linux/fs/btrfs/tree-checker.c
Qu Wenruo f556faa46e btrfs: tree-checker: Check level for leaves and nodes
Although we have tree level check at tree read runtime, it's completely
based on its parent level.
We still need to do accurate level check to avoid invalid tree blocks
sneak into kernel space.

The check itself is simple, for leaf its level should always be 0.
For nodes its level should be in range [1, BTRFS_MAX_LEVEL - 1].

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 17:23:37 +02:00

706 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Qu Wenruo 2017. All rights reserved.
*/
/*
* The module is used to catch unexpected/corrupted tree block data.
* Such behavior can be caused either by a fuzzed image or bugs.
*
* The objective is to do leaf/node validation checks when tree block is read
* from disk, and check *every* possible member, so other code won't
* need to checking them again.
*
* Due to the potential and unwanted damage, every checker needs to be
* carefully reviewed otherwise so it does not prevent mount of valid images.
*/
#include "ctree.h"
#include "tree-checker.h"
#include "disk-io.h"
#include "compression.h"
#include "volumes.h"
/*
* Error message should follow the following format:
* corrupt <type>: <identifier>, <reason>[, <bad_value>]
*
* @type: leaf or node
* @identifier: the necessary info to locate the leaf/node.
* It's recommened to decode key.objecitd/offset if it's
* meaningful.
* @reason: describe the error
* @bad_value: optional, it's recommened to output bad value and its
* expected value (range).
*
* Since comma is used to separate the components, only space is allowed
* inside each component.
*/
/*
* Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
* Allows callers to customize the output.
*/
__printf(4, 5)
__cold
static void generic_err(const struct btrfs_fs_info *fs_info,
const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
va_end(args);
}
/*
* Customized reporter for extent data item, since its key objectid and
* offset has its own meaning.
*/
__printf(4, 5)
__cold
static void file_extent_err(const struct btrfs_fs_info *fs_info,
const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
struct btrfs_key key;
struct va_format vaf;
va_list args;
btrfs_item_key_to_cpu(eb, &key, slot);
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
key.objectid, key.offset, &vaf);
va_end(args);
}
/*
* Return 0 if the btrfs_file_extent_##name is aligned to @alignment
* Else return 1
*/
#define CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, name, alignment) \
({ \
if (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))) \
file_extent_err((fs_info), (leaf), (slot), \
"invalid %s for file extent, have %llu, should be aligned to %u", \
(#name), btrfs_file_extent_##name((leaf), (fi)), \
(alignment)); \
(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \
})
static int check_extent_data_item(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct btrfs_file_extent_item *fi;
u32 sectorsize = fs_info->sectorsize;
u32 item_size = btrfs_item_size_nr(leaf, slot);
if (!IS_ALIGNED(key->offset, sectorsize)) {
file_extent_err(fs_info, leaf, slot,
"unaligned file_offset for file extent, have %llu should be aligned to %u",
key->offset, sectorsize);
return -EUCLEAN;
}
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) > BTRFS_FILE_EXTENT_TYPES) {
file_extent_err(fs_info, leaf, slot,
"invalid type for file extent, have %u expect range [0, %u]",
btrfs_file_extent_type(leaf, fi),
BTRFS_FILE_EXTENT_TYPES);
return -EUCLEAN;
}
/*
* Support for new compression/encrption must introduce incompat flag,
* and must be caught in open_ctree().
