
level = btrfs_header_level(root->node);
|
|
path->nodes[level] = btrfs_lock_root_node(root);
|
|
btrfs_set_lock_blocking(path->nodes[level]);
|
|
path->slots[level] = 0;
|
|
path->locks[level] = 1;
|
|
memset(&wc->update_progress, 0,
|
|
sizeof(wc->update_progress));
|
|
} else {
|
|
btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
|
|
memcpy(&wc->update_progress, &key,
|
|
sizeof(wc->update_progress));
|
|
|
|
level = root_item->drop_level;
|
|
BUG_ON(level == 0);
|
|
path->lowest_level = level;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
path->lowest_level = 0;
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
WARN_ON(ret > 0);
|
|
|
|
/*
|
|
* unlock our path, this is safe because only this
|
|
* function is allowed to delete this snapshot
|
|
*/
|
|
btrfs_unlock_up_safe(path, 0);
|
|
|
|
level = btrfs_header_level(root->node);
|
|
while (1) {
|
|
btrfs_tree_lock(path->nodes[level]);
|
|
btrfs_set_lock_blocking(path->nodes[level]);
|
|
|
|
ret = btrfs_lookup_extent_info(trans, root,
|
|
path->nodes[level]->start,
|
|
path->nodes[level]->len,
|
|
&wc->refs[level],
|
|
&wc->flags[level]);
|
|
BUG_ON(ret);
|
|
BUG_ON(wc->refs[level] == 0);
|
|
|
|
if (level == root_item->drop_level)
|
|
break;
|
|
|
|
btrfs_tree_unlock(path->nodes[level]);
|
|
WARN_ON(wc->refs[level] != 1);
|
|
level--;
|
|
}
|
|
}
|
|
|
|
wc->level = level;
|
|
wc->shared_level = -1;
|
|
wc->stage = DROP_REFERENCE;
|
|
wc->update_ref = update_ref;
|
|
wc->keep_locks = 0;
|
|
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
|
|
|
|
while (1) {
|
|
ret = walk_down_tree(trans, root, path, wc);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
break;
|
|
}
|
|
|
|
ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
break;
|
|
}
|
|
|
|
if (ret > 0) {
|
|
BUG_ON(wc->stage != DROP_REFERENCE);
|
|
break;
|
|
}
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
level = wc->level;
|
|
btrfs_node_key(path->nodes[level],
|
|
&root_item->drop_progress,
|
|
path->slots[level]);
|
|
root_item->drop_level = level;
|
|
}
|
|
|
|
BUG_ON(wc->level == 0);
|
|
if (trans->transaction->in_commit ||
|
|
trans->transaction->delayed_refs.flushing) {
|
|
ret = btrfs_update_root(trans, tree_root,
|
|
&root->root_key,
|
|
root_item);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_end_transaction(trans, tree_root);
|
|
trans = btrfs_start_transaction(tree_root, 1);
|
|
} else {
|
|
unsigned long update;
|
|
update = trans->delayed_ref_updates;
|
|
trans->delayed_ref_updates = 0;
|
|
if (update)
|
|
btrfs_run_delayed_refs(trans, tree_root,
|
|
update);
|
|
}
|
|
}
|
|
btrfs_release_path(root, path);
|
|
BUG_ON(err);
|
|
|
|
ret = btrfs_del_root(trans, tree_root, &root->root_key);
|
|
BUG_ON(ret);
|
|
|
|
if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
|
|
ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
|
|
NULL, NULL);
|
|
BUG_ON(ret < 0);
|
|
if (ret > 0) {
|
|
ret = btrfs_del_orphan_item(trans, tree_root,
|
|
root->root_key.objectid);
|
|
BUG_ON(ret);
|
|
}
|
|
}
|
|
|
|
if (root->in_radix) {
|
|
btrfs_free_fs_root(tree_root->fs_info, root);
|
|
} else {
|
|
free_extent_buffer(root->node);
|
|
free_extent_buffer(root->commit_root);
|
|
kfree(root);
|
|
}
|
|
out:
|
|
btrfs_end_transaction(trans, tree_root);
|
|
kfree(wc);
|
|
btrfs_free_path(path);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* drop subtree rooted at tree block 'node'.
|
|
*
|
|
* NOTE: this function will unlock and release tree block 'node'
|
|
*/
|
|
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *node,
|
|
struct extent_buffer *parent)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct walk_control *wc;
|
|
int level;
|
|
int parent_level;
|
|
int ret = 0;
|
|
int wret;
|
|
|
|
BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
wc = kzalloc(sizeof(*wc), GFP_NOFS);
|
|
BUG_ON(!wc);
|
|
|
|
btrfs_assert_tree_locked(parent);
|
|
parent_level = btrfs_header_level(parent);
|
|
extent_buffer_get(parent);
|
|
path->nodes[parent_level] = parent;
|
|
path->slots[parent_level] = btrfs_header_nritems(parent);
|
|
|
|
btrfs_assert_tree_locked(node);
|
|
level = btrfs_header_level(node);
|
|
path->nodes[level] = node;
|
|
path->slots[level] = 0;
|
|
path->locks[level] = 1;
|
|
|
|
wc->refs[parent_level] = 1;
|
|
wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
wc->level = level;
|
|
wc->shared_level = -1;
|
|
wc->stage = DROP_REFERENCE;
|
|
wc->update_ref = 0;
|
|
wc->keep_locks = 1;
|
|
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
|
|
|
|
while (1) {
|
|
wret = walk_down_tree(trans, root, path, wc);
|
|
if (wret < 0) {
|
|
ret = wret;
|
|
break;
|
|
}
|
|
|
|
wret = walk_up_tree(trans, root, path, wc, parent_level);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (wret != 0)
|
|
break;
|
|
}
|
|
|
|
kfree(wc);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
#if 0
|
|
static unsigned long calc_ra(unsigned long start, unsigned long last,
|
|
unsigned long nr)
|
|
{
|
|
return min(last, start + nr - 1);
|
|
}
|
|
|
|
static noinline int relocate_inode_pages(struct inode *inode, u64 start,
|
|
u64 len)
|
|
{
|
|
u64 page_start;
|
|
u64 page_end;
|
|
unsigned long first_index;
|
|
unsigned long last_index;
|
|
unsigned long i;
|
|
struct page *page;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct file_ra_state *ra;
|
|
struct btrfs_ordered_extent *ordered;
|
|
unsigned int total_read = 0;
|
|
unsigned int total_dirty = 0;
|
|
int ret = 0;
|
|
|
|
ra = kzalloc(sizeof(*ra), GFP_NOFS);
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
first_index = start >> PAGE_CACHE_SHIFT;
|
|
last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
/* make sure the dirty trick played by the caller work */
|
|
ret = invalidate_inode_pages2_range(inode->i_mapping,
|
|
first_index, last_index);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
file_ra_state_init(ra, inode->i_mapping);
|
|
|
|
for (i = first_index ; i <= last_index; i++) {
|
|
if (total_read % ra->ra_pages == 0) {
|
|
btrfs_force_ra(inode->i_mapping, ra, NULL, i,
|
|
calc_ra(i, last_index, ra->ra_pages));
|
|
}
|
|
total_read++;
|
|
again:
|
|
if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
|
|
BUG_ON(1);
|
|
page = grab_cache_page(inode->i_mapping, i);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
if (!PageUptodate(page)) {
|
|
btrfs_readpage(NULL, page);
|
|
lock_page(page);
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
wait_on_page_writeback(page);
|
|
|
|
page_start = (u64)page->index << PAGE_CACHE_SHIFT;
|
|
page_end = page_start + PAGE_CACHE_SIZE - 1;
|
|
lock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
|
|
