linux/drivers/net/ethernet/sfc/rx.c
Ben Hutchings 85740cdf0b sfc: Enable RX DMA scattering where possible
Enable RX DMA scattering iff an RX buffer large enough for the current
MTU will not fit into a single page and the NIC supports DMA
scattering for kernel-mode RX queues.

On Falcon and Siena, the RX_USR_BUF_SIZE field is used as the DMA
limit for both all RX queues with scatter enabled.  Set it to 1824,
matching what Onload uses now.

Maintain a statistic for frames truncated due to lack of descriptors
(rx_nodesc_trunc).  This is distinct from rx_frm_trunc which may be
incremented when scattering is disabled and implies an over-length
frame.

Whenever an MTU change causes scattering to be turned on or off,
update filters that point to the PF queues, but leave others
unchanged, as VF drivers assume scattering is off.

Add n_frags parameters to various functions, and make them iterate:
- efx_rx_packet()
- efx_recycle_rx_buffers()
- efx_rx_mk_skb()
- efx_rx_deliver()

Make efx_handle_rx_event() responsible for updating
efx_rx_queue::removed_count.

Change the RX pipeline state to a starting ring index and number of
fragments, and make __efx_rx_packet() responsible for clearing it.

Based on earlier versions by David Riddoch and Jon Cooper.

Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2013-03-07 20:22:12 +00:00

681 lines
19 KiB
C

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2011 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/prefetch.h>
#include <linux/moduleparam.h>
#include <net/ip.h>
#include <net/checksum.h>
#include "net_driver.h"
#include "efx.h"
#include "nic.h"
#include "selftest.h"
#include "workarounds.h"
/* Number of RX descriptors pushed at once. */
#define EFX_RX_BATCH 8
/* Maximum length for an RX descriptor sharing a page */
#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state) \
- EFX_PAGE_IP_ALIGN)
/* Size of buffer allocated for skb header area. */
#define EFX_SKB_HEADERS 64u
/* This is the percentage fill level below which new RX descriptors
* will be added to the RX descriptor ring.
*/
static unsigned int rx_refill_threshold;
/* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
#define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
EFX_RX_USR_BUF_SIZE)
/*
* RX maximum head room required.
*
* This must be at least 1 to prevent overflow, plus one packet-worth
* to allow pipelined receives.
*/
#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
{
return page_address(buf->page) + buf->page_offset;
}
static inline u32 efx_rx_buf_hash(const u8 *eh)
{
/* The ethernet header is always directly after any hash. */
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
return __le32_to_cpup((const __le32 *)(eh - 4));
#else
const u8 *data = eh - 4;
return (u32)data[0] |
(u32)data[1] << 8 |
(u32)data[2] << 16 |
(u32)data[3] << 24;
#endif
}
static inline struct efx_rx_buffer *
efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
{
if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
return efx_rx_buffer(rx_queue, 0);
else
return rx_buf + 1;
}
/**
* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
*
* @rx_queue: Efx RX queue
*
* This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
* and populates struct efx_rx_buffers for each one. Return a negative error
* code or 0 on success. If a single page can be split between two buffers,
* then the page will either be inserted fully, or not at at all.
*/
static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
struct efx_rx_buffer *rx_buf;
struct page *page;
unsigned int page_offset;
struct efx_rx_page_state *state;
dma_addr_t dma_addr;
unsigned index, count;
/* We can split a page between two buffers */
BUILD_BUG_ON(EFX_RX_BATCH & 1);
for (count = 0; count < EFX_RX_BATCH; ++count) {
page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
efx->rx_buffer_order);
if (unlikely(page == NULL))
return -ENOMEM;
dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) {
__free_pages(page, efx->rx_buffer_order);
return -EIO;
}
state = page_address(page);
state->refcnt = 0;
state->dma_addr = dma_addr;
dma_addr += sizeof(struct efx_rx_page_state);
page_offset = sizeof(struct efx_rx_page_state);
split:
index = rx_queue->added_count & rx_queue->ptr_mask;
rx_buf = efx_rx_buffer(rx_queue, index);
rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
rx_buf->page = page;
rx_buf->page_offset = page_offset + EFX_PAGE_IP_ALIGN;
rx_buf->len = efx->rx_dma_len;
rx_buf->flags = 0;
++rx_queue->added_count;
++state->refcnt;
if ((~count & 1) && (efx->rx_dma_len <= EFX_RX_HALF_PAGE)) {
/* Use the second half of the page */
get_page(page);
dma_addr += (PAGE_SIZE >> 1);
page_offset += (PAGE_SIZE >> 1);
++count;
goto split;
}
}
return 0;
}
static void efx_unmap_rx_buffer(struct efx_nic *efx,
struct efx_rx_buffer *rx_buf,
unsigned int used_len)
{
if (rx_buf->page) {
struct efx_rx_page_state *state;
state = page_address(rx_buf->page);
if (--state->refcnt == 0) {
dma_unmap_page(&efx->pci_dev->dev,
state->dma_addr,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
} else if (used_len) {
dma_sync_single_for_cpu(&efx->pci_dev->dev,
rx_buf->dma_addr, used_len,
DMA_FROM_DEVICE);
}
}
}
static void efx_free_rx_buffer(struct efx_nic *efx,
struct efx_rx_buffer *rx_buf)
{
if (rx_buf->page) {
__free_pages(rx_buf->page, efx->rx_buffer_order);
rx_buf->page = NULL;
}
}
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf)
{
efx_unmap_rx_buffer(rx_queue->efx, rx_buf, 0);
efx_free_rx_buffer(rx_queue->efx, rx_buf);
}
/* Attempt to resurrect the other receive buffer that used to share this page,
* which had previously been passed up to the kernel and freed. */
static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf)
{
struct efx_rx_page_state *state = page_address(rx_buf->page);
struct efx_rx_buffer *new_buf;
unsigned fill_level, index;
/* +1 because efx_rx_packet() incremented removed_count. +1 because
* we'd like to insert an additional descriptor whilst leaving
* EFX_RXD_HEAD_ROOM for the non-recycle path */
fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
if (unlikely(fill_level > rx_queue->max_fill)) {
/* We could place "state" on a list, and drain the list in
* efx_fast_push_rx_descriptors(). For now, this will do. */
return;
}
++state->refcnt;
get_page(rx_buf->page);
index = rx_queue->added_count & rx_queue->ptr_mask;
new_buf = efx_rx_buffer(rx_queue, index);
new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
new_buf->page = rx_buf->page;
new_buf->len = rx_buf->len;
++rx_queue->added_count;
}
/* Recycle buffers directly back into the rx_queue. There is always
* room to add these buffer, because we've just popped them.
*/
static void efx_recycle_rx_buffers(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf,
unsigned int n_frags)
{
struct efx_nic *efx = channel->efx;
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
struct efx_rx_buffer *new_buf;
unsigned index;
