Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation version 2 of the license extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 315 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Armijn Hemel <armijn@tjaldur.nl> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190531190115.503150771@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
		
			
				
	
	
		
			401 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			401 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * apb_timer.c: Driver for Langwell APB timers
 | |
|  *
 | |
|  * (C) Copyright 2009 Intel Corporation
 | |
|  * Author: Jacob Pan (jacob.jun.pan@intel.com)
 | |
|  *
 | |
|  * Note:
 | |
|  * Langwell is the south complex of Intel Moorestown MID platform. There are
 | |
|  * eight external timers in total that can be used by the operating system.
 | |
|  * The timer information, such as frequency and addresses, is provided to the
 | |
|  * OS via SFI tables.
 | |
|  * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
 | |
|  * individual redirection table entries (RTE).
 | |
|  * Unlike HPET, there is no master counter, therefore one of the timers are
 | |
|  * used as clocksource. The overall allocation looks like:
 | |
|  *  - timer 0 - NR_CPUs for per cpu timer
 | |
|  *  - one timer for clocksource
 | |
|  *  - one timer for watchdog driver.
 | |
|  * It is also worth notice that APB timer does not support true one-shot mode,
 | |
|  * free-running mode will be used here to emulate one-shot mode.
 | |
|  * APB timer can also be used as broadcast timer along with per cpu local APIC
 | |
|  * timer, but by default APB timer has higher rating than local APIC timers.
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/dw_apb_timer.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/sfi.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/irq.h>
 | |
| 
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/apb_timer.h>
 | |
| #include <asm/intel-mid.h>
 | |
| #include <asm/time.h>
 | |
| 
 | |
| #define APBT_CLOCKEVENT_RATING		110
 | |
| #define APBT_CLOCKSOURCE_RATING		250
 | |
| 
 | |
| #define APBT_CLOCKEVENT0_NUM   (0)
 | |
| #define APBT_CLOCKSOURCE_NUM   (2)
 | |
| 
 | |
| static phys_addr_t apbt_address;
 | |
| static int apb_timer_block_enabled;
 | |
| static void __iomem *apbt_virt_address;
 | |
| 
 | |
| /*
 | |
|  * Common DW APB timer info
 | |
|  */
 | |
| static unsigned long apbt_freq;
 | |
| 
 | |
| struct apbt_dev {
 | |
| 	struct dw_apb_clock_event_device	*timer;
 | |
| 	unsigned int				num;
 | |
| 	int					cpu;
 | |
| 	unsigned int				irq;
 | |
| 	char					name[10];
 | |
| };
 | |
| 
 | |
| static struct dw_apb_clocksource *clocksource_apbt;
 | |
| 
 | |
| static inline void __iomem *adev_virt_addr(struct apbt_dev *adev)
 | |
| {
 | |
| 	return apbt_virt_address + adev->num * APBTMRS_REG_SIZE;
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static unsigned int apbt_num_timers_used;
 | |
| #endif
 | |
| 
 | |
| static inline void apbt_set_mapping(void)
 | |
| {
 | |
| 	struct sfi_timer_table_entry *mtmr;
 | |
| 	int phy_cs_timer_id = 0;
 | |
| 
 | |
| 	if (apbt_virt_address) {
 | |
| 		pr_debug("APBT base already mapped\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
 | |
| 	if (mtmr == NULL) {
 | |
| 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
 | |
| 		       APBT_CLOCKEVENT0_NUM);
 | |
| 		return;
 | |
| 	}
 | |
| 	apbt_address = (phys_addr_t)mtmr->phys_addr;
 | |
| 	if (!apbt_address) {
 | |
| 		printk(KERN_WARNING "No timer base from SFI, use default\n");
 | |
| 		apbt_address = APBT_DEFAULT_BASE;
 | |
| 	}
 | |
| 	apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
 | |
| 	if (!apbt_virt_address) {
 | |
| 		pr_debug("Failed mapping APBT phy address at %lu\n",\
 | |
| 			 (unsigned long)apbt_address);
 | |
| 		goto panic_noapbt;
 | |
| 	}
 | |
| 	apbt_freq = mtmr->freq_hz;
 | |
| 	sfi_free_mtmr(mtmr);
 | |
| 
 | |
| 	/* Now figure out the physical timer id for clocksource device */
 | |
| 	mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
 | |
| 	if (mtmr == NULL)
 | |
| 		goto panic_noapbt;
 | |
| 
 | |
| 	/* Now figure out the physical timer id */
 | |
| 	pr_debug("Use timer %d for clocksource\n",
 | |
| 		 (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE);
 | |
| 	phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) /
 | |
| 		APBTMRS_REG_SIZE;
 | |
| 
 | |
| 	clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING,
 | |
| 		"apbt0", apbt_virt_address + phy_cs_timer_id *
 | |
| 		APBTMRS_REG_SIZE, apbt_freq);
 | |
| 	return;
 | |
| 
 | |
| panic_noapbt:
 | |
| 	panic("Failed to setup APB system timer\n");
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline void apbt_clear_mapping(void)
 | |
| {
 | |
| 	iounmap(apbt_virt_address);
 | |
| 	apbt_virt_address = NULL;
 | |
| }
 | |
| 
 | |
| static int __init apbt_clockevent_register(void)
 | |
| {
 | |
| 	struct sfi_timer_table_entry *mtmr;
 | |
| 	struct apbt_dev *adev = this_cpu_ptr(&cpu_apbt_dev);
 | |
| 
 | |
| 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
 | |
| 	if (mtmr == NULL) {
 | |
| 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
 | |
| 		       APBT_CLOCKEVENT0_NUM);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	adev->num = smp_processor_id();
 | |
| 	adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0",
 | |
| 		intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ?