ordered = btrfs_lookup_ordered_extent(inode, page_start);
|
|
if (ordered) {
|
|
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
goto again;
|
|
}
|
|
set_page_extent_mapped(page);
|
|
|
|
if (i == first_index)
|
|
set_extent_bits(io_tree, page_start, page_end,
|
|
EXTENT_BOUNDARY, GFP_NOFS);
|
|
btrfs_set_extent_delalloc(inode, page_start, page_end);
|
|
|
|
set_page_dirty(page);
|
|
total_dirty++;
|
|
|
|
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
}
|
|
|
|
out_unlock:
|
|
kfree(ra);
|
|
mutex_unlock(&inode->i_mutex);
|
|
balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int relocate_data_extent(struct inode *reloc_inode,
|
|
struct btrfs_key *extent_key,
|
|
u64 offset)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
|
|
struct extent_map *em;
|
|
u64 start = extent_key->objectid - offset;
|
|
u64 end = start + extent_key->offset - 1;
|
|
|
|
em = alloc_extent_map(GFP_NOFS);
|
|
BUG_ON(!em || IS_ERR(em));
|
|
|
|
em->start = start;
|
|
em->len = extent_key->offset;
|
|
em->block_len = extent_key->offset;
|
|
em->block_start = extent_key->objectid;
|
|
em->bdev = root->fs_info->fs_devices->latest_bdev;
|
|
set_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
|
|
/* setup extent map to cheat btrfs_readpage */
|
|
lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
|
|
while (1) {
|
|
int ret;
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em);
|
|
write_unlock(&em_tree->lock);
|
|
if (ret != -EEXIST) {
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
btrfs_drop_extent_cache(reloc_inode, start, end, 0);
|
|
}
|
|
unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
|
|
|
|
return relocate_inode_pages(reloc_inode, start, extent_key->offset);
|
|
}
|
|
|
|
struct btrfs_ref_path {
|
|
u64 extent_start;
|
|
u64 nodes[BTRFS_MAX_LEVEL];
|
|
u64 root_objectid;
|
|
u64 root_generation;
|
|
u64 owner_objectid;
|
|
u32 num_refs;
|
|
int lowest_level;
|
|
int current_level;
|
|
int shared_level;
|
|
|
|
struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
|
|
u64 new_nodes[BTRFS_MAX_LEVEL];
|
|
};
|
|
|
|
struct disk_extent {
|
|
u64 ram_bytes;
|
|
u64 disk_bytenr;
|
|
u64 disk_num_bytes;
|
|
u64 offset;
|
|
u64 num_bytes;
|
|
u8 compression;
|
|
u8 encryption;
|
|
u16 other_encoding;
|
|
};
|
|
|
|
static int is_cowonly_root(u64 root_objectid)
|
|
{
|
|
if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
|
|
root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
|
|
root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
|
|
root_objectid == BTRFS_DEV_TREE_OBJECTID ||
|
|
root_objectid == BTRFS_TREE_LOG_OBJECTID ||
|
|
root_objectid == BTRFS_CSUM_TREE_OBJECTID)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root,
|
|
struct btrfs_ref_path *ref_path,
|
|
int first_time)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_path *path;
|
|
struct btrfs_extent_ref *ref;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
u64 bytenr;
|
|
u32 nritems;
|
|
int level;
|
|
int ret = 1;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
if (first_time) {
|
|
ref_path->lowest_level = -1;
|
|
ref_path->current_level = -1;
|
|
ref_path->shared_level = -1;
|
|
goto walk_up;
|
|
}
|
|
walk_down:
|
|
level = ref_path->current_level - 1;
|
|
while (level >= -1) {
|
|
u64 parent;
|
|
if (level < ref_path->lowest_level)
|
|
break;
|
|
|
|
if (level >= 0)
|
|
bytenr = ref_path->nodes[level];
|
|
else
|
|
bytenr = ref_path->extent_start;
|
|
BUG_ON(bytenr == 0);
|
|
|
|
parent = ref_path->nodes[level + 1];
|
|
ref_path->nodes[level + 1] = 0;
|
|
ref_path->current_level = level;
|
|
BUG_ON(parent == 0);
|
|
|
|
key.objectid = bytenr;
|
|
key.offset = parent + 1;
|
|
key.type = BTRFS_EXTENT_REF_KEY;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret == 0);
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(extent_root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
goto next;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid == bytenr &&
|
|
found_key.type == BTRFS_EXTENT_REF_KEY) {
|
|
if (level < ref_path->shared_level)
|
|
ref_path->shared_level = level;
|
|
goto found;
|
|
}
|
|
next:
|
|
level--;
|
|
btrfs_release_path(extent_root, path);
|
|
cond_resched();
|
|
}
|
|
/* reached lowest level */
|
|
ret = 1;
|
|
goto out;
|
|
walk_up:
|
|
level = ref_path->current_level;
|
|
while (level < BTRFS_MAX_LEVEL - 1) {
|
|
u64 ref_objectid;
|
|
|
|
if (level >= 0)
|
|
bytenr = ref_path->nodes[level];
|
|
else
|
|
bytenr = ref_path->extent_start;
|
|
|
|
BUG_ON(bytenr == 0);
|
|
|
|
key.objectid = bytenr;
|
|
key.offset = 0;
|
|
key.type = BTRFS_EXTENT_REF_KEY;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(extent_root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
/* the extent was freed by someone */
|
|
if (ref_path->lowest_level == level)
|
|
goto out;
|
|
btrfs_release_path(extent_root, path);
|
|
goto walk_down;
|
|
}
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid != bytenr ||
|
|
found_key.type != BTRFS_EXTENT_REF_KEY) {
|
|
/* the extent was freed by someone */
|
|
if (ref_path->lowest_level == level) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
btrfs_release_path(extent_root, path);
|
|
goto walk_down;
|
|
}
|
|
found:
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref);
|
|
ref_objectid = btrfs_ref_objectid(leaf, ref);
|
|
if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
|
|
if (first_time) {
|
|
level = (int)ref_objectid;
|
|
BUG_ON(level >= BTRFS_MAX_LEVEL);
|
|
ref_path->lowest_level = level;
|
|
ref_path->current_level = level;
|
|
ref_path->nodes[level] = bytenr;
|
|
} else {
|
|
WARN_ON(ref_objectid != level);
|
|
}
|
|
} else {
|
|
WARN_ON(level != -1);
|
|
}
|
|
first_time = 0;
|
|
|
|
if (ref_path->lowest_level == level) {
|
|
ref_path->owner_objectid = ref_objectid;
|
|
ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
|
|
}
|
|
|
|
/*
|
|
* the block is tree root or the block isn't in reference
|
|
* counted tree.
|
|
*/
|
|
if (found_key.objectid == found_key.offset ||
|
|
is_cowonly_root(btrfs_ref_root(leaf, ref))) {
|
|
ref_path->root_objectid = btrfs_ref_root(leaf, ref);
|
|
ref_path->root_generation =
|
|
btrfs_ref_generation(leaf, ref);
|
|
if (level < 0) {
|
|
/* special reference from the tree log */
|
|
ref_path->nodes[0] = found_key.offset;
|
|
ref_path->current_level = 0;
|
|
}
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
level++;
|
|
BUG_ON(ref_path->nodes[level] != 0);
|
|
ref_path->nodes[level] = found_key.offset;
|
|
ref_path->current_level = level;
|
|
|
|
/*
|
|
* the reference was created in the running transaction,
|
|
* no need to continue walking up.