do {
rx_buf->flags = 0;
if (efx->rx_dma_len <= EFX_RX_HALF_PAGE &&
page_count(rx_buf->page) == 1)
efx_resurrect_rx_buffer(rx_queue, rx_buf);
index = rx_queue->added_count & rx_queue->ptr_mask;
new_buf = efx_rx_buffer(rx_queue, index);
memcpy(new_buf, rx_buf, sizeof(*new_buf));
rx_buf->page = NULL;
++rx_queue->added_count;
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
} while (--n_frags);
}
/**
* efx_fast_push_rx_descriptors - push new RX descriptors quickly
* @rx_queue: RX descriptor queue
*
* This will aim to fill the RX descriptor queue up to
* @rx_queue->@max_fill. If there is insufficient atomic
* memory to do so, a slow fill will be scheduled.
*
* The caller must provide serialisation (none is used here). In practise,
* this means this function must run from the NAPI handler, or be called
* when NAPI is disabled.
*/
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
{
unsigned fill_level;
int space, rc = 0;
/* Calculate current fill level, and exit if we don't need to fill */
fill_level = (rx_queue->added_count - rx_queue->removed_count);
EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
if (fill_level >= rx_queue->fast_fill_trigger)
goto out;
/* Record minimum fill level */
if (unlikely(fill_level < rx_queue->min_fill)) {
if (fill_level)
rx_queue->min_fill = fill_level;
}
space = rx_queue->max_fill - fill_level;
EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH);
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
"RX queue %d fast-filling descriptor ring from"
" level %d to level %d\n",
efx_rx_queue_index(rx_queue), fill_level,
rx_queue->max_fill);
do {
rc = efx_init_rx_buffers(rx_queue);
if (unlikely(rc)) {
/* Ensure that we don't leave the rx queue empty */
if (rx_queue->added_count == rx_queue->removed_count)
efx_schedule_slow_fill(rx_queue);
goto out;
}
} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
"RX queue %d fast-filled descriptor ring "
"to level %d\n", efx_rx_queue_index(rx_queue),
rx_queue->added_count - rx_queue->removed_count);
out:
if (rx_queue->notified_count != rx_queue->added_count)
efx_nic_notify_rx_desc(rx_queue);
}
void efx_rx_slow_fill(unsigned long context)
{
struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
/* Post an event to cause NAPI to run and refill the queue */
efx_nic_generate_fill_event(rx_queue);
++rx_queue->slow_fill_count;
}
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf,
int len)
{
struct efx_nic *efx = rx_queue->efx;
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
if (likely(len <= max_len))
return;
/* The packet must be discarded, but this is only a fatal error
* if the caller indicated it was
*/
rx_buf->flags |= EFX_RX_PKT_DISCARD;
if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
if (net_ratelimit())
netif_err(efx, rx_err, efx->net_dev,
" RX queue %d seriously overlength "
"RX event (0x%x > 0x%x+0x%x). Leaking\n",
efx_rx_queue_index(rx_queue), len, max_len,
efx->type->rx_buffer_padding);
efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
} else {
if (net_ratelimit())
netif_err(efx, rx_err, efx->net_dev,
" RX queue %d overlength RX event "
"(0x%x > 0x%x)\n",
efx_rx_queue_index(rx_queue), len, max_len);
}
efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
}
/* Pass a received packet up through GRO. GRO can handle pages
* regardless of checksum state and skbs with a good checksum.
*/
static void
efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
unsigned int n_frags, u8 *eh)
{
struct napi_struct *napi = &channel->napi_str;
gro_result_t gro_result;
struct efx_nic *efx = channel->efx;
struct sk_buff *skb;
skb = napi_get_frags(napi);
if (unlikely(!skb)) {
while (n_frags--) {
put_page(rx_buf->page);
rx_buf->page = NULL;
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
}
return;
}
if (efx->net_dev->features & NETIF_F_RXHASH)
skb->rxhash = efx_rx_buf_hash(eh);
skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
for (;;) {
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
rx_buf->page, rx_buf->page_offset,
rx_buf->len);
rx_buf->page = NULL;
skb->len += rx_buf->len;
if (skb_shinfo(skb)->nr_frags == n_frags)
break;
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
}
skb->data_len = skb->len;
skb->truesize += n_frags * efx->rx_buffer_truesize;
skb_record_rx_queue(skb, channel->rx_queue.core_index);
gro_result = napi_gro_frags(napi);
if (gro_result != GRO_DROP)
channel->irq_mod_score += 2;
}
/* Allocate and construct an SKB around page fragments */
static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf,
unsigned int n_frags,
u8 *eh, int hdr_len)
{
struct efx_nic *efx = channel->efx;
struct sk_buff *skb;
/* Allocate an SKB to store the headers */
skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
if (unlikely(skb == NULL))
return NULL;
EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
/* Append the remaining page(s) onto the frag list */
if (rx_buf->len > hdr_len) {
rx_buf->page_offset += hdr_len;
rx_buf->len -= hdr_len;
for (;;) {
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
rx_buf->page, rx_buf->page_offset,
rx_buf->len);
rx_buf->page = NULL;
skb->len += rx_buf->len;
skb->data_len += rx_buf->len;
if (skb_shinfo(skb)->nr_frags == n_frags)
break;
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
}
} else {
__free_pages(rx_buf->page, efx->rx_buffer_order);
rx_buf->page = NULL;
n_frags = 0;
}
skb->truesize += n_frags * efx->rx_buffer_truesize;
/* Move past the ethernet header */
skb->protocol = eth_type_trans(skb, efx->net_dev);
return skb;
}
void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
unsigned int n_frags, unsigned int len, u16 flags)
{
struct efx_nic *efx = rx_queue->efx;