 | |
| 		APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING,
 | |
| 		adev_virt_addr(adev), 0, apbt_freq);
 | |
| 	/* Firmware does EOI handling for us. */
 | |
| 	adev->timer->eoi = NULL;
 | |
| 
 | |
| 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
 | |
| 		global_clock_event = &adev->timer->ced;
 | |
| 		printk(KERN_DEBUG "%s clockevent registered as global\n",
 | |
| 		       global_clock_event->name);
 | |
| 	}
 | |
| 
 | |
| 	dw_apb_clockevent_register(adev->timer);
 | |
| 
 | |
| 	sfi_free_mtmr(mtmr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static void apbt_setup_irq(struct apbt_dev *adev)
 | |
| {
 | |
| 	irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
 | |
| 	irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
 | |
| }
 | |
| 
 | |
| /* Should be called with per cpu */
 | |
| void apbt_setup_secondary_clock(void)
 | |
| {
 | |
| 	struct apbt_dev *adev;
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* Don't register boot CPU clockevent */
 | |
| 	cpu = smp_processor_id();
 | |
| 	if (!cpu)
 | |
| 		return;
 | |
| 
 | |
| 	adev = this_cpu_ptr(&cpu_apbt_dev);
 | |
| 	if (!adev->timer) {
 | |
| 		adev->timer = dw_apb_clockevent_init(cpu, adev->name,
 | |
| 			APBT_CLOCKEVENT_RATING, adev_virt_addr(adev),
 | |
| 			adev->irq, apbt_freq);
 | |
| 		adev->timer->eoi = NULL;
 | |
| 	} else {
 | |
| 		dw_apb_clockevent_resume(adev->timer);
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n",
 | |
| 	       cpu, adev->name, adev->cpu);
 | |
| 
 | |
| 	apbt_setup_irq(adev);
 | |
| 	dw_apb_clockevent_register(adev->timer);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this notify handler process CPU hotplug events. in case of S0i3, nonboot
 | |
|  * cpus are disabled/enabled frequently, for performance reasons, we keep the
 | |
|  * per cpu timer irq registered so that we do need to do free_irq/request_irq.
 | |
|  *
 | |
|  * TODO: it might be more reliable to directly disable percpu clockevent device
 | |
|  * without the notifier chain. currently, cpu 0 may get interrupts from other
 | |
|  * cpu timers during the offline process due to the ordering of notification.
 | |
|  * the extra interrupt is harmless.
 | |
|  */
 | |
| static int apbt_cpu_dead(unsigned int cpu)
 | |
| {
 | |
| 	struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
 | |
| 
 | |
| 	dw_apb_clockevent_pause(adev->timer);
 | |
| 	if (system_state == SYSTEM_RUNNING) {
 | |
| 		pr_debug("skipping APBT CPU %u offline\n", cpu);
 | |
| 	} else {
 | |
| 		pr_debug("APBT clockevent for cpu %u offline\n", cpu);
 | |
| 		dw_apb_clockevent_stop(adev->timer);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __init int apbt_late_init(void)
 | |
| {
 | |
| 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ||
 | |
| 		!apb_timer_block_enabled)
 | |
| 		return 0;
 | |
| 	return cpuhp_setup_state(CPUHP_X86_APB_DEAD, "x86/apb:dead", NULL,
 | |
| 				 apbt_cpu_dead);
 | |
| }
 | |
| fs_initcall(apbt_late_init);
 | |
| #else
 | |
| 
 | |
| void apbt_setup_secondary_clock(void) {}
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static int apbt_clocksource_register(void)
 | |
| {
 | |
| 	u64 start, now;
 | |
| 	u64 t1;
 | |
| 
 | |
| 	/* Start the counter, use timer 2 as source, timer 0/1 for event */
 | |
| 	dw_apb_clocksource_start(clocksource_apbt);
 | |
| 
 | |
| 	/* Verify whether apbt counter works */
 | |
| 	t1 = dw_apb_clocksource_read(clocksource_apbt);
 | |
| 	start = rdtsc();
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't know the TSC frequency yet, but waiting for
 | |
| 	 * 200000 TSC cycles is safe:
 | |
| 	 * 4 GHz == 50us
 | |
| 	 * 1 GHz == 200us
 | |
| 	 */
 | |
| 	do {
 | |
| 		rep_nop();
 | |
| 		now = rdtsc();
 | |
| 	} while ((now - start) < 200000UL);
 | |
| 
 | |
| 	/* APBT is the only always on clocksource, it has to work! */
 | |
| 	if (t1 == dw_apb_clocksource_read(clocksource_apbt))
 | |
| 		panic("APBT counter not counting. APBT disabled\n");
 | |
| 
 | |
| 	dw_apb_clocksource_register(clocksource_apbt);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Early setup the APBT timer, only use timer 0 for booting then switch to
 | |
|  * per CPU timer if possible.