|
|
*/
|
|
if (btrfs_ref_generation(leaf, ref) == trans->transid) {
|
|
ref_path->root_objectid = btrfs_ref_root(leaf, ref);
|
|
ref_path->root_generation =
|
|
btrfs_ref_generation(leaf, ref);
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_release_path(extent_root, path);
|
|
cond_resched();
|
|
}
|
|
/* reached max tree level, but no tree root found. */
|
|
BUG();
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root,
|
|
struct btrfs_ref_path *ref_path,
|
|
u64 extent_start)
|
|
{
|
|
memset(ref_path, 0, sizeof(*ref_path));
|
|
ref_path->extent_start = extent_start;
|
|
|
|
return __next_ref_path(trans, extent_root, ref_path, 1);
|
|
}
|
|
|
|
static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root,
|
|
struct btrfs_ref_path *ref_path)
|
|
{
|
|
return __next_ref_path(trans, extent_root, ref_path, 0);
|
|
}
|
|
|
|
static noinline int get_new_locations(struct inode *reloc_inode,
|
|
struct btrfs_key *extent_key,
|
|
u64 offset, int no_fragment,
|
|
struct disk_extent **extents,
|
|
int *nr_extents)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct extent_buffer *leaf;
|
|
struct disk_extent *exts = *extents;
|
|
struct btrfs_key found_key;
|
|
u64 cur_pos;
|
|
u64 last_byte;
|
|
u32 nritems;
|
|
int nr = 0;
|
|
int max = *nr_extents;
|
|
int ret;
|
|
|
|
WARN_ON(!no_fragment && *extents);
|
|
if (!exts) {
|
|
max = 1;
|
|
exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
|
|
if (!exts)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
cur_pos = extent_key->objectid - offset;
|
|
last_byte = extent_key->objectid + extent_key->offset;
|
|
ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
|
|
cur_pos, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.offset != cur_pos ||
|
|
found_key.type != BTRFS_EXTENT_DATA_KEY ||
|
|
found_key.objectid != reloc_inode->i_ino)
|
|
break;
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(leaf, fi) !=
|
|
BTRFS_FILE_EXTENT_REG ||
|
|
btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
|
|
break;
|
|
|
|
if (nr == max) {
|
|
struct disk_extent *old = exts;
|
|
max *= 2;
|
|
exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
|
|
memcpy(exts, old, sizeof(*exts) * nr);
|
|
if (old != *extents)
|
|
kfree(old);
|
|
}
|
|
|
|
exts[nr].disk_bytenr =
|
|
btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
exts[nr].disk_num_bytes =
|
|
btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
|
|
exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
|
|
exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
|
|
exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
|
|
exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
|
|
exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
|
|
fi);
|
|
BUG_ON(exts[nr].offset > 0);
|
|
BUG_ON(exts[nr].compression || exts[nr].encryption);
|
|
BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
|
|
|
|
cur_pos += exts[nr].num_bytes;
|
|
nr++;
|
|
|
|
if (cur_pos + offset >= last_byte)
|
|
break;
|
|
|
|
if (no_fragment) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
|
|
BUG_ON(cur_pos + offset > last_byte);
|
|
if (cur_pos + offset < last_byte) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
if (ret) {
|
|
if (exts != *extents)
|
|
kfree(exts);
|
|
} else {
|
|
*extents = exts;
|
|
*nr_extents = nr;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *extent_key,
|
|
struct btrfs_key *leaf_key,
|
|
struct btrfs_ref_path *ref_path,
|
|
struct disk_extent *new_extents,
|
|
int nr_extents)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct inode *inode = NULL;
|
|
struct btrfs_key key;
|
|
u64 lock_start = 0;
|
|
u64 lock_end = 0;
|
|
u64 num_bytes;
|
|
u64 ext_offset;
|
|
u64 search_end = (u64)-1;
|
|
u32 nritems;
|
|
int nr_scaned = 0;
|
|
int extent_locked = 0;
|
|
int extent_type;
|
|
int ret;
|
|
|
|
memcpy(&key, leaf_key, sizeof(key));
|
|
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
|
|
if (key.objectid < ref_path->owner_objectid ||
|
|
(key.objectid == ref_path->owner_objectid &&
|
|
key.type < BTRFS_EXTENT_DATA_KEY)) {
|
|
key.objectid = ref_path->owner_objectid;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = 0;
|
|
}
|
|
}
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
next:
|
|
if (extent_locked && ret > 0) {
|
|
/*
|
|
* the file extent item was modified by someone
|
|
* before the extent got locked.
|
|
*/
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
|
|
lock_end, GFP_NOFS);
|
|
extent_locked = 0;
|
|
}
|
|
|
|
if (path->slots[0] >= nritems) {
|
|
if (++nr_scaned > 2)
|
|
break;
|
|
|
|
BUG_ON(extent_locked);
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
|
|
if ((key.objectid > ref_path->owner_objectid) ||
|
|
(key.objectid == ref_path->owner_objectid &&
|
|
key.type > BTRFS_EXTENT_DATA_KEY) ||
|
|
key.offset >= search_end)
|
|
break;
|
|
}
|
|
|
|
if (inode && key.objectid != inode->i_ino) {
|
|
BUG_ON(extent_locked);
|
|
btrfs_release_path(root, path);
|
|
mutex_unlock(&inode->i_mutex);
|
|
iput(inode);
|
|
inode = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY) {
|
|
path->slots[0]++;
|
|
ret = 1;
|
|
goto next;
|
|
}
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(leaf, fi);
|
|
if ((extent_type != BTRFS_FILE_EXTENT_REG &&
|
|
extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
|
|
(btrfs_file_extent_disk_bytenr(leaf, fi) !=
|
|
extent_key->objectid)) {
|
|
path->slots[0]++;
|
|
ret = 1;
|
|
goto next;
|
|
}
|
|
|
|
num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
|
|
ext_offset = btrfs_file_extent_offset(leaf, fi);
|
|
|
|
if (search_end == (u64)-1) {
|
|
search_end = key.offset - ext_offset +
|
|
btrfs_file_extent_ram_bytes(leaf, fi);
|
|
}
|
|
|
|
if (!extent_locked) {
|
|
lock_start = key.offset;
|
|
lock_end = lock_start + num_bytes - 1;
|
|
} else {
|
|
if (lock_start > key.offset ||
|
|
lock_end + 1 < key.offset + num_bytes) {
|
|
unlock_extent(&BTRFS_I(inode)->io_tree,
|
|
lock_start, lock_end, GFP_NOFS);
|
|
extent_locked = 0;
|
|
}
|
|
}
|
|
|
|
if (!inode) {
|
|
btrfs_release_path(root, path);
|
|
|
|
inode = btrfs_iget_locked(root->fs_info->sb,
|
|
key.objectid, root);
|
|
if (inode->i_state & I_NEW) {
|
|
BTRFS_I(inode)->root = root;
|
|
BTRFS_I(inode)->location.objectid =
|
|
key.objectid;
|
|
BTRFS_I(inode)->location.type =
|
|
BTRFS_INODE_ITEM_KEY;
|
|
BTRFS_I(inode)->location.offset = 0;
|
|
btrfs_read_locked_inode(inode);
|
|
unlock_new_inode(inode);
|
|
}
|
|
/*
|
|
* some code call btrfs_commit_transaction while
|
|
* holding the i_mutex, so we can't use mutex_lock
|
|
* here.