*/
if (btrfs_file_extent_compression(leaf, fi) > BTRFS_COMPRESS_TYPES) {
file_extent_err(fs_info, leaf, slot,
"invalid compression for file extent, have %u expect range [0, %u]",
btrfs_file_extent_compression(leaf, fi),
BTRFS_COMPRESS_TYPES);
return -EUCLEAN;
}
if (btrfs_file_extent_encryption(leaf, fi)) {
file_extent_err(fs_info, leaf, slot,
"invalid encryption for file extent, have %u expect 0",
btrfs_file_extent_encryption(leaf, fi));
return -EUCLEAN;
}
if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
/* Inline extent must have 0 as key offset */
if (key->offset) {
file_extent_err(fs_info, leaf, slot,
"invalid file_offset for inline file extent, have %llu expect 0",
key->offset);
return -EUCLEAN;
}
/* Compressed inline extent has no on-disk size, skip it */
if (btrfs_file_extent_compression(leaf, fi) !=
BTRFS_COMPRESS_NONE)
return 0;
/* Uncompressed inline extent size must match item size */
if (item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
btrfs_file_extent_ram_bytes(leaf, fi)) {
file_extent_err(fs_info, leaf, slot,
"invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
btrfs_file_extent_ram_bytes(leaf, fi));
return -EUCLEAN;
}
return 0;
}
/* Regular or preallocated extent has fixed item size */
if (item_size != sizeof(*fi)) {
file_extent_err(fs_info, leaf, slot,
"invalid item size for reg/prealloc file extent, have %u expect %zu",
item_size, sizeof(*fi));
return -EUCLEAN;
}
if (CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, ram_bytes, sectorsize) ||
CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, disk_bytenr, sectorsize) ||
CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, disk_num_bytes, sectorsize) ||
CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, offset, sectorsize) ||
CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, num_bytes, sectorsize))
return -EUCLEAN;
return 0;
}
static int check_csum_item(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf, struct btrfs_key *key,
int slot)
{
u32 sectorsize = fs_info->sectorsize;
u32 csumsize = btrfs_super_csum_size(fs_info->super_copy);
if (key->objectid != BTRFS_EXTENT_CSUM_OBJECTID) {
generic_err(fs_info, leaf, slot,
"invalid key objectid for csum item, have %llu expect %llu",
key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
return -EUCLEAN;
}
if (!IS_ALIGNED(key->offset, sectorsize)) {
generic_err(fs_info, leaf, slot,
"unaligned key offset for csum item, have %llu should be aligned to %u",
key->offset, sectorsize);
return -EUCLEAN;
}
if (!IS_ALIGNED(btrfs_item_size_nr(leaf, slot), csumsize)) {
generic_err(fs_info, leaf, slot,
"unaligned item size for csum item, have %u should be aligned to %u",
btrfs_item_size_nr(leaf, slot), csumsize);
return -EUCLEAN;
}
return 0;
}
/*
* Customized reported for dir_item, only important new info is key->objectid,
* which represents inode number
*/
__printf(4, 5)
__cold
static void dir_item_err(const struct btrfs_fs_info *fs_info,
const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
struct btrfs_key key;
struct va_format vaf;
va_list args;
btrfs_item_key_to_cpu(eb, &key, slot);
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
key.objectid, &vaf);
va_end(args);
}
static int check_dir_item(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct btrfs_dir_item *di;
u32 item_size = btrfs_item_size_nr(leaf, slot);
u32 cur = 0;
di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
while (cur < item_size) {
u32 name_len;
u32 data_len;
u32 max_name_len;
u32 total_size;
u32 name_hash;
u8 dir_type;
/* header itself should not cross item boundary */
if (cur + sizeof(*di) > item_size) {
dir_item_err(fs_info, leaf, slot,
"dir item header crosses item boundary, have %zu boundary %u",
cur + sizeof(*di), item_size);
return -EUCLEAN;
}
/* dir type check */
dir_type = btrfs_dir_type(leaf, di);
if (dir_type >= BTRFS_FT_MAX) {
dir_item_err(fs_info, leaf, slot,
"invalid dir item type, have %u expect [0, %u)",
dir_type, BTRFS_FT_MAX);
return -EUCLEAN;
}
if (key->type == BTRFS_XATTR_ITEM_KEY &&
dir_type != BTRFS_FT_XATTR) {
dir_item_err(fs_info, leaf, slot,
"invalid dir item type for XATTR key, have %u expect %u",
dir_type, BTRFS_FT_XATTR);
return -EUCLEAN;
}
if (dir_type == BTRFS_FT_XATTR &&
