linux/drivers/mmc/host/sdhci.c
Jisheng Zhang 3396e73611 mmc: sdhci: switch voltage before sdhci_set_ios in runtime resume
I observed the Host Control2 register isn't correctly restored
after runtime resuming on BG2Q. For example, the register reads
as 0x800c before runtime suspend, but it's set as 0x8004 after runtime
resuming. This could results in a non working host.

The reason is the Host Control2 is incorrectly reset when switching
voltage. We fix this by following the same sequence during initialization.

Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2015-01-29 11:28:06 +01:00

3580 lines
93 KiB
C

/*
* linux/drivers/mmc/host/sdhci.c - Secure Digital Host Controller Interface driver
*
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* Thanks to the following companies for their support:
*
* - JMicron (hardware and technical support)
*/
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/leds.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/slot-gpio.h>
#include "sdhci.h"
#define DRIVER_NAME "sdhci"
#define DBG(f, x...) \
pr_debug(DRIVER_NAME " [%s()]: " f, __func__,## x)
#if defined(CONFIG_LEDS_CLASS) || (defined(CONFIG_LEDS_CLASS_MODULE) && \
defined(CONFIG_MMC_SDHCI_MODULE))
#define SDHCI_USE_LEDS_CLASS
#endif
#define MAX_TUNING_LOOP 40
static unsigned int debug_quirks = 0;
static unsigned int debug_quirks2;
static void sdhci_finish_data(struct sdhci_host *);
static void sdhci_finish_command(struct sdhci_host *);
static int sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode);
static void sdhci_tuning_timer(unsigned long data);
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable);
static int sdhci_pre_dma_transfer(struct sdhci_host *host,
struct mmc_data *data,
struct sdhci_host_next *next);
#ifdef CONFIG_PM
static int sdhci_runtime_pm_get(struct sdhci_host *host);
static int sdhci_runtime_pm_put(struct sdhci_host *host);
static void sdhci_runtime_pm_bus_on(struct sdhci_host *host);
static void sdhci_runtime_pm_bus_off(struct sdhci_host *host);
#else
static inline int sdhci_runtime_pm_get(struct sdhci_host *host)
{
return 0;
}
static inline int sdhci_runtime_pm_put(struct sdhci_host *host)
{
return 0;
}
static void sdhci_runtime_pm_bus_on(struct sdhci_host *host)
{
}
static void sdhci_runtime_pm_bus_off(struct sdhci_host *host)
{
}
#endif
static void sdhci_dumpregs(struct sdhci_host *host)
{
pr_debug(DRIVER_NAME ": =========== REGISTER DUMP (%s)===========\n",
mmc_hostname(host->mmc));
pr_debug(DRIVER_NAME ": Sys addr: 0x%08x | Version: 0x%08x\n",
sdhci_readl(host, SDHCI_DMA_ADDRESS),
sdhci_readw(host, SDHCI_HOST_VERSION));
pr_debug(DRIVER_NAME ": Blk size: 0x%08x | Blk cnt: 0x%08x\n",
sdhci_readw(host, SDHCI_BLOCK_SIZE),
sdhci_readw(host, SDHCI_BLOCK_COUNT));
pr_debug(DRIVER_NAME ": Argument: 0x%08x | Trn mode: 0x%08x\n",
sdhci_readl(host, SDHCI_ARGUMENT),
sdhci_readw(host, SDHCI_TRANSFER_MODE));
pr_debug(DRIVER_NAME ": Present: 0x%08x | Host ctl: 0x%08x\n",
sdhci_readl(host, SDHCI_PRESENT_STATE),
sdhci_readb(host, SDHCI_HOST_CONTROL));
pr_debug(DRIVER_NAME ": Power: 0x%08x | Blk gap: 0x%08x\n",
sdhci_readb(host, SDHCI_POWER_CONTROL),
sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL));
pr_debug(DRIVER_NAME ": Wake-up: 0x%08x | Clock: 0x%08x\n",
sdhci_readb(host, SDHCI_WAKE_UP_CONTROL),
sdhci_readw(host, SDHCI_CLOCK_CONTROL));
pr_debug(DRIVER_NAME ": Timeout: 0x%08x | Int stat: 0x%08x\n",
sdhci_readb(host, SDHCI_TIMEOUT_CONTROL),
sdhci_readl(host, SDHCI_INT_STATUS));
pr_debug(DRIVER_NAME ": Int enab: 0x%08x | Sig enab: 0x%08x\n",
sdhci_readl(host, SDHCI_INT_ENABLE),
sdhci_readl(host, SDHCI_SIGNAL_ENABLE));
pr_debug(DRIVER_NAME ": AC12 err: 0x%08x | Slot int: 0x%08x\n",
sdhci_readw(host, SDHCI_ACMD12_ERR),
sdhci_readw(host, SDHCI_SLOT_INT_STATUS));
pr_debug(DRIVER_NAME ": Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
pr_debug(DRIVER_NAME ": Cmd: 0x%08x | Max curr: 0x%08x\n",
sdhci_readw(host, SDHCI_COMMAND),
sdhci_readl(host, SDHCI_MAX_CURRENT));
pr_debug(DRIVER_NAME ": Host ctl2: 0x%08x\n",
sdhci_readw(host, SDHCI_HOST_CONTROL2));
if (host->flags & SDHCI_USE_ADMA) {
if (host->flags & SDHCI_USE_64_BIT_DMA)
