forked from Minki/linux
f09b997999
Patch from Nicolas Pitre This patch allows for assorted type of cleanups by letting assembly code use the same set of defines for constant values and avoid duplicated definitions that might not always be in sync, or that might simply be confusing due to the different names for the same thing. Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
976 lines
22 KiB
ArmAsm
976 lines
22 KiB
ArmAsm
/*
|
|
* linux/arch/arm/kernel/entry-armv.S
|
|
*
|
|
* Copyright (C) 1996,1997,1998 Russell King.
|
|
* ARM700 fix by Matthew Godbolt (linux-user@willothewisp.demon.co.uk)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Low-level vector interface routines
|
|
*
|
|
* Note: there is a StrongARM bug in the STMIA rn, {regs}^ instruction that causes
|
|
* it to save wrong values... Be aware!
|
|
*/
|
|
#include <linux/config.h>
|
|
|
|
#include <asm/memory.h>
|
|
#include <asm/glue.h>
|
|
#include <asm/vfpmacros.h>
|
|
#include <asm/hardware.h> /* should be moved into entry-macro.S */
|
|
#include <asm/arch/irqs.h> /* should be moved into entry-macro.S */
|
|
#include <asm/arch/entry-macro.S>
|
|
|
|
#include "entry-header.S"
|
|
|
|
/*
|
|
* Interrupt handling. Preserves r7, r8, r9
|
|
*/
|
|
.macro irq_handler
|
|
1: get_irqnr_and_base r0, r6, r5, lr
|
|
movne r1, sp
|
|
@
|
|
@ routine called with r0 = irq number, r1 = struct pt_regs *
|
|
@
|
|
adrne lr, 1b
|
|
bne asm_do_IRQ
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* XXX
|
|
*
|
|
* this macro assumes that irqstat (r6) and base (r5) are
|
|
* preserved from get_irqnr_and_base above
|
|
*/
|
|
test_for_ipi r0, r6, r5, lr
|
|
movne r0, sp
|
|
adrne lr, 1b
|
|
bne do_IPI
|
|
#endif
|
|
|
|
.endm
|
|
|
|
/*
|
|
* Invalid mode handlers
|
|
*/
|
|
.macro inv_entry, reason
|
|
sub sp, sp, #S_FRAME_SIZE
|
|
stmib sp, {r1 - lr}
|
|
mov r1, #\reason
|
|
.endm
|
|
|
|
__pabt_invalid:
|
|
inv_entry BAD_PREFETCH
|
|
b common_invalid
|
|
|
|
__dabt_invalid:
|
|
inv_entry BAD_DATA
|
|
b common_invalid
|
|
|
|
__irq_invalid:
|
|
inv_entry BAD_IRQ
|
|
b common_invalid
|
|
|
|
__und_invalid:
|
|
inv_entry BAD_UNDEFINSTR
|
|
|
|
@
|
|
@ XXX fall through to common_invalid
|
|
@
|
|
|
|
@
|
|
@ common_invalid - generic code for failed exception (re-entrant version of handlers)
|
|
@
|
|
common_invalid:
|
|
zero_fp
|
|
|
|
ldmia r0, {r4 - r6}
|
|
add r0, sp, #S_PC @ here for interlock avoidance
|
|
mov r7, #-1 @ "" "" "" ""
|
|
str r4, [sp] @ save preserved r0
|
|
stmia r0, {r5 - r7} @ lr_<exception>,
|
|
@ cpsr_<exception>, "old_r0"
|
|
|
|
mov r0, sp
|
|
and r2, r6, #0x1f
|
|
b bad_mode
|
|
|
|
/*
|
|
* SVC mode handlers
|
|
*/
|
|
.macro svc_entry
|
|
sub sp, sp, #S_FRAME_SIZE
|
|
stmib sp, {r1 - r12}
|
|
|
|
ldmia r0, {r1 - r3}
|
|
add r5, sp, #S_SP @ here for interlock avoidance
|
|
mov r4, #-1 @ "" "" "" ""
|
|
add r0, sp, #S_FRAME_SIZE @ "" "" "" ""
|
|
str r1, [sp] @ save the "real" r0 copied
|
|
@ from the exception stack
|
|
|
|
mov r1, lr
|
|
|
|
@
|
|
@ We are now ready to fill in the remaining blanks on the stack:
|
|
@
|
|
@ r0 - sp_svc
|
|
@ r1 - lr_svc
|
|
@ r2 - lr_<exception>, already fixed up for correct return/restart
|
|
@ r3 - spsr_<exception>
|
|
@ r4 - orig_r0 (see pt_regs definition in ptrace.h)
|
|
@
|
|
stmia r5, {r0 - r4}
|
|
.endm
|
|
|
|
.align 5
|
|
__dabt_svc:
|
|
svc_entry
|
|
|
|
@
|
|
@ get ready to re-enable interrupts if appropriate
|
|
@
|
|
mrs r9, cpsr
|
|
tst r3, #PSR_I_BIT
|
|
biceq r9, r9, #PSR_I_BIT
|
|
|
|
@
|
|
@ Call the processor-specific abort handler:
|
|
@
|
|
@ r2 - aborted context pc
|
|
@ r3 - aborted context cpsr
|
|
@
|
|
@ The abort handler must return the aborted address in r0, and
|
|
@ the fault status register in r1. r9 must be preserved.