key->type != BTRFS_XATTR_ITEM_KEY) {
dir_item_err(fs_info, leaf, slot,
"xattr dir type found for non-XATTR key");
return -EUCLEAN;
}
if (dir_type == BTRFS_FT_XATTR)
max_name_len = XATTR_NAME_MAX;
else
max_name_len = BTRFS_NAME_LEN;
/* Name/data length check */
name_len = btrfs_dir_name_len(leaf, di);
data_len = btrfs_dir_data_len(leaf, di);
if (name_len > max_name_len) {
dir_item_err(fs_info, leaf, slot,
"dir item name len too long, have %u max %u",
name_len, max_name_len);
return -EUCLEAN;
}
if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info)) {
dir_item_err(fs_info, leaf, slot,
"dir item name and data len too long, have %u max %u",
name_len + data_len,
BTRFS_MAX_XATTR_SIZE(fs_info));
return -EUCLEAN;
}
if (data_len && dir_type != BTRFS_FT_XATTR) {
dir_item_err(fs_info, leaf, slot,
"dir item with invalid data len, have %u expect 0",
data_len);
return -EUCLEAN;
}
total_size = sizeof(*di) + name_len + data_len;
/* header and name/data should not cross item boundary */
if (cur + total_size > item_size) {
dir_item_err(fs_info, leaf, slot,
"dir item data crosses item boundary, have %u boundary %u",
cur + total_size, item_size);
return -EUCLEAN;
}
/*
* Special check for XATTR/DIR_ITEM, as key->offset is name
* hash, should match its name
*/
if (key->type == BTRFS_DIR_ITEM_KEY ||
key->type == BTRFS_XATTR_ITEM_KEY) {
char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
read_extent_buffer(leaf, namebuf,
(unsigned long)(di + 1), name_len);
name_hash = btrfs_name_hash(namebuf, name_len);
if (key->offset != name_hash) {
dir_item_err(fs_info, leaf, slot,
"name hash mismatch with key, have 0x%016x expect 0x%016llx",
name_hash, key->offset);
return -EUCLEAN;
}
}
cur += total_size;
di = (struct btrfs_dir_item *)((void *)di + total_size);
}
return 0;
}
__printf(4, 5)
__cold
static void block_group_err(const struct btrfs_fs_info *fs_info,
const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
struct btrfs_key key;
struct va_format vaf;
va_list args;
btrfs_item_key_to_cpu(eb, &key, slot);
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
key.objectid, key.offset, &vaf);
va_end(args);
}
static int check_block_group_item(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct btrfs_block_group_item bgi;
u32 item_size = btrfs_item_size_nr(leaf, slot);
u64 flags;
u64 type;
/*
* Here we don't really care about alignment since extent allocator can
* handle it. We care more about the size, as if one block group is
* larger than maximum size, it's must be some obvious corruption.
*/
if (key->offset > BTRFS_MAX_DATA_CHUNK_SIZE || key->offset == 0) {
block_group_err(fs_info, leaf, slot,
"invalid block group size, have %llu expect (0, %llu]",
key->offset, BTRFS_MAX_DATA_CHUNK_SIZE);
return -EUCLEAN;
}
if (item_size != sizeof(bgi)) {
block_group_err(fs_info, leaf, slot,
"invalid item size, have %u expect %zu",
item_size, sizeof(bgi));
return -EUCLEAN;
}
read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
sizeof(bgi));
if (btrfs_block_group_chunk_objectid(&bgi) !=
BTRFS_FIRST_CHUNK_TREE_OBJECTID) {
block_group_err(fs_info, leaf, slot,
"invalid block group chunk objectid, have %llu expect %llu",
btrfs_block_group_chunk_objectid(&bgi),
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
return -EUCLEAN;
}
if (btrfs_block_group_used(&bgi) > key->offset) {
block_group_err(fs_info, leaf, slot,
"invalid block group used, have %llu expect [0, %llu)",
btrfs_block_group_used(&bgi), key->offset);
return -EUCLEAN;
}
flags = btrfs_block_group_flags(&bgi);
if (hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1) {
block_group_err(fs_info, leaf, slot,
"invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
return -EUCLEAN;
}
type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
if (type != BTRFS_BLOCK_GROUP_DATA &&
type != BTRFS_BLOCK_GROUP_METADATA &&
type != BTRFS_BLOCK_GROUP_SYSTEM &&
type != (BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA)) {
block_group_err(fs_info, leaf, slot,
"invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llu or 0x%llx",
type, hweight64(type),
BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
return -EUCLEAN;
}
return 0;
}
/*
* Common point to switch the item-specific validation.