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
struct efx_rx_buffer *rx_buf;
rx_buf = efx_rx_buffer(rx_queue, index);
rx_buf->flags |= flags;
/* Validate the number of fragments and completed length */
if (n_frags == 1) {
efx_rx_packet__check_len(rx_queue, rx_buf, len);
} else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) ||
unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) ||
unlikely(!efx->rx_scatter)) {
/* If this isn't an explicit discard request, either
* the hardware or the driver is broken.
*/
WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
rx_buf->flags |= EFX_RX_PKT_DISCARD;
}
netif_vdbg(efx, rx_status, efx->net_dev,
"RX queue %d received ids %x-%x len %d %s%s\n",
efx_rx_queue_index(rx_queue), index,
(index + n_frags - 1) & rx_queue->ptr_mask, len,
(rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
(rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
/* Discard packet, if instructed to do so. Process the
* previous receive first.
*/
if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
efx_rx_flush_packet(channel);
efx_recycle_rx_buffers(channel, rx_buf, n_frags);
return;
}
if (n_frags == 1)
rx_buf->len = len;
/* Release and/or sync DMA mapping - assumes all RX buffers
* consumed in-order per RX queue
*/
efx_unmap_rx_buffer(efx, rx_buf, rx_buf->len);
/* Prefetch nice and early so data will (hopefully) be in cache by
* the time we look at it.
*/
prefetch(efx_rx_buf_va(rx_buf));
rx_buf->page_offset += efx->type->rx_buffer_hash_size;
rx_buf->len -= efx->type->rx_buffer_hash_size;
if (n_frags > 1) {
/* Release/sync DMA mapping for additional fragments.
* Fix length for last fragment.
*/
unsigned int tail_frags = n_frags - 1;
for (;;) {
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
if (--tail_frags == 0)
break;
efx_unmap_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE);
}
rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE;
efx_unmap_rx_buffer(efx, rx_buf, rx_buf->len);
}
/* Pipeline receives so that we give time for packet headers to be
* prefetched into cache.
*/
efx_rx_flush_packet(channel);
channel->rx_pkt_n_frags = n_frags;
channel->rx_pkt_index = index;
}
static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
struct efx_rx_buffer *rx_buf,
unsigned int n_frags)
{
struct sk_buff *skb;
u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
if (unlikely(skb == NULL)) {
efx_free_rx_buffer(channel->efx, rx_buf);
return;
}
skb_record_rx_queue(skb, channel->rx_queue.core_index);
/* Set the SKB flags */
skb_checksum_none_assert(skb);
if (channel->type->receive_skb)
if (channel->type->receive_skb(channel, skb))
return;
/* Pass the packet up */
netif_receive_skb(skb);
}
/* Handle a received packet. Second half: Touches packet payload. */
void __efx_rx_packet(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
struct efx_rx_buffer *rx_buf =
efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
u8 *eh = efx_rx_buf_va(rx_buf);
/* If we're in loopback test, then pass the packet directly to the
* loopback layer, and free the rx_buf here
*/
if (unlikely(efx->loopback_selftest)) {
efx_loopback_rx_packet(efx, eh, rx_buf->len);
efx_free_rx_buffer(efx, rx_buf);
goto out;
}
if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
if (!channel->type->receive_skb)
efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
else
efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
out:
channel->rx_pkt_n_frags = 0;
}
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int entries;
int rc;
/* Create the smallest power-of-two aligned ring */
entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
rx_queue->ptr_mask = entries - 1;
netif_dbg(efx, probe, efx->net_dev,
"creating RX queue %d size %#x mask %#x\n",
efx_rx_queue_index(rx_queue), efx->rxq_entries,
rx_queue->ptr_mask);
/* Allocate RX buffers */
rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
GFP_KERNEL);
if (!rx_queue->buffer)
return -ENOMEM;
rc = efx_nic_probe_rx(rx_queue);
if (rc) {
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
}
return rc;
}
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int max_fill, trigger, max_trigger;
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
/* Initialise ptr fields */
rx_queue->added_count = 0;
rx_queue->notified_count = 0;
rx_queue->removed_count = 0;
rx_queue->min_fill = -1U;
/* Initialise limit fields */
max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
max_trigger = max_fill - EFX_RX_BATCH;
if (rx_refill_threshold != 0) {
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
if (trigger > max_trigger)
trigger = max_trigger;
} else {
trigger = max_trigger;
}
rx_queue->max_fill = max_fill;
rx_queue->fast_fill_trigger = trigger;
/* Set up RX descriptor ring */
rx_queue->enabled = true;
efx_nic_init_rx(rx_queue);
}
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
{
int i;
struct efx_rx_buffer *rx_buf;
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
/* A flush failure might have left rx_queue->enabled */
rx_queue->enabled = false;
del_timer_sync(&rx_queue->slow_fill);
efx_nic_fini_rx(rx_queue);
/* Release RX buffers NB start at index 0 not current HW ptr */
if (rx_queue->buffer) {
for (i = 0; i <= rx_queue->ptr_mask; i++) {
rx_buf = efx_rx_buffer(rx_queue, i);
efx_fini_rx_buffer(rx_queue, rx_buf);
}
}
}
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
{
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
efx_nic_remove_rx(rx_queue);
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
}
module_param(rx_refill_threshold, uint, 0444);
MODULE_PARM_DESC(rx_refill_threshold,
"RX descriptor ring refill threshold (%)");