|
|
@
|
|
#ifdef MULTI_ABORT
|
|
ldr r4, .LCprocfns
|
|
mov lr, pc
|
|
ldr pc, [r4]
|
|
#else
|
|
bl CPU_ABORT_HANDLER
|
|
#endif
|
|
|
|
@
|
|
@ set desired IRQ state, then call main handler
|
|
@
|
|
msr cpsr_c, r9
|
|
mov r2, sp
|
|
bl do_DataAbort
|
|
|
|
@
|
|
@ IRQs off again before pulling preserved data off the stack
|
|
@
|
|
disable_irq
|
|
|
|
@
|
|
@ restore SPSR and restart the instruction
|
|
@
|
|
ldr r0, [sp, #S_PSR]
|
|
msr spsr_cxsf, r0
|
|
ldmia sp, {r0 - pc}^ @ load r0 - pc, cpsr
|
|
|
|
.align 5
|
|
__irq_svc:
|
|
svc_entry
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
get_thread_info tsk
|
|
ldr r8, [tsk, #TI_PREEMPT] @ get preempt count
|
|
add r7, r8, #1 @ increment it
|
|
str r7, [tsk, #TI_PREEMPT]
|
|
#endif
|
|
|
|
irq_handler
|
|
#ifdef CONFIG_PREEMPT
|
|
ldr r0, [tsk, #TI_FLAGS] @ get flags
|
|
tst r0, #_TIF_NEED_RESCHED
|
|
blne svc_preempt
|
|
preempt_return:
|
|
ldr r0, [tsk, #TI_PREEMPT] @ read preempt value
|
|
str r8, [tsk, #TI_PREEMPT] @ restore preempt count
|
|
teq r0, r7
|
|
strne r0, [r0, -r0] @ bug()
|
|
#endif
|
|
ldr r0, [sp, #S_PSR] @ irqs are already disabled
|
|
msr spsr_cxsf, r0
|
|
ldmia sp, {r0 - pc}^ @ load r0 - pc, cpsr
|
|
|
|
.ltorg
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
svc_preempt:
|
|
teq r8, #0 @ was preempt count = 0
|
|
ldreq r6, .LCirq_stat
|
|
movne pc, lr @ no
|
|
ldr r0, [r6, #4] @ local_irq_count
|
|
ldr r1, [r6, #8] @ local_bh_count
|
|
adds r0, r0, r1
|
|
movne pc, lr
|
|
mov r7, #0 @ preempt_schedule_irq
|
|
str r7, [tsk, #TI_PREEMPT] @ expects preempt_count == 0
|
|
1: bl preempt_schedule_irq @ irq en/disable is done inside
|
|
ldr r0, [tsk, #TI_FLAGS] @ get new tasks TI_FLAGS
|
|
tst r0, #_TIF_NEED_RESCHED
|
|
beq preempt_return @ go again
|
|
b 1b
|
|
#endif
|
|
|
|
.align 5
|
|
__und_svc:
|
|
svc_entry
|
|
|
|
@
|
|
@ call emulation code, which returns using r9 if it has emulated
|
|
@ the instruction, or the more conventional lr if we are to treat
|
|
@ this as a real undefined instruction
|
|
@
|
|
@ r0 - instruction
|
|
@
|
|
ldr r0, [r2, #-4]
|
|
adr r9, 1f
|
|
bl call_fpe
|
|
|
|
mov r0, sp @ struct pt_regs *regs
|
|
bl do_undefinstr
|
|
|
|
@
|
|
@ IRQs off again before pulling preserved data off the stack
|
|
@
|
|
1: disable_irq
|
|
|
|
@
|
|
@ restore SPSR and restart the instruction
|
|
@
|
|
ldr lr, [sp, #S_PSR] @ Get SVC cpsr
|
|
msr spsr_cxsf, lr
|
|
ldmia sp, {r0 - pc}^ @ Restore SVC registers
|
|
|
|
.align 5
|
|
__pabt_svc:
|
|
svc_entry
|
|
|
|
@
|
|
@ re-enable interrupts if appropriate
|
|
@
|
|
mrs r9, cpsr
|
|
tst r3, #PSR_I_BIT
|
|
biceq r9, r9, #PSR_I_BIT
|
|
msr cpsr_c, r9
|
|
|
|
@
|
|
@ set args, then call main handler
|
|
@
|
|
@ r0 - address of faulting instruction