 | |
|  * returns 1 if per cpu apbt is setup
 | |
|  * returns 0 if no per cpu apbt is chosen
 | |
|  * panic if set up failed, this is the only platform timer on Moorestown.
 | |
|  */
 | |
| void __init apbt_time_init(void)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	int i;
 | |
| 	struct sfi_timer_table_entry *p_mtmr;
 | |
| 	struct apbt_dev *adev;
 | |
| #endif
 | |
| 
 | |
| 	if (apb_timer_block_enabled)
 | |
| 		return;
 | |
| 	apbt_set_mapping();
 | |
| 	if (!apbt_virt_address)
 | |
| 		goto out_noapbt;
 | |
| 	/*
 | |
| 	 * Read the frequency and check for a sane value, for ESL model
 | |
| 	 * we extend the possible clock range to allow time scaling.
 | |
| 	 */
 | |
| 
 | |
| 	if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
 | |
| 		pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq);
 | |
| 		goto out_noapbt;
 | |
| 	}
 | |
| 	if (apbt_clocksource_register()) {
 | |
| 		pr_debug("APBT has failed to register clocksource\n");
 | |
| 		goto out_noapbt;
 | |
| 	}
 | |
| 	if (!apbt_clockevent_register())
 | |
| 		apb_timer_block_enabled = 1;
 | |
| 	else {
 | |
| 		pr_debug("APBT has failed to register clockevent\n");
 | |
| 		goto out_noapbt;
 | |
| 	}
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* kernel cmdline disable apb timer, so we will use lapic timers */
 | |
| 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
 | |
| 		printk(KERN_INFO "apbt: disabled per cpu timer\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
 | |
| 	if (num_possible_cpus() <= sfi_mtimer_num)
 | |
| 		apbt_num_timers_used = num_possible_cpus();
 | |
| 	else
 | |
| 		apbt_num_timers_used = 1;
 | |
| 	pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
 | |
| 
 | |
| 	/* here we set up per CPU timer data structure */
 | |
| 	for (i = 0; i < apbt_num_timers_used; i++) {
 | |
| 		adev = &per_cpu(cpu_apbt_dev, i);
 | |
| 		adev->num = i;
 | |
| 		adev->cpu = i;
 | |
| 		p_mtmr = sfi_get_mtmr(i);
 | |
| 		if (p_mtmr)
 | |
| 			adev->irq = p_mtmr->irq;
 | |
| 		else
 | |
| 			printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
 | |
| 		snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| out_noapbt:
 | |
| 	apbt_clear_mapping();
 | |
| 	apb_timer_block_enabled = 0;
 | |
| 	panic("failed to enable APB timer\n");
 | |
| }
 | |
| 
 | |
| /* called before apb_timer_enable, use early map */
 | |
| unsigned long apbt_quick_calibrate(void)
 | |
| {
 | |
| 	int i, scale;
 | |
| 	u64 old, new;
 | |
| 	u64 t1, t2;
 | |
| 	unsigned long khz = 0;
 | |
| 	u32 loop, shift;
 | |
| 
 | |
| 	apbt_set_mapping();
 | |
| 	dw_apb_clocksource_start(clocksource_apbt);
 | |
| 
 | |
| 	/* check if the timer can count down, otherwise return */
 | |
| 	old = dw_apb_clocksource_read(clocksource_apbt);
 | |
| 	i = 10000;
 | |
| 	while (--i) {
 | |
| 		if (old != dw_apb_clocksource_read(clocksource_apbt))
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!i)
 | |
| 		goto failed;
 | |
| 
 | |
| 	/* count 16 ms */
 | |
| 	loop = (apbt_freq / 1000) << 4;
 | |
| 
 | |
| 	/* restart the timer to ensure it won't get to 0 in the calibration */
 | |
| 	dw_apb_clocksource_start(clocksource_apbt);
 | |
| 
 | |
| 	old = dw_apb_clocksource_read(clocksource_apbt);
 | |
| 	old += loop;
 | |
| 
 | |
| 	t1 = rdtsc();
 | |
| 
 | |
| 	do {
 | |
| 		new = dw_apb_clocksource_read(clocksource_apbt);
 | |
| 	} while (new < old);
 | |
| 
 | |
| 	t2 = rdtsc();
 | |
| 
 | |
| 	shift = 5;
 | |
| 	if (unlikely(loop >> shift == 0)) {
 | |
| 		printk(KERN_INFO
 | |
| 		       "APBT TSC calibration failed, not enough resolution\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	scale = (int)div_u64((t2 - t1), loop >> shift);
 | |
| 	khz = (scale * (apbt_freq / 1000)) >> shift;
 | |
| 	printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
 | |
| 	return khz;
 | |
| failed:
 | |
| 	return 0;
 | |
| }
 |