*/
static int check_leaf_item(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
int ret = 0;
switch (key->type) {
case BTRFS_EXTENT_DATA_KEY:
ret = check_extent_data_item(fs_info, leaf, key, slot);
break;
case BTRFS_EXTENT_CSUM_KEY:
ret = check_csum_item(fs_info, leaf, key, slot);
break;
case BTRFS_DIR_ITEM_KEY:
case BTRFS_DIR_INDEX_KEY:
case BTRFS_XATTR_ITEM_KEY:
ret = check_dir_item(fs_info, leaf, key, slot);
break;
case BTRFS_BLOCK_GROUP_ITEM_KEY:
ret = check_block_group_item(fs_info, leaf, key, slot);
break;
}
return ret;
}
static int check_leaf(struct btrfs_fs_info *fs_info, struct extent_buffer *leaf,
bool check_item_data)
{
/* No valid key type is 0, so all key should be larger than this key */
struct btrfs_key prev_key = {0, 0, 0};
struct btrfs_key key;
u32 nritems = btrfs_header_nritems(leaf);
int slot;
if (btrfs_header_level(leaf) != 0) {
generic_err(fs_info, leaf, 0,
"invalid level for leaf, have %d expect 0",
btrfs_header_level(leaf));
return -EUCLEAN;
}
/*
* Extent buffers from a relocation tree have a owner field that
* corresponds to the subvolume tree they are based on. So just from an
* extent buffer alone we can not find out what is the id of the
* corresponding subvolume tree, so we can not figure out if the extent
* buffer corresponds to the root of the relocation tree or not. So
* skip this check for relocation trees.
*/
if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
u64 owner = btrfs_header_owner(leaf);
struct btrfs_root *check_root;
/* These trees must never be empty */
if (owner == BTRFS_ROOT_TREE_OBJECTID ||
owner == BTRFS_CHUNK_TREE_OBJECTID ||
owner == BTRFS_EXTENT_TREE_OBJECTID ||
owner == BTRFS_DEV_TREE_OBJECTID ||
owner == BTRFS_FS_TREE_OBJECTID ||
owner == BTRFS_DATA_RELOC_TREE_OBJECTID) {
generic_err(fs_info, leaf, 0,
"invalid root, root %llu must never be empty",
owner);
return -EUCLEAN;
}
key.objectid = owner;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
check_root = btrfs_get_fs_root(fs_info, &key, false);
/*
* The only reason we also check NULL here is that during
* open_ctree() some roots has not yet been set up.
*/
if (!IS_ERR_OR_NULL(check_root)) {
struct extent_buffer *eb;
eb = btrfs_root_node(check_root);
/* if leaf is the root, then it's fine */
if (leaf != eb) {
generic_err(fs_info, leaf, 0,
"invalid nritems, have %u should not be 0 for non-root leaf",
nritems);
free_extent_buffer(eb);
return -EUCLEAN;
}
free_extent_buffer(eb);
}
return 0;
}
if (nritems == 0)
return 0;
/*
* Check the following things to make sure this is a good leaf, and
* leaf users won't need to bother with similar sanity checks:
*
* 1) key ordering
* 2) item offset and size
* No overlap, no hole, all inside the leaf.
* 3) item content
* If possible, do comprehensive sanity check.
* NOTE: All checks must only rely on the item data itself.