|
|
@ r1 - pointer to registers on stack
|
|
@
|
|
mov r0, r2 @ address (pc)
|
|
mov r1, sp @ regs
|
|
bl do_PrefetchAbort @ call abort handler
|
|
|
|
@
|
|
@ IRQs off again before pulling preserved data off the stack
|
|
@
|
|
disable_irq
|
|
|
|
@
|
|
@ restore SPSR and restart the instruction
|
|
@
|
|
ldr r0, [sp, #S_PSR]
|
|
msr spsr_cxsf, r0
|
|
ldmia sp, {r0 - pc}^ @ load r0 - pc, cpsr
|
|
|
|
.align 5
|
|
.LCcralign:
|
|
.word cr_alignment
|
|
#ifdef MULTI_ABORT
|
|
.LCprocfns:
|
|
.word processor
|
|
#endif
|
|
.LCfp:
|
|
.word fp_enter
|
|
#ifdef CONFIG_PREEMPT
|
|
.LCirq_stat:
|
|
.word irq_stat
|
|
#endif
|
|
|
|
/*
|
|
* User mode handlers
|
|
*/
|
|
.macro usr_entry
|
|
sub sp, sp, #S_FRAME_SIZE
|
|
stmib sp, {r1 - r12}
|
|
|
|
ldmia r0, {r1 - r3}
|
|
add r0, sp, #S_PC @ here for interlock avoidance
|
|
mov r4, #-1 @ "" "" "" ""
|
|
|
|
str r1, [sp] @ save the "real" r0 copied
|
|
@ from the exception stack
|
|
|
|
#if __LINUX_ARM_ARCH__ < 6 && !defined(CONFIG_NEEDS_SYSCALL_FOR_CMPXCHG)
|
|
@ make sure our user space atomic helper is aborted
|
|
cmp r2, #TASK_SIZE
|
|
bichs r3, r3, #PSR_Z_BIT
|
|
#endif
|
|
|
|
@
|
|
@ We are now ready to fill in the remaining blanks on the stack:
|
|
@
|
|
@ r2 - lr_<exception>, already fixed up for correct return/restart
|
|
@ r3 - spsr_<exception>
|
|
@ r4 - orig_r0 (see pt_regs definition in ptrace.h)
|
|
@
|
|
@ Also, separately save sp_usr and lr_usr
|
|
@
|
|
stmia r0, {r2 - r4}
|
|
stmdb r0, {sp, lr}^
|
|
|
|
@
|
|
@ Enable the alignment trap while in kernel mode
|
|
@
|
|
alignment_trap r0
|
|
|
|
@
|
|
@ Clear FP to mark the first stack frame
|
|
@
|
|
zero_fp
|
|
.endm
|
|
|
|
.align 5
|
|
__dabt_usr:
|
|
usr_entry
|
|
|
|
@
|
|
@ Call the processor-specific abort handler:
|
|
@
|
|
@ r2 - aborted context pc
|
|
@ r3 - aborted context cpsr
|
|
@
|
|
@ The abort handler must return the aborted address in r0, and
|
|
@ the fault status register in r1.
|
|
@
|
|
#ifdef MULTI_ABORT
|
|
ldr r4, .LCprocfns
|
|
mov lr, pc
|
|
ldr pc, [r4]
|
|
#else
|
|
bl CPU_ABORT_HANDLER
|
|
#endif
|
|
|
|
@
|
|
@ IRQs on, then call the main handler
|
|
@
|
|
enable_irq
|
|
mov r2, sp
|
|
adr lr, ret_from_exception
|
|
b do_DataAbort
|
|
|
|
.align 5
|
|
__irq_usr:
|
|
usr_entry
|
|
|
|
get_thread_info tsk
|
|
#ifdef CONFIG_PREEMPT
|
|
ldr r8, [tsk, #TI_PREEMPT] @ get preempt count
|
|
add r7, r8, #1 @ increment it
|
|
str r7, [tsk, #TI_PREEMPT]
|
|
#endif
|
|
|
|
irq_handler
|
|
#ifdef CONFIG_PREEMPT
|
|
ldr r0, [tsk, #TI_PREEMPT]
|
|
str r8, [tsk, #TI_PREEMPT]
|
|
teq r0, r7
|
|
strne r0, [r0, -r0]
|
|
#endif
|
|
|
|
mov why, #0
|
|
b ret_to_user
|
|
|
|
.ltorg
|
|
|
|
.align 5
|
|
__und_usr:
|
|
usr_entry
|
|
|
|
tst r3, #PSR_T_BIT @ Thumb mode?