|
|
*/
|
|
if (is_bad_inode(inode) ||
|
|
!mutex_trylock(&inode->i_mutex)) {
|
|
iput(inode);
|
|
inode = NULL;
|
|
key.offset = (u64)-1;
|
|
goto skip;
|
|
}
|
|
}
|
|
|
|
if (!extent_locked) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
btrfs_release_path(root, path);
|
|
|
|
lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
|
|
lock_end, GFP_NOFS);
|
|
ordered = btrfs_lookup_first_ordered_extent(inode,
|
|
lock_end);
|
|
if (ordered &&
|
|
ordered->file_offset <= lock_end &&
|
|
ordered->file_offset + ordered->len > lock_start) {
|
|
unlock_extent(&BTRFS_I(inode)->io_tree,
|
|
lock_start, lock_end, GFP_NOFS);
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
key.offset += num_bytes;
|
|
goto skip;
|
|
}
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
|
|
extent_locked = 1;
|
|
continue;
|
|
}
|
|
|
|
if (nr_extents == 1) {
|
|
/* update extent pointer in place */
|
|
btrfs_set_file_extent_disk_bytenr(leaf, fi,
|
|
new_extents[0].disk_bytenr);
|
|
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
|
|
new_extents[0].disk_num_bytes);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
btrfs_drop_extent_cache(inode, key.offset,
|
|
key.offset + num_bytes - 1, 0);
|
|
|
|
ret = btrfs_inc_extent_ref(trans, root,
|
|
new_extents[0].disk_bytenr,
|
|
new_extents[0].disk_num_bytes,
|
|
leaf->start,
|
|
root->root_key.objectid,
|
|
trans->transid,
|
|
key.objectid);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_free_extent(trans, root,
|
|
extent_key->objectid,
|
|
extent_key->offset,
|
|
leaf->start,
|
|
btrfs_header_owner(leaf),
|
|
btrfs_header_generation(leaf),
|
|
key.objectid, 0);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_release_path(root, path);
|
|
key.offset += num_bytes;
|
|
} else {
|
|
BUG_ON(1);
|
|
#if 0
|
|
u64 alloc_hint;
|
|
u64 extent_len;
|
|
int i;
|
|
/*
|
|
* drop old extent pointer at first, then insert the
|
|
* new pointers one bye one
|
|
*/
|
|
btrfs_release_path(root, path);
|
|
ret = btrfs_drop_extents(trans, root, inode, key.offset,
|
|
key.offset + num_bytes,
|
|
key.offset, &alloc_hint);
|
|
BUG_ON(ret);
|
|
|
|
for (i = 0; i < nr_extents; i++) {
|
|
if (ext_offset >= new_extents[i].num_bytes) {
|
|
ext_offset -= new_extents[i].num_bytes;
|
|
continue;
|
|
}
|
|
extent_len = min(new_extents[i].num_bytes -
|
|
ext_offset, num_bytes);
|
|
|
|
ret = btrfs_insert_empty_item(trans, root,
|
|
path, &key,
|
|
sizeof(*fi));
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, fi,
|
|
trans->transid);
|
|
btrfs_set_file_extent_type(leaf, fi,
|
|
BTRFS_FILE_EXTENT_REG);
|
|
btrfs_set_file_extent_disk_bytenr(leaf, fi,
|
|
new_extents[i].disk_bytenr);
|
|
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
|
|
new_extents[i].disk_num_bytes);
|
|
btrfs_set_file_extent_ram_bytes(leaf, fi,
|
|
new_extents[i].ram_bytes);
|
|
|
|
btrfs_set_file_extent_compression(leaf, fi,
|
|
new_extents[i].compression);
|
|
btrfs_set_file_extent_encryption(leaf, fi,
|
|
new_extents[i].encryption);
|
|
btrfs_set_file_extent_other_encoding(leaf, fi,
|
|
new_extents[i].other_encoding);
|
|
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_len);
|
|
ext_offset += new_extents[i].offset;
|
|
btrfs_set_file_extent_offset(leaf, fi,
|
|
ext_offset);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
btrfs_drop_extent_cache(inode, key.offset,
|
|
key.offset + extent_len - 1, 0);
|
|
|
|
ret = btrfs_inc_extent_ref(trans, root,
|
|
new_extents[i].disk_bytenr,
|
|
new_extents[i].disk_num_bytes,
|
|
leaf->start,
|
|
root->root_key.objectid,
|
|
trans->transid, key.objectid);
|
|
BUG_ON(ret);
|
|
btrfs_release_path(root, path);
|
|
|
|
inode_add_bytes(inode, extent_len);
|
|
|
|
ext_offset = 0;
|
|
num_bytes -= extent_len;
|
|
key.offset += extent_len;
|
|
|
|
if (num_bytes == 0)
|
|
break;
|
|
}
|
|
BUG_ON(i >= nr_extents);
|
|
#endif
|
|
}
|
|
|
|
if (extent_locked) {
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
|
|
lock_end, GFP_NOFS);
|
|
extent_locked = 0;
|
|
}
|
|
skip:
|
|
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
|
|
key.offset >= search_end)
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
ret = 0;
|
|
out:
|
|
btrfs_release_path(root, path);
|
|
if (inode) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
if (extent_locked) {
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
|
|
lock_end, GFP_NOFS);
|
|
}
|
|
iput(inode);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *buf, u64 orig_start)
|
|
{
|
|
int level;
|
|
int ret;
|
|
|
|
BUG_ON(btrfs_header_generation(buf) != trans->transid);
|
|
BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
|
|
|
|
level = btrfs_header_level(buf);
|
|
if (level == 0) {
|
|
struct btrfs_leaf_ref *ref;
|
|
struct btrfs_leaf_ref *orig_ref;
|
|
|
|
orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
|
|
if (!orig_ref)
|
|
return -ENOENT;
|
|
|
|
ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
|
|
if (!ref) {
|
|
btrfs_free_leaf_ref(root, orig_ref);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ref->nritems = orig_ref->nritems;
|
|
memcpy(ref->extents, orig_ref->extents,
|
|
sizeof(ref->extents[0]) * ref->nritems);
|
|
|
|
btrfs_free_leaf_ref(root, orig_ref);
|
|
|
|
ref->root_gen = trans->transid;
|
|
ref->bytenr = buf->start;
|
|
ref->owner = btrfs_header_owner(buf);
|
|
ref->generation = btrfs_header_generation(buf);
|
|
|
|
ret = btrfs_add_leaf_ref(root, ref, 0);
|
|
WARN_ON(ret);
|
|
btrfs_free_leaf_ref(root, ref);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static noinline int invalidate_extent_cache(struct btrfs_root *root,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_block_group_cache *group,
|
|
struct btrfs_root *target_root)
|
|
{
|
|
struct btrfs_key key;
|
|
struct inode *inode = NULL;
|
|
struct btrfs_file_extent_item *fi;
|
|
u64 num_bytes;
|
|
u64 skip_objectid = 0;
|
|
u32 nritems;
|
|
u32 i;
|
|
|
|
nritems = btrfs_header_nritems(leaf);
|
|
for (i = 0; i < nritems; i++) {
|
|
btrfs_item_key_to_cpu(leaf, &key, i);
|
|
if (key.objectid == skip_objectid ||
|
|
key.type != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(leaf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
|
|
continue;
|
|
if (!inode || inode->i_ino != key.objectid) {
|
|
iput(inode);
|
|
inode = btrfs_ilookup(target_root->fs_info->sb,
|
|
key.objectid, target_root, 1);
|
|
}
|
|
if (!inode) {
|
|
skip_objectid = key.objectid;
|
|
continue;
|
|
}
|
|
num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
|
|
|
|
lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
|
|
key.offset + num_bytes - 1, GFP_NOFS);
|
|
btrfs_drop_extent_cache(inode, key.offset,
|
|
key.offset + num_bytes - 1, 1);
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
|
|
key.offset + num_bytes - 1, GFP_NOFS);
|
|
cond_resched();
|
|
}
|
|
iput(inode);
|
|
return 0;
|
|
}
|
|
|
|
static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_block_group_cache *group,
|
|
struct inode *reloc_inode)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_key extent_key;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_leaf_ref *ref;
|
|
struct disk_extent *new_extent;
|
|
u64 bytenr;
|
|
u64 num_bytes;
|
|
u32 nritems;
|
|
u32 i;
|
|
int ext_index;
|
|
int nr_extent;
|
|
int ret;
|
|
|
|