*/
for (slot = 0; slot < nritems; slot++) {
u32 item_end_expected;
int ret;
btrfs_item_key_to_cpu(leaf, &key, slot);
/* Make sure the keys are in the right order */
if (btrfs_comp_cpu_keys(&prev_key, &key) >= 0) {
generic_err(fs_info, leaf, slot,
"bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
prev_key.objectid, prev_key.type,
prev_key.offset, key.objectid, key.type,
key.offset);
return -EUCLEAN;
}
/*
* Make sure the offset and ends are right, remember that the
* item data starts at the end of the leaf and grows towards the
* front.
*/
if (slot == 0)
item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
else
item_end_expected = btrfs_item_offset_nr(leaf,
slot - 1);
if (btrfs_item_end_nr(leaf, slot) != item_end_expected) {
generic_err(fs_info, leaf, slot,
"unexpected item end, have %u expect %u",
btrfs_item_end_nr(leaf, slot),
item_end_expected);
return -EUCLEAN;
}
/*
* Check to make sure that we don't point outside of the leaf,
* just in case all the items are consistent to each other, but
* all point outside of the leaf.
*/
if (btrfs_item_end_nr(leaf, slot) >
BTRFS_LEAF_DATA_SIZE(fs_info)) {
generic_err(fs_info, leaf, slot,
"slot end outside of leaf, have %u expect range [0, %u]",
btrfs_item_end_nr(leaf, slot),
BTRFS_LEAF_DATA_SIZE(fs_info));
return -EUCLEAN;
}
/* Also check if the item pointer overlaps with btrfs item. */
if (btrfs_item_nr_offset(slot) + sizeof(struct btrfs_item) >
btrfs_item_ptr_offset(leaf, slot)) {
generic_err(fs_info, leaf, slot,
"slot overlaps with its data, item end %lu data start %lu",
btrfs_item_nr_offset(slot) +
sizeof(struct btrfs_item),
btrfs_item_ptr_offset(leaf, slot));
return -EUCLEAN;
}
if (check_item_data) {
/*
* Check if the item size and content meet other
* criteria
*/
ret = check_leaf_item(fs_info, leaf, &key, slot);
if (ret < 0)
return ret;
}
prev_key.objectid = key.objectid;
prev_key.type = key.type;
prev_key.offset = key.offset;
}
return 0;
}
int btrfs_check_leaf_full(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf)
{
return check_leaf(fs_info, leaf, true);
}
int btrfs_check_leaf_relaxed(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf)
{
return check_leaf(fs_info, leaf, false);
}
int btrfs_check_node(struct btrfs_fs_info *fs_info, struct extent_buffer *node)
{
unsigned long nr = btrfs_header_nritems(node);
struct btrfs_key key, next_key;
int slot;
int level = btrfs_header_level(node);
u64 bytenr;
int ret = 0;
if (level <= 0 || level >= BTRFS_MAX_LEVEL) {
generic_err(fs_info, node, 0,
"invalid level for node, have %d expect [1, %d]",
level, BTRFS_MAX_LEVEL - 1);
return -EUCLEAN;
}
if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info)) {
btrfs_crit(fs_info,
"corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
btrfs_header_owner(node), node->start,
nr == 0 ? "small" : "large", nr,
BTRFS_NODEPTRS_PER_BLOCK(fs_info));
return -EUCLEAN;
}
for (slot = 0; slot < nr - 1; slot++) {
bytenr = btrfs_node_blockptr(node, slot);
btrfs_node_key_to_cpu(node, &key, slot);
btrfs_node_key_to_cpu(node, &next_key, slot + 1);
if (!bytenr) {
generic_err(fs_info, node, slot,
"invalid NULL node pointer");
ret = -EUCLEAN;
goto out;
}
if (!IS_ALIGNED(bytenr, fs_info->sectorsize)) {
generic_err(fs_info, node, slot,
"unaligned pointer, have %llu should be aligned to %u",
bytenr, fs_info->sectorsize);
ret = -EUCLEAN;
goto out;
}
if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
generic_err(fs_info, node, slot,
"bad key order, current (%llu %u %llu) next (%llu %u %llu)",
key.objectid, key.type, key.offset,
next_key.objectid, next_key.type,
next_key.offset);
ret = -EUCLEAN;
goto out;
}
}
out:
return ret;
}