|
|
bne fpundefinstr @ ignore FP
|
|
sub r4, r2, #4
|
|
|
|
@
|
|
@ fall through to the emulation code, which returns using r9 if
|
|
@ it has emulated the instruction, or the more conventional lr
|
|
@ if we are to treat this as a real undefined instruction
|
|
@
|
|
@ r0 - instruction
|
|
@
|
|
1: ldrt r0, [r4]
|
|
adr r9, ret_from_exception
|
|
adr lr, fpundefinstr
|
|
@
|
|
@ fallthrough to call_fpe
|
|
@
|
|
|
|
/*
|
|
* The out of line fixup for the ldrt above.
|
|
*/
|
|
.section .fixup, "ax"
|
|
2: mov pc, r9
|
|
.previous
|
|
.section __ex_table,"a"
|
|
.long 1b, 2b
|
|
.previous
|
|
|
|
/*
|
|
* Check whether the instruction is a co-processor instruction.
|
|
* If yes, we need to call the relevant co-processor handler.
|
|
*
|
|
* Note that we don't do a full check here for the co-processor
|
|
* instructions; all instructions with bit 27 set are well
|
|
* defined. The only instructions that should fault are the
|
|
* co-processor instructions. However, we have to watch out
|
|
* for the ARM6/ARM7 SWI bug.
|
|
*
|
|
* Emulators may wish to make use of the following registers:
|
|
* r0 = instruction opcode.
|
|
* r2 = PC+4
|
|
* r10 = this threads thread_info structure.
|
|
*/
|
|
call_fpe:
|
|
tst r0, #0x08000000 @ only CDP/CPRT/LDC/STC have bit 27
|
|
#if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710)
|
|
and r8, r0, #0x0f000000 @ mask out op-code bits
|
|
teqne r8, #0x0f000000 @ SWI (ARM6/7 bug)?
|
|
#endif
|
|
moveq pc, lr
|
|
get_thread_info r10 @ get current thread
|
|
and r8, r0, #0x00000f00 @ mask out CP number
|
|
mov r7, #1
|
|
add r6, r10, #TI_USED_CP
|
|
strb r7, [r6, r8, lsr #8] @ set appropriate used_cp[]
|
|
#ifdef CONFIG_IWMMXT
|
|
@ Test if we need to give access to iWMMXt coprocessors
|
|
ldr r5, [r10, #TI_FLAGS]
|
|
rsbs r7, r8, #(1 << 8) @ CP 0 or 1 only
|
|
movcss r7, r5, lsr #(TIF_USING_IWMMXT + 1)
|
|
bcs iwmmxt_task_enable
|
|
#endif
|
|
enable_irq
|
|
add pc, pc, r8, lsr #6
|
|
mov r0, r0
|
|
|
|
mov pc, lr @ CP#0
|
|
b do_fpe @ CP#1 (FPE)
|
|
b do_fpe @ CP#2 (FPE)
|
|
mov pc, lr @ CP#3
|
|
mov pc, lr @ CP#4
|
|
mov pc, lr @ CP#5
|
|
mov pc, lr @ CP#6
|
|
mov pc, lr @ CP#7
|
|
mov pc, lr @ CP#8
|
|
mov pc, lr @ CP#9
|
|
#ifdef CONFIG_VFP
|
|
b do_vfp @ CP#10 (VFP)
|
|
b do_vfp @ CP#11 (VFP)
|
|
#else
|
|
mov pc, lr @ CP#10 (VFP)
|
|
mov pc, lr @ CP#11 (VFP)
|
|
#endif
|
|
mov pc, lr @ CP#12
|
|
mov pc, lr @ CP#13
|
|
mov pc, lr @ CP#14 (Debug)
|
|
mov pc, lr @ CP#15 (Control)
|
|
|
|
do_fpe:
|
|
ldr r4, .LCfp
|
|
add r10, r10, #TI_FPSTATE @ r10 = workspace
|
|
ldr pc, [r4] @ Call FP module USR entry point
|
|
|
|
/*
|
|
* The FP module is called with these registers set:
|
|
* r0 = instruction
|
|
* r2 = PC+4
|
|
* r9 = normal "successful" return address
|
|
* r10 = FP workspace
|
|
* lr = unrecognised FP instruction return address
|
|
*/
|
|
|
|
.data
|
|
ENTRY(fp_enter)
|
|
.word fpundefinstr
|
|
.text
|
|
|
|
fpundefinstr:
|
|
mov r0, sp
|
|
adr lr, ret_from_exception
|
|
b do_undefinstr
|
|
|
|
.align 5
|
|
__pabt_usr:
|
|
usr_entry
|
|
|
|
enable_irq @ Enable interrupts
|
|
mov r0, r2 @ address (pc)
|
|
mov r1, sp @ regs
|
|
bl do_PrefetchAbort @ call abort handler
|
|
/* fall through */
|
|
/*
|
|
* This is the return code to user mode for abort handlers
|
|
*/
|
|
ENTRY(ret_from_exception)
|
|
get_thread_info tsk
|
|
mov why, #0
|
|
b ret_to_user
|
|
|
|
/*
|
|
* Register switch for ARMv3 and ARMv4 processors
|
|
* r0 = previous task_struct, r1 = previous thread_info, r2 = next thread_info
|
|
* previous and next are guaranteed not to be the same.