new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
|
|
BUG_ON(!new_extent);
|
|
|
|
ref = btrfs_lookup_leaf_ref(root, leaf->start);
|
|
BUG_ON(!ref);
|
|
|
|
ext_index = -1;
|
|
nritems = btrfs_header_nritems(leaf);
|
|
for (i = 0; i < nritems; i++) {
|
|
btrfs_item_key_to_cpu(leaf, &key, i);
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(leaf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
if (bytenr == 0)
|
|
continue;
|
|
|
|
ext_index++;
|
|
if (bytenr >= group->key.objectid + group->key.offset ||
|
|
bytenr + num_bytes <= group->key.objectid)
|
|
continue;
|
|
|
|
extent_key.objectid = bytenr;
|
|
extent_key.offset = num_bytes;
|
|
extent_key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
nr_extent = 1;
|
|
ret = get_new_locations(reloc_inode, &extent_key,
|
|
group->key.objectid, 1,
|
|
&new_extent, &nr_extent);
|
|
if (ret > 0)
|
|
continue;
|
|
BUG_ON(ret < 0);
|
|
|
|
BUG_ON(ref->extents[ext_index].bytenr != bytenr);
|
|
BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
|
|
ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
|
|
ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
|
|
|
|
btrfs_set_file_extent_disk_bytenr(leaf, fi,
|
|
new_extent->disk_bytenr);
|
|
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
|
|
new_extent->disk_num_bytes);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = btrfs_inc_extent_ref(trans, root,
|
|
new_extent->disk_bytenr,
|
|
new_extent->disk_num_bytes,
|
|
leaf->start,
|
|
root->root_key.objectid,
|
|
trans->transid, key.objectid);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_free_extent(trans, root,
|
|
bytenr, num_bytes, leaf->start,
|
|
btrfs_header_owner(leaf),
|
|
btrfs_header_generation(leaf),
|
|
key.objectid, 0);
|
|
BUG_ON(ret);
|
|
cond_resched();
|
|
}
|
|
kfree(new_extent);
|
|
BUG_ON(ext_index + 1 != ref->nritems);
|
|
btrfs_free_leaf_ref(root, ref);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root *reloc_root;
|
|
int ret;
|
|
|
|
if (root->reloc_root) {
|
|
reloc_root = root->reloc_root;
|
|
root->reloc_root = NULL;
|
|
list_add(&reloc_root->dead_list,
|
|
&root->fs_info->dead_reloc_roots);
|
|
|
|
btrfs_set_root_bytenr(&reloc_root->root_item,
|
|
reloc_root->node->start);
|
|
btrfs_set_root_level(&root->root_item,
|
|
btrfs_header_level(reloc_root->node));
|
|
memset(&reloc_root->root_item.drop_progress, 0,
|
|
sizeof(struct btrfs_disk_key));
|
|
reloc_root->root_item.drop_level = 0;
|
|
|
|
ret = btrfs_update_root(trans, root->fs_info->tree_root,
|
|
&reloc_root->root_key,
|
|
&reloc_root->root_item);
|
|
BUG_ON(ret);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *reloc_root;
|
|
struct btrfs_root *prev_root = NULL;
|
|
struct list_head dead_roots;
|
|
int ret;
|
|
unsigned long nr;
|
|
|
|
INIT_LIST_HEAD(&dead_roots);
|
|
list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
|
|
|
|
while (!list_empty(&dead_roots)) {
|
|
reloc_root = list_entry(dead_roots.prev,
|
|
struct btrfs_root, dead_list);
|
|
list_del_init(&reloc_root->dead_list);
|
|
|
|
BUG_ON(reloc_root->commit_root != NULL);
|
|
while (1) {
|
|
trans = btrfs_join_transaction(root, 1);
|
|
BUG_ON(!trans);
|
|
|
|
mutex_lock(&root->fs_info->drop_mutex);
|
|
ret = btrfs_drop_snapshot(trans, reloc_root);
|
|
if (ret != -EAGAIN)
|
|
break;
|
|
mutex_unlock(&root->fs_info->drop_mutex);
|
|
|
|
nr = trans->blocks_used;
|
|
ret = btrfs_end_transaction(trans, root);
|
|
BUG_ON(ret);
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
}
|
|
|
|
free_extent_buffer(reloc_root->node);
|
|
|
|
ret = btrfs_del_root(trans, root->fs_info->tree_root,
|
|
&reloc_root->root_key);
|
|
BUG_ON(ret);
|
|
mutex_unlock(&root->fs_info->drop_mutex);
|
|
|
|
nr = trans->blocks_used;
|
|
ret = btrfs_end_transaction(trans, root);
|
|
BUG_ON(ret);
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
|
|
kfree(prev_root);
|
|
prev_root = reloc_root;
|
|
}
|
|
if (prev_root) {
|
|
btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
|
|
kfree(prev_root);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_add_dead_reloc_root(struct btrfs_root *root)
|
|
{
|
|
list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root *reloc_root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_key location;
|
|
int found;
|
|
int ret;
|
|
|
|
mutex_lock(&root->fs_info->tree_reloc_mutex);
|
|
ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
|
|
BUG_ON(ret);
|
|
found = !list_empty(&root->fs_info->dead_reloc_roots);
|
|
mutex_unlock(&root->fs_info->tree_reloc_mutex);
|
|
|
|
if (found) {
|
|
trans = btrfs_start_transaction(root, 1);
|
|
BUG_ON(!trans);
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
|
|
location.offset = (u64)-1;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
|
|
reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
|
|
BUG_ON(!reloc_root);
|
|
btrfs_orphan_cleanup(reloc_root);
|
|
return 0;
|
|
}
|
|
|
|
static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root *reloc_root;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_key root_key;
|
|
int ret;
|
|
|
|
BUG_ON(!root->ref_cows);
|
|
if (root->reloc_root)
|
|
return 0;
|
|
|
|
root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
|
|
BUG_ON(!root_item);
|
|
|
|
ret = btrfs_copy_root(trans, root, root->commit_root,
|
|
&eb, BTRFS_TREE_RELOC_OBJECTID);
|
|
BUG_ON(ret);
|
|
|
|
root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
|
|
root_key.offset = root->root_key.objectid;
|
|
root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
|
|
memcpy(root_item, &root->root_item, sizeof(root_item));
|
|
btrfs_set_root_refs(root_item, 0);
|
|
btrfs_set_root_bytenr(root_item, eb->start);
|
|
btrfs_set_root_level(root_item, btrfs_header_level(eb));
|
|
btrfs_set_root_generation(root_item, trans->transid);
|
|
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
|
|
ret = btrfs_insert_root(trans, root->fs_info->tree_root,
|
|
&root_key, root_item);
|
|
BUG_ON(ret);
|
|
kfree(root_item);
|
|
|
|
reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
|
|
&root_key);
|
|
BUG_ON(!reloc_root);
|
|
reloc_root->last_trans = trans->transid;
|
|
reloc_root->commit_root = NULL;
|
|
reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
|
|
|
|
root->reloc_root = reloc_root;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Core function of space balance.
|
|
*
|
|
* The idea is using reloc trees to relocate tree blocks in reference
|
|
* counted roots. There is one reloc tree for each subvol, and all
|
|
* reloc trees share same root key objectid. Reloc trees are snapshots
|
|
* of the latest committed roots of subvols (root->commit_root).
|
|
*
|
|
* To relocate a tree block referenced by a subvol, there are two steps.
|
|
* COW the block through subvol's reloc tree, then update block pointer
|
|
* in the subvol to point to the new block. Since all reloc trees share
|
|
* same root key objectid, doing special handing for tree blocks owned
|
|
* by them is easy. Once a tree block has been COWed in one reloc tree,
|
|
* we can use the resulting new block directly when the same block is
|
|
* required to COW again through other reloc trees. By this way, relocated
|
|
* tree blocks are shared between reloc trees, so they are also shared
|
|
* between subvols.
|
|
*/
|
|
static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *first_key,
|
|
struct btrfs_ref_path *ref_path,
|
|
struct btrfs_block_group_cache *group,
|
|
struct inode *reloc_inode)
|
|
{
|
|
struct btrfs_root *reloc_root;
|
|
struct extent_buffer *eb = NULL;
|
|
struct btrfs_key *keys;
|
|
u64 *nodes;
|
|
int level;
|
|
int shared_level;
|
|
int lowest_level = 0;
|
|
int ret;
|
|
|
|
if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
|
|
lowest_level = ref_path->owner_objectid;
|
|
|
|
if (!root->ref_cows) {
|
|
path->lowest_level = lowest_level;
|
|
ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
|
|
BUG_ON(ret < 0);
|
|
path->lowest_level = 0;
|
|
btrfs_release_path(root, path);
|
|
return 0;
|
|
}
|
|
|
|
mutex_lock(&root->fs_info->tree_reloc_mutex);
|
|
ret = init_reloc_tree(trans, root);
|
|
BUG_ON(ret);
|
|
reloc_root = root->reloc_root;
|
|
|
|
shared_level = ref_path->shared_level;
|
|
ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
|
|
|
|
keys = ref_path->node_keys;
|
|
nodes = ref_path->new_nodes;
|
|
memset(&keys[shared_level + 1], 0,
|
|
sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
|
|
memset(&nodes[shared_level + 1], 0,
|
|
sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
|
|
|
|
if (nodes[lowest_level] == 0) {
|
|
path->lowest_level = lowest_level;
|
|
ret = btrfs_search_slot(trans, reloc_root, first_key, path,
|
|
0, 1);
|
|
BUG_ON(ret);
|
|
for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
|
|
eb = path->nodes[level];
|
|
if (!eb || eb == reloc_root->node)
|
|
break;
|
|
nodes[level] = eb->start;
|
|
if (level == 0)
|
|
btrfs_item_key_to_cpu(eb, &keys[level], 0);
|
|
else
|
|
btrfs_node_key_to_cpu(eb, &keys[level], 0);
|
|
}
|
|
if (nodes[0] &&
|
|
ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
|
|
eb = path->nodes[0];
|
|
ret = replace_extents_in_leaf(trans, reloc_root, eb,
|
|
group, reloc_inode);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_release_path(reloc_root, path);
|
|
} else {
|
|
ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
|
|
lowest_level);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
/*
|
|
* replace tree blocks in the fs tree with tree blocks in
|
|
* the reloc tree.
|
|
*/
|
|
ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
|
|
BUG_ON(ret < 0);
|
|
|
|
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = btrfs_search_slot(trans, reloc_root, first_key, path,
|
|
0, 0);
|
|
BUG_ON(ret);
|
|
extent_buffer_get(path->nodes[0]);
|
|
eb = path->nodes[0];
|
|
btrfs_release_path(reloc_root, path);
|
|
ret = invalidate_extent_cache(reloc_root, eb, group, root);
|
|
BUG_ON(ret);
|
|
free_extent_buffer(eb);
|
|
}
|
|
|
|
mutex_unlock(&root->fs_info->tree_reloc_mutex);
|
|
path->lowest_level = 0;
|
|
return 0;
|
|
}
|
|
|
|
static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *first_key,
|
|
struct btrfs_ref_path *ref_path)
|
|
{
|
|
int ret;
|
|
|
|
ret = relocate_one_path(trans, root, path, first_key,
|
|
ref_path, NULL, NULL);
|
|
BUG_ON(ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *extent_key)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
|
|
if (ret)
|
|
goto out;
|
|
ret = btrfs_del_item(trans, extent_root, path);
|
|
out:
|
|
btrfs_release_path(extent_root, path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_ref_path *ref_path)
|
|
{
|
|
struct btrfs_key root_key;
|
|
|
|
root_key.objectid = ref_path->root_objectid;
|
|
root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
if (is_cowonly_root(ref_path->root_objectid))
|
|
root_key.offset = 0;
|
|
else
|
|
root_key.offset = (u64)-1;
|
|
|
|
return btrfs_read_fs_root_no_name(fs_info, &root_key);
|
|
}
|
|
|
|
static noinline int relocate_one_extent(struct btrfs_root *extent_root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *extent_key,
|
|
struct btrfs_block_group_cache *group,
|
|
struct inode *reloc_inode, int pass)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *found_root;
|
|
struct btrfs_ref_path *ref_path = NULL;
|
|
struct disk_extent *new_extents = NULL;
|
|
int nr_extents = 0;
|
|
int loops;
|
|
int ret;
|
|
int level;
|
|
struct btrfs_key first_key;
|
|
u64 prev_block = 0;
|
|
|
|
|
|
trans = btrfs_start_transaction(extent_root, 1);
|
|
BUG_ON(!trans);
|
|
|
|
if (extent_key->objectid == 0) {
|
|
ret = del_extent_zero(trans, extent_root, path, extent_key);
|
|
goto out;
|
|
}
|
|
|
|
ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
|
|
if (!ref_path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (loops = 0; ; loops++) {
|
|
if (loops == 0) {
|
|
ret = btrfs_first_ref_path(trans, extent_root, ref_path,
|
|
extent_key->objectid);
|
|
} else {
|
|
ret = btrfs_next_ref_path(trans, extent_root, ref_path);
|
|
}
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
break;
|
|
|
|
if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
|
|
ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
|
|
continue;
|
|
|
|
found_root = read_ref_root(extent_root->fs_info, ref_path);
|
|
BUG_ON(!found_root);
|
|
/*
|
|
* for reference counted tree, only process reference paths
|
|
* rooted at the latest committed root.
|
|
*/
|
|
if (found_root->ref_cows &&
|
|
ref_path->root_generation != found_root->root_key.offset)
|
|
continue;
|
|
|
|
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
|
|
if (pass == 0) {
|
|
/*
|
|
* copy data extents to new locations
|
|
*/
|
|
u64 group_start = group->key.objectid;
|
|
ret = relocate_data_extent(reloc_inode,
|
|
extent_key,
|
|
group_start);
|
|
if (ret < 0)
|
|
goto out;
|
|
break;
|
|
}
|
|
level = 0;
|
|
} else {
|
|
level = ref_path->owner_objectid;
|
|
}
|
|
|
|
if (prev_block != ref_path->nodes[level]) {
|
|
struct extent_buffer *eb;
|
|
u64 block_start = ref_path->nodes[level];
|
|
u64 block_size = btrfs_level_size(found_root, level);
|
|
|
|
eb = read_tree_block(found_root, block_start,
|
|
block_size, 0);
|
|
btrfs_tree_lock(eb);
|
|
BUG_ON(level != btrfs_header_level(eb));
|
|
|
|
if (level == 0)
|
|
btrfs_item_key_to_cpu(eb, &first_key, 0);
|
|
else
|
|
btrfs_node_key_to_cpu(eb, &first_key, 0);
|
|
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
prev_block = block_start;
|
|
}
|
|
|
|
mutex_lock(&extent_root->fs_info->trans_mutex);
|
|
btrfs_record_root_in_trans(found_root);
|
|
mutex_unlock(&extent_root->fs_info->trans_mutex);
|
|
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
|
|
/*
|
|
* try to update data extent references while
|
|
* keeping metadata shared between snapshots.
|
|
*/
|
|
if (pass == 1) {
|
|
ret = relocate_one_path(trans, found_root,
|
|
path, &first_key, ref_path,
|
|
group, reloc_inode);
|
|
if (ret < 0)
|
|
goto out;
|
|
continue;
|
|
}
|
|
/*
|
|
* use fallback method to process the remaining
|
|
* references.