|
|
*/
|
|
ENTRY(__switch_to)
|
|
add ip, r1, #TI_CPU_SAVE
|
|
ldr r3, [r2, #TI_TP_VALUE]
|
|
stmia ip!, {r4 - sl, fp, sp, lr} @ Store most regs on stack
|
|
ldr r6, [r2, #TI_CPU_DOMAIN]!
|
|
#if __LINUX_ARM_ARCH__ >= 6
|
|
#ifdef CONFIG_CPU_MPCORE
|
|
clrex
|
|
#else
|
|
strex r5, r4, [ip] @ Clear exclusive monitor
|
|
#endif
|
|
#endif
|
|
#if defined(CONFIG_CPU_XSCALE) && !defined(CONFIG_IWMMXT)
|
|
mra r4, r5, acc0
|
|
stmia ip, {r4, r5}
|
|
#endif
|
|
#if defined(CONFIG_HAS_TLS_REG)
|
|
mcr p15, 0, r3, c13, c0, 3 @ set TLS register
|
|
#elif !defined(CONFIG_TLS_REG_EMUL)
|
|
mov r4, #0xffff0fff
|
|
str r3, [r4, #-15] @ TLS val at 0xffff0ff0
|
|
#endif
|
|
mcr p15, 0, r6, c3, c0, 0 @ Set domain register
|
|
#ifdef CONFIG_VFP
|
|
@ Always disable VFP so we can lazily save/restore the old
|
|
@ state. This occurs in the context of the previous thread.
|
|
VFPFMRX r4, FPEXC
|
|
bic r4, r4, #FPEXC_ENABLE
|
|
VFPFMXR FPEXC, r4
|
|
#endif
|
|
#if defined(CONFIG_IWMMXT)
|
|
bl iwmmxt_task_switch
|
|
#elif defined(CONFIG_CPU_XSCALE)
|
|
add r4, r2, #40 @ cpu_context_save->extra
|
|
ldmib r4, {r4, r5}
|
|
mar acc0, r4, r5
|
|
#endif
|
|
ldmib r2, {r4 - sl, fp, sp, pc} @ Load all regs saved previously
|
|
|
|
__INIT
|
|
|
|
/*
|
|
* User helpers.
|
|
*
|
|
* These are segment of kernel provided user code reachable from user space
|
|
* at a fixed address in kernel memory. This is used to provide user space
|
|
* with some operations which require kernel help because of unimplemented
|
|
* native feature and/or instructions in many ARM CPUs. The idea is for
|
|
* this code to be executed directly in user mode for best efficiency but
|
|
* which is too intimate with the kernel counter part to be left to user
|
|
* libraries. In fact this code might even differ from one CPU to another
|
|
* depending on the available instruction set and restrictions like on
|
|
* SMP systems. In other words, the kernel reserves the right to change
|
|
* this code as needed without warning. Only the entry points and their
|
|
* results are guaranteed to be stable.
|
|
*
|
|
* Each segment is 32-byte aligned and will be moved to the top of the high
|
|
* vector page. New segments (if ever needed) must be added in front of
|
|
* existing ones. This mechanism should be used only for things that are
|
|
* really small and justified, and not be abused freely.
|
|
*
|
|
* User space is expected to implement those things inline when optimizing
|
|
* for a processor that has the necessary native support, but only if such
|
|
* resulting binaries are already to be incompatible with earlier ARM
|
|
* processors due to the use of unsupported instructions other than what
|
|
* is provided here. In other words don't make binaries unable to run on
|
|
* earlier processors just for the sake of not using these kernel helpers
|
|
* if your compiled code is not going to use the new instructions for other
|
|
* purpose.
|
|
*/
|
|
|
|
.align 5
|
|
.globl __kuser_helper_start
|
|
__kuser_helper_start:
|
|
|
|
/*
|
|
* Reference prototype:
|
|
*
|
|
* int __kernel_cmpxchg(int oldval, int newval, int *ptr)
|
|
*
|
|
* Input:
|
|
*
|
|
* r0 = oldval
|
|
* r1 = newval
|
|
* r2 = ptr
|
|
* lr = return address
|
|
*
|
|
* Output:
|
|
*
|
|
* r0 = returned value (zero or non-zero)
|
|
* C flag = set if r0 == 0, clear if r0 != 0
|
|
*
|
|
* Clobbered:
|
|
*
|
|
* r3, ip, flags
|
|
*
|
|
* Definition and user space usage example:
|
|
*
|
|
* typedef int (__kernel_cmpxchg_t)(int oldval, int newval, int *ptr);
|
|
* #define __kernel_cmpxchg (*(__kernel_cmpxchg_t *)0xffff0fc0)
|
|
*
|
|
* Atomically store newval in *ptr if *ptr is equal to oldval for user space.