|
|
*/
|
|
if (!new_extents) {
|
|
u64 group_start = group->key.objectid;
|
|
new_extents = kmalloc(sizeof(*new_extents),
|
|
GFP_NOFS);
|
|
nr_extents = 1;
|
|
ret = get_new_locations(reloc_inode,
|
|
extent_key,
|
|
group_start, 1,
|
|
&new_extents,
|
|
&nr_extents);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
ret = replace_one_extent(trans, found_root,
|
|
path, extent_key,
|
|
&first_key, ref_path,
|
|
new_extents, nr_extents);
|
|
} else {
|
|
ret = relocate_tree_block(trans, found_root, path,
|
|
&first_key, ref_path);
|
|
}
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
btrfs_end_transaction(trans, extent_root);
|
|
kfree(new_extents);
|
|
kfree(ref_path);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
|
|
{
|
|
u64 num_devices;
|
|
u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
|
|
BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
|
|
|
|
num_devices = root->fs_info->fs_devices->rw_devices;
|
|
if (num_devices == 1) {
|
|
stripped |= BTRFS_BLOCK_GROUP_DUP;
|
|
stripped = flags & ~stripped;
|
|
|
|
/* turn raid0 into single device chunks */
|
|
if (flags & BTRFS_BLOCK_GROUP_RAID0)
|
|
return stripped;
|
|
|
|
/* turn mirroring into duplication */
|
|
if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10))
|
|
return stripped | BTRFS_BLOCK_GROUP_DUP;
|
|
return flags;
|
|
} else {
|
|
/* they already had raid on here, just return */
|
|
if (flags & stripped)
|
|
return flags;
|
|
|
|
stripped |= BTRFS_BLOCK_GROUP_DUP;
|
|
stripped = flags & ~stripped;
|
|
|
|
/* switch duplicated blocks with raid1 */
|
|
if (flags & BTRFS_BLOCK_GROUP_DUP)
|
|
return stripped | BTRFS_BLOCK_GROUP_RAID1;
|
|
|
|
/* turn single device chunks into raid0 */
|
|
return stripped | BTRFS_BLOCK_GROUP_RAID0;
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
static int __alloc_chunk_for_shrink(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *shrink_block_group,
|
|
int force)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
u64 new_alloc_flags;
|
|
u64 calc;
|
|
|
|
spin_lock(&shrink_block_group->lock);
|
|
if (btrfs_block_group_used(&shrink_block_group->item) +
|
|
shrink_block_group->reserved > 0) {
|
|
spin_unlock(&shrink_block_group->lock);
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
spin_lock(&shrink_block_group->lock);
|
|
|
|
new_alloc_flags = update_block_group_flags(root,
|
|
shrink_block_group->flags);
|
|
if (new_alloc_flags != shrink_block_group->flags) {
|
|
calc =
|
|
btrfs_block_group_used(&shrink_block_group->item);
|
|
} else {
|
|
calc = shrink_block_group->key.offset;
|
|
}
|
|
spin_unlock(&shrink_block_group->lock);
|
|
|
|
do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
calc + 2 * 1024 * 1024, new_alloc_flags, force);
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
} else
|
|
spin_unlock(&shrink_block_group->lock);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int btrfs_prepare_block_group_relocation(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *group)
|
|
|
|
{
|
|
__alloc_chunk_for_shrink(root, group, 1);
|
|
set_block_group_readonly(group);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* checks to see if its even possible to relocate this block group.
|
|
*
|
|
* @return - -1 if it's not a good idea to relocate this block group, 0 if its
|
|
* ok to go ahead and try.
|
|
*/
|
|
int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
|
|
struct btrfs_device *device;
|
|
int full = 0;
|
|
int ret = 0;
|
|
|
|
block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
|
|
|
|
/* odd, couldn't find the block group, leave it alone */
|
|
if (!block_group)
|
|
return -1;
|
|
|
|
/* no bytes used, we're good */
|
|
if (!btrfs_block_group_used(&block_group->item))
|
|
goto out;
|
|
|
|
space_info = block_group->space_info;
|
|
spin_lock(&space_info->lock);
|
|
|
|
full = space_info->full;
|
|
|
|
/*
|
|
* if this is the last block group we have in this space, we can't
|
|
* relocate it unless we're able to allocate a new chunk below.
|
|
*
|
|
* Otherwise, we need to make sure we have room in the space to handle
|
|
* all of the extents from this block group. If we can, we're good
|
|
*/
|
|
if ((space_info->total_bytes != block_group->key.offset) &&
|
|
(space_info->bytes_used + space_info->bytes_reserved +
|
|
space_info->bytes_pinned + space_info->bytes_readonly +
|
|
btrfs_block_group_used(&block_group->item) <
|
|
space_info->total_bytes)) {
|
|
spin_unlock(&space_info->lock);
|
|
goto out;
|
|
}
|
|
spin_unlock(&space_info->lock);
|
|
|
|
/*
|
|
* ok we don't have enough space, but maybe we have free space on our
|
|
* devices to allocate new chunks for relocation, so loop through our
|
|
* alloc devices and guess if we have enough space. However, if we
|
|
* were marked as full, then we know there aren't enough chunks, and we
|
|
* can just return.
|
|
*/
|
|
ret = -1;
|
|
if (full)
|
|
goto out;
|
|
|
|
mutex_lock(&root->fs_info->chunk_mutex);
|
|
list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
|
|
u64 min_free = btrfs_block_group_used(&block_group->item);
|
|
u64 dev_offset, max_avail;
|
|
|
|
/*
|
|
* check to make sure we can actually find a chunk with enough
|
|
* space to fit our block group in.
|
|
*/
|
|
if (device->total_bytes > device->bytes_used + min_free) {
|
|
ret = find_free_dev_extent(NULL, device, min_free,
|
|
&dev_offset, &max_avail);
|
|
if (!ret)
|
|
break;
|
|
ret = -1;
|
|
}
|
|
}
|
|
mutex_unlock(&root->fs_info->chunk_mutex);
|
|
out:
|
|
btrfs_put_block_group(block_group);
|
|
return ret;
|
|
}
|
|
|
|
static int find_first_block_group(struct btrfs_root *root,
|
|
struct btrfs_path *path, struct btrfs_key *key)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
|
|
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
while (1) {
|
|
slot = path->slots[0];
|
|
leaf = path->nodes[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto out;
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
if (found_key.objectid >= key->objectid &&
|
|
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
ret = -ENOENT;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_free_block_groups(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_caching_control *caching_ctl;
|
|
struct rb_node *n;
|
|
|
|
down_write(&info->extent_commit_sem);
|
|
while (!list_empty(&info->caching_block_groups)) {
|
|
caching_ctl = list_entry(info->caching_block_groups.next,
|
|
struct btrfs_caching_control, list);
|
|
list_del(&caching_ctl->list);
|
|
put_caching_control(caching_ctl);
|
|
}
|
|
up_write(&info->extent_commit_sem);
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
|
|
block_group = rb_entry(n, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
rb_erase(&block_group->cache_node,
|
|
&info->block_group_cache_tree);
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
down_write(&block_group->space_info->groups_sem);
|
|
list_del(&block_group->list);
|
|
up_write(&block_group->space_info->groups_sem);
|
|
|
|
if (block_group->cached == BTRFS_CACHE_STARTED)
|
|
wait_block_group_cache_done(block_group);
|
|
|
|
btrfs_remove_free_space_cache(block_group);
|
|
|
|
WARN_ON(atomic_read(&block_group->count) != 1);
|
|
kfree(block_group);
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
}
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
/* now that all the block groups are freed, go through and
|
|
* free all the space_info structs. This is only called during
|
|
* the final stages of unmount, and so we know nobody is
|
|
* using them. We call synchronize_rcu() once before we start,
|
|
* just to be on the safe side.