|
|
* Return zero if *ptr was changed or non-zero if no exchange happened.
|
|
* The C flag is also set if *ptr was changed to allow for assembly
|
|
* optimization in the calling code.
|
|
*
|
|
* For example, a user space atomic_add implementation could look like this:
|
|
*
|
|
* #define atomic_add(ptr, val) \
|
|
* ({ register unsigned int *__ptr asm("r2") = (ptr); \
|
|
* register unsigned int __result asm("r1"); \
|
|
* asm volatile ( \
|
|
* "1: @ atomic_add\n\t" \
|
|
* "ldr r0, [r2]\n\t" \
|
|
* "mov r3, #0xffff0fff\n\t" \
|
|
* "add lr, pc, #4\n\t" \
|
|
* "add r1, r0, %2\n\t" \
|
|
* "add pc, r3, #(0xffff0fc0 - 0xffff0fff)\n\t" \
|
|
* "bcc 1b" \
|
|
* : "=&r" (__result) \
|
|
* : "r" (__ptr), "rIL" (val) \
|
|
* : "r0","r3","ip","lr","cc","memory" ); \
|
|
* __result; })
|
|
*/
|
|
|
|
__kuser_cmpxchg: @ 0xffff0fc0
|
|
|
|
#if defined(CONFIG_NEEDS_SYSCALL_FOR_CMPXCHG)
|
|
|
|
/*
|
|
* Poor you. No fast solution possible...
|
|
* The kernel itself must perform the operation.
|
|
* A special ghost syscall is used for that (see traps.c).
|
|
*/
|
|
swi #0x9ffff0
|
|
mov pc, lr
|
|
|
|
#elif __LINUX_ARM_ARCH__ < 6
|
|
|
|
/*
|
|
* Theory of operation:
|
|
*
|
|
* We set the Z flag before loading oldval. If ever an exception
|
|
* occurs we can not be sure the loaded value will still be the same
|
|
* when the exception returns, therefore the user exception handler
|
|
* will clear the Z flag whenever the interrupted user code was
|
|
* actually from the kernel address space (see the usr_entry macro).
|
|
*
|
|
* The post-increment on the str is used to prevent a race with an
|
|
* exception happening just after the str instruction which would
|
|
* clear the Z flag although the exchange was done.
|
|
*/
|
|
teq ip, ip @ set Z flag
|
|
ldr ip, [r2] @ load current val
|
|
add r3, r2, #1 @ prepare store ptr
|
|
teqeq ip, r0 @ compare with oldval if still allowed
|
|
streq r1, [r3, #-1]! @ store newval if still allowed
|
|
subs r0, r2, r3 @ if r2 == r3 the str occured
|
|
mov pc, lr
|
|
|
|
#else
|
|
|
|
ldrex r3, [r2]
|
|
subs r3, r3, r0
|
|
strexeq r3, r1, [r2]
|
|
rsbs r0, r3, #0
|
|
mov pc, lr
|
|
|
|
#endif
|
|
|
|
.align 5
|
|
|
|
/*
|
|
* Reference prototype:
|
|
*
|
|
* int __kernel_get_tls(void)
|
|
*
|
|
* Input:
|
|
*
|
|
* lr = return address
|
|
*
|
|
* Output:
|
|
*
|
|
* r0 = TLS value
|
|
*
|
|
* Clobbered:
|
|
*
|
|
* the Z flag might be lost
|
|
*
|
|
* Definition and user space usage example:
|
|
*
|
|
* typedef int (__kernel_get_tls_t)(void);
|
|
* #define __kernel_get_tls (*(__kernel_get_tls_t *)0xffff0fe0)
|
|
*
|
|
* Get the TLS value as previously set via the __ARM_NR_set_tls syscall.
|
|
*
|
|
* This could be used as follows:
|
|
*
|
|
* #define __kernel_get_tls() \
|
|
* ({ register unsigned int __val asm("r0"); \
|
|
* asm( "mov r0, #0xffff0fff; mov lr, pc; sub pc, r0, #31" \
|
|
* : "=r" (__val) : : "lr","cc" ); \
|
|
* __val; })
|
|
*/
|
|
|
|
__kuser_get_tls: @ 0xffff0fe0
|
|
|
|
#if !defined(CONFIG_HAS_TLS_REG) && !defined(CONFIG_TLS_REG_EMUL)
|
|
|
|
ldr r0, [pc, #(16 - 8)] @ TLS stored at 0xffff0ff0
|
|
mov pc, lr
|
|
|
|
#else
|
|
|
|
mrc p15, 0, r0, c13, c0, 3 @ read TLS register
|
|
mov pc, lr
|
|
|
|
#endif
|
|
|
|
.rep 5
|
|
.word 0 @ pad up to __kuser_helper_version
|
|
.endr
|
|
|
|
/*
|
|
* Reference declaration:
|
|
*
|
|
* extern unsigned int __kernel_helper_version;
|
|
*
|
|
* Definition and user space usage example:
|
|
*
|
|
* #define __kernel_helper_version (*(unsigned int *)0xffff0ffc)
|
|
*
|
|
* User space may read this to determine the curent number of helpers
|
|
* available.
|
|
*/
|
|
|
|
__kuser_helper_version: @ 0xffff0ffc
|
|
.word ((__kuser_helper_end - __kuser_helper_start) >> 5)
|
|
|
|
.globl __kuser_helper_end
|
|
__kuser_helper_end:
|
|
|
|
|
|
/*
|
|
* Vector stubs.
|
|
*
|
|
* This code is copied to 0xffff0200 so we can use branches in the
|
|
* vectors, rather than ldr's. Note that this code must not
|
|
* exceed 0x300 bytes.
|
|
*
|
|
* Common stub entry macro:
|
|
* Enter in IRQ mode, spsr = SVC/USR CPSR, lr = SVC/USR PC
|
|
*
|
|
* SP points to a minimal amount of processor-private memory, the address
|
|
* of which is copied into r0 for the mode specific abort handler.
|
|
*/
|
|
.macro vector_stub, name, correction=0
|
|
.align 5
|
|
|
|
vector_\name:
|
|
.if \correction
|
|
sub lr, lr, #\correction
|
|
.endif
|
|
|
|
@
|
|
@ Save r0, lr_<exception> (parent PC) and spsr_<exception>
|
|
@ (parent CPSR)
|
|
@
|
|
stmia sp, {r0, lr} @ save r0, lr
|
|
mrs lr, spsr
|
|
str lr, [sp, #8] @ save spsr
|
|
|
|
@
|
|
@ Prepare for SVC32 mode. IRQs remain disabled.
|
|
@
|
|
mrs r0, cpsr
|
|
bic r0, r0, #MODE_MASK
|
|
orr r0, r0, #SVC_MODE
|
|
msr spsr_cxsf, r0
|
|
|
|
@
|
|
@ the branch table must immediately follow this code
|
|
@
|
|
mov r0, sp
|
|
and lr, lr, #0x0f
|
|
ldr lr, [pc, lr, lsl #2]
|
|
movs pc, lr @ branch to handler in SVC mode
|
|
.endm
|
|
|
|
.globl __stubs_start
|
|
__stubs_start:
|
|
/*
|
|
* Interrupt dispatcher
|
|
*/
|
|
vector_stub irq, 4
|
|
|
|
.long __irq_usr @ 0 (USR_26 / USR_32)
|
|
.long __irq_invalid @ 1 (FIQ_26 / FIQ_32)
|
|
.long __irq_invalid @ 2 (IRQ_26 / IRQ_32)
|
|
.long __irq_svc @ 3 (SVC_26 / SVC_32)
|
|
.long __irq_invalid @ 4
|
|
.long __irq_invalid @ 5
|
|
.long __irq_invalid @ 6
|
|
.long __irq_invalid @ 7
|
|
.long __irq_invalid @ 8
|
|
.long __irq_invalid @ 9
|
|
.long __irq_invalid @ a
|
|
.long __irq_invalid @ b
|
|
.long __irq_invalid @ c
|
|
.long __irq_invalid @ d
|
|
.long __irq_invalid @ e
|
|
.long __irq_invalid @ f
|
|
|
|
/*
|
|
* Data abort dispatcher
|
|
* Enter in ABT mode, spsr = USR CPSR, lr = USR PC
|
|
*/
|
|
vector_stub dabt, 8
|
|
|
|
.long __dabt_usr @ 0 (USR_26 / USR_32)
|
|
.long __dabt_invalid @ 1 (FIQ_26 / FIQ_32)
|
|
.long __dabt_invalid @ 2 (IRQ_26 / IRQ_32)
|
|
.long __dabt_svc @ 3 (SVC_26 / SVC_32)
|
|
.long __dabt_invalid @ 4
|
|
.long __dabt_invalid @ 5
|
|
.long __dabt_invalid @ 6
|
|
.long __dabt_invalid @ 7
|
|
.long __dabt_invalid @ 8
|
|