|
|
*/
|
|
synchronize_rcu();
|
|
|
|
while(!list_empty(&info->space_info)) {
|
|
space_info = list_entry(info->space_info.next,
|
|
struct btrfs_space_info,
|
|
list);
|
|
|
|
list_del(&space_info->list);
|
|
kfree(space_info);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_read_block_groups(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
struct btrfs_block_group_cache *cache;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf;
|
|
|
|
root = info->extent_root;
|
|
key.objectid = 0;
|
|
key.offset = 0;
|
|
btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
ret = find_first_block_group(root, path, &key);
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
goto error;
|
|
}
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
cache = kzalloc(sizeof(*cache), GFP_NOFS);
|
|
if (!cache) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
atomic_set(&cache->count, 1);
|
|
spin_lock_init(&cache->lock);
|
|
spin_lock_init(&cache->tree_lock);
|
|
cache->fs_info = info;
|
|
INIT_LIST_HEAD(&cache->list);
|
|
INIT_LIST_HEAD(&cache->cluster_list);
|
|
|
|
/*
|
|
* we only want to have 32k of ram per block group for keeping
|
|
* track of free space, and if we pass 1/2 of that we want to
|
|
* start converting things over to using bitmaps
|
|
*/
|
|
cache->extents_thresh = ((1024 * 32) / 2) /
|
|
sizeof(struct btrfs_free_space);
|
|
|
|
read_extent_buffer(leaf, &cache->item,
|
|
btrfs_item_ptr_offset(leaf, path->slots[0]),
|
|
sizeof(cache->item));
|
|
memcpy(&cache->key, &found_key, sizeof(found_key));
|
|
|
|
key.objectid = found_key.objectid + found_key.offset;
|
|
btrfs_release_path(root, path);
|
|
cache->flags = btrfs_block_group_flags(&cache->item);
|
|
cache->sectorsize = root->sectorsize;
|
|
|
|
/*
|
|
* check for two cases, either we are full, and therefore
|
|
* don't need to bother with the caching work since we won't
|
|
* find any space, or we are empty, and we can just add all
|
|
* the space in and be done with it. This saves us _alot_ of
|
|
* time, particularly in the full case.
|
|
*/
|
|
if (found_key.offset == btrfs_block_group_used(&cache->item)) {
|
|
exclude_super_stripes(root, cache);
|
|
cache->last_byte_to_unpin = (u64)-1;
|
|
cache->cached = BTRFS_CACHE_FINISHED;
|
|
free_excluded_extents(root, cache);
|
|
} else if (btrfs_block_group_used(&cache->item) == 0) {
|
|
exclude_super_stripes(root, cache);
|
|
cache->last_byte_to_unpin = (u64)-1;
|
|
cache->cached = BTRFS_CACHE_FINISHED;
|
|
add_new_free_space(cache, root->fs_info,
|
|
found_key.objectid,
|
|
found_key.objectid +
|
|
found_key.offset);
|
|
free_excluded_extents(root, cache);
|
|
}
|
|
|
|
ret = update_space_info(info, cache->flags, found_key.offset,
|
|
btrfs_block_group_used(&cache->item),
|
|
&space_info);
|
|
BUG_ON(ret);
|
|
cache->space_info = space_info;
|
|
spin_lock(&cache->space_info->lock);
|
|
cache->space_info->bytes_super += cache->bytes_super;
|
|
spin_unlock(&cache->space_info->lock);
|
|
|
|
down_write(&space_info->groups_sem);
|
|
list_add_tail(&cache->list, &space_info->block_groups);
|
|
up_write(&space_info->groups_sem);
|
|
|
|
ret = btrfs_add_block_group_cache(root->fs_info, cache);
|
|
BUG_ON(ret);
|
|
|
|
set_avail_alloc_bits(root->fs_info, cache->flags);
|
|
if (btrfs_chunk_readonly(root, cache->key.objectid))
|
|
set_block_group_readonly(cache);
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_make_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytes_used,
|
|
u64 type, u64 chunk_objectid, u64 chunk_offset,
|
|
u64 size)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *extent_root;
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
extent_root = root->fs_info->extent_root;
|
|
|
|
root->fs_info->last_trans_log_full_commit = trans->transid;
|
|
|
|
cache = kzalloc(sizeof(*cache), GFP_NOFS);
|
|
if (!cache)
|
|
return -ENOMEM;
|
|
|
|
cache->key.objectid = chunk_offset;
|
|
cache->key.offset = size;
|
|
cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
|
|
cache->sectorsize = root->sectorsize;
|
|
|
|
/*
|
|
* we only want to have 32k of ram per block group for keeping track
|
|
* of free space, and if we pass 1/2 of that we want to start
|
|
* converting things over to using bitmaps
|
|
*/
|
|
cache->extents_thresh = ((1024 * 32) / 2) /
|
|
sizeof(struct btrfs_free_space);
|
|
atomic_set(&cache->count, 1);
|
|
spin_lock_init(&cache->lock);
|
|
spin_lock_init(&cache->tree_lock);
|
|
INIT_LIST_HEAD(&cache->list);
|
|
INIT_LIST_HEAD(&cache->cluster_list);
|
|
|
|
btrfs_set_block_group_used(&cache->item, bytes_used);
|
|
btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
|
|
cache->flags = type;
|
|
btrfs_set_block_group_flags(&cache->item, type);
|
|
|
|
cache->last_byte_to_unpin = (u64)-1;
|
|
cache->cached = BTRFS_CACHE_FINISHED;
|
|
exclude_super_stripes(root, cache);
|
|
|
|
add_new_free_space(cache, root->fs_info, chunk_offset,
|
|
chunk_offset + size);
|
|
|
|
free_excluded_extents(root, cache);
|
|
|
|
ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
|
|
&cache->space_info);
|
|
BUG_ON(ret);
|
|
|
|
spin_lock(&cache->space_info->lock);
|
|
cache->space_info->bytes_super += cache->bytes_super;
|
|
spin_unlock(&cache->space_info->lock);
|
|
|
|
down_write(&cache->space_info->groups_sem);
|
|
list_add_tail(&cache->list, &cache->space_info->block_groups);
|
|
up_write(&cache->space_info->groups_sem);
|
|
|
|
ret = btrfs_add_block_group_cache(root->fs_info, cache);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
|
|
sizeof(cache->item));
|
|
BUG_ON(ret);
|
|
|
|
set_avail_alloc_bits(extent_root->fs_info, type);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 group_start)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_free_cluster *cluster;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
root = root->fs_info->extent_root;
|
|
|
|
block_group = btrfs_lookup_block_group(root->fs_info, group_start);
|
|
BUG_ON(!block_group);
|
|
BUG_ON(!block_group->ro);
|
|
|
|
memcpy(&key, &block_group->key, sizeof(key));
|
|
|
|
/* make sure this block group isn't part of an allocation cluster */
|
|
cluster = &root->fs_info->data_alloc_cluster;
|
|
spin_lock(&cluster->refill_lock);
|
|
btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
spin_unlock(&cluster->refill_lock);
|
|
|
|
/*
|
|
* make sure this block group isn't part of a metadata
|
|
* allocation cluster
|
|
*/
|
|
cluster = &root->fs_info->meta_alloc_cluster;
|
|
spin_lock(&cluster->refill_lock);
|
|
btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
spin_unlock(&cluster->refill_lock);
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
spin_lock(&root->fs_info->block_group_cache_lock);
|
|
rb_erase(&block_group->cache_node,
|
|
&root->fs_info->block_group_cache_tree);
|
|
spin_unlock(&root->fs_info->block_group_cache_lock);
|
|
|
|
down_write(&block_group->space_info->groups_sem);
|
|
/*
|
|
* we must use list_del_init so people can check to see if they
|
|
* are still on the list after taking the semaphore
|
|
*/
|
|
list_del_init(&block_group->list);
|
|
up_write(&block_group->space_info->groups_sem);
|
|
|
|
if (block_group->cached == BTRFS_CACHE_STARTED)
|
|
wait_block_group_cache_done(block_group);
|
|
|
|
btrfs_remove_free_space_cache(block_group);
|
|
|
|
spin_lock(&block_group->space_info->lock);
|
|
block_group->space_info->total_bytes -= block_group->key.offset;
|
|
block_group->space_info->bytes_readonly -= block_group->key.offset;
|
|
spin_unlock(&block_group->space_info->lock);
|
|
|
|
btrfs_clear_space_info_full(root->fs_info);
|
|
|
|
btrfs_put_block_group(block_group);
|
|
btrfs_put_block_group(block_group);
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0)
|
|
ret = -EIO;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|