.long __dabt_invalid @ 9
|
|
.long __dabt_invalid @ a
|
|
.long __dabt_invalid @ b
|
|
.long __dabt_invalid @ c
|
|
.long __dabt_invalid @ d
|
|
.long __dabt_invalid @ e
|
|
.long __dabt_invalid @ f
|
|
|
|
/*
|
|
* Prefetch abort dispatcher
|
|
* Enter in ABT mode, spsr = USR CPSR, lr = USR PC
|
|
*/
|
|
vector_stub pabt, 4
|
|
|
|
.long __pabt_usr @ 0 (USR_26 / USR_32)
|
|
.long __pabt_invalid @ 1 (FIQ_26 / FIQ_32)
|
|
.long __pabt_invalid @ 2 (IRQ_26 / IRQ_32)
|
|
.long __pabt_svc @ 3 (SVC_26 / SVC_32)
|
|
.long __pabt_invalid @ 4
|
|
.long __pabt_invalid @ 5
|
|
.long __pabt_invalid @ 6
|
|
.long __pabt_invalid @ 7
|
|
.long __pabt_invalid @ 8
|
|
.long __pabt_invalid @ 9
|
|
.long __pabt_invalid @ a
|
|
.long __pabt_invalid @ b
|
|
.long __pabt_invalid @ c
|
|
.long __pabt_invalid @ d
|
|
.long __pabt_invalid @ e
|
|
.long __pabt_invalid @ f
|
|
|
|
/*
|
|
* Undef instr entry dispatcher
|
|
* Enter in UND mode, spsr = SVC/USR CPSR, lr = SVC/USR PC
|
|
*/
|
|
vector_stub und
|
|
|
|
.long __und_usr @ 0 (USR_26 / USR_32)
|
|
.long __und_invalid @ 1 (FIQ_26 / FIQ_32)
|
|
.long __und_invalid @ 2 (IRQ_26 / IRQ_32)
|
|
.long __und_svc @ 3 (SVC_26 / SVC_32)
|
|
.long __und_invalid @ 4
|
|
.long __und_invalid @ 5
|
|
.long __und_invalid @ 6
|
|
.long __und_invalid @ 7
|
|
.long __und_invalid @ 8
|
|
.long __und_invalid @ 9
|
|
.long __und_invalid @ a
|
|
.long __und_invalid @ b
|
|
.long __und_invalid @ c
|
|
.long __und_invalid @ d
|
|
.long __und_invalid @ e
|
|
.long __und_invalid @ f
|
|
|
|
.align 5
|
|
|
|
/*=============================================================================
|
|
* Undefined FIQs
|
|
*-----------------------------------------------------------------------------
|
|
* Enter in FIQ mode, spsr = ANY CPSR, lr = ANY PC
|
|
* MUST PRESERVE SVC SPSR, but need to switch to SVC mode to show our msg.
|
|
* Basically to switch modes, we *HAVE* to clobber one register... brain
|
|
* damage alert! I don't think that we can execute any code in here in any
|
|
* other mode than FIQ... Ok you can switch to another mode, but you can't
|
|
* get out of that mode without clobbering one register.
|
|
*/
|
|
vector_fiq:
|
|
disable_fiq
|
|
subs pc, lr, #4
|
|
|
|
/*=============================================================================
|
|
* Address exception handler
|
|
*-----------------------------------------------------------------------------
|
|
* These aren't too critical.
|
|
* (they're not supposed to happen, and won't happen in 32-bit data mode).
|
|
*/
|
|
|
|
vector_addrexcptn:
|
|
b vector_addrexcptn
|
|
|
|
/*
|
|
* We group all the following data together to optimise
|
|
* for CPUs with separate I & D caches.
|
|
*/
|
|
.align 5
|
|
|
|
.LCvswi:
|
|
.word vector_swi
|
|
|
|
.globl __stubs_end
|
|
__stubs_end:
|
|
|
|
.equ stubs_offset, __vectors_start + 0x200 - __stubs_start
|
|
|
|
.globl __vectors_start
|
|
__vectors_start:
|
|
swi SYS_ERROR0
|
|
b vector_und + stubs_offset
|
|
ldr pc, .LCvswi + stubs_offset
|
|
b vector_pabt + stubs_offset
|
|
b vector_dabt + stubs_offset
|
|
b vector_addrexcptn + stubs_offset
|
|
b vector_irq + stubs_offset
|
|
b vector_fiq + stubs_offset
|
|
|
|
.globl __vectors_end
|
|
__vectors_end:
|
|
|
|
.data
|
|
|
|
.globl cr_alignment
|
|
.globl cr_no_alignment
|
|
cr_alignment:
|
|
.space 4
|
|
cr_no_alignment:
|
|
.space 4
|