pr_debug(DRIVER_NAME ": ADMA Err: 0x%08x | ADMA Ptr: 0x%08x%08x\n",
readl(host->ioaddr + SDHCI_ADMA_ERROR),
readl(host->ioaddr + SDHCI_ADMA_ADDRESS_HI),
readl(host->ioaddr + SDHCI_ADMA_ADDRESS));
else
pr_debug(DRIVER_NAME ": ADMA Err: 0x%08x | ADMA Ptr: 0x%08x\n",
readl(host->ioaddr + SDHCI_ADMA_ERROR),
readl(host->ioaddr + SDHCI_ADMA_ADDRESS));
}
pr_debug(DRIVER_NAME ": ===========================================\n");
}
/*****************************************************************************\
* *
* Low level functions *
* *
\*****************************************************************************/
static void sdhci_set_card_detection(struct sdhci_host *host, bool enable)
{
u32 present;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) ||
(host->mmc->caps & MMC_CAP_NONREMOVABLE))
return;
if (enable) {
present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
host->ier |= present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT;
} else {
host->ier &= ~(SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT);
}
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_enable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, true);
}
static void sdhci_disable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, false);
}
void sdhci_reset(struct sdhci_host *host, u8 mask)
{
unsigned long timeout;
sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET);
if (mask & SDHCI_RESET_ALL) {
host->clock = 0;
/* Reset-all turns off SD Bus Power */
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
}
/* Wait max 100 ms */
timeout = 100;
/* hw clears the bit when it's done */
while (sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask) {
if (timeout == 0) {
pr_err("%s: Reset 0x%x never completed.\n",
mmc_hostname(host->mmc), (int)mask);
sdhci_dumpregs(host);
return;
}
timeout--;
mdelay(1);
}
}
EXPORT_SYMBOL_GPL(sdhci_reset);
static void sdhci_do_reset(struct sdhci_host *host, u8 mask)
{
if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
if (!(sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT))
return;
}
host->ops->reset(host, mask);
if (mask & SDHCI_RESET_ALL) {
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
/* Resetting the controller clears many */
host->preset_enabled = false;
}
}
static void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios);
static void sdhci_init(struct sdhci_host *host, int soft)
{
if (soft)
sdhci_do_reset(host, SDHCI_RESET_CMD|SDHCI_RESET_DATA);
else
sdhci_do_reset(host, SDHCI_RESET_ALL);
host->ier = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT |
SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC |
SDHCI_INT_TIMEOUT | SDHCI_INT_DATA_END |
SDHCI_INT_RESPONSE;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
if (soft) {
/* force clock reconfiguration */
host->clock = 0;
sdhci_set_ios(host->mmc, &host->mmc->ios);
}
}
static void sdhci_reinit(struct sdhci_host *host)
{
sdhci_init(host, 0);
/*
* Retuning stuffs are affected by different cards inserted and only
* applicable to UHS-I cards. So reset these fields to their initial
* value when card is removed.
*/
if (host->flags & SDHCI_USING_RETUNING_TIMER) {
host->flags &= ~SDHCI_USING_RETUNING_TIMER;
del_timer_sync(&host->tuning_timer);
host->flags &= ~SDHCI_NEEDS_RETUNING;
}
sdhci_enable_card_detection(host);
}
static void sdhci_activate_led(struct sdhci_host *host)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl |= SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static void sdhci_deactivate_led(struct sdhci_host *host)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
#ifdef SDHCI_USE_LEDS_CLASS
static void sdhci_led_control(struct led_classdev *led,
enum led_brightness brightness)
{
struct sdhci_host *host = container_of(led, struct sdhci_host, led);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->runtime_suspended)
goto out;
if (brightness == LED_OFF)
sdhci_deactivate_led(host);
else
sdhci_activate_led(host);
out:
spin_unlock_irqrestore(&host->lock, flags);
}
#endif
/*****************************************************************************\
* *
* Core functions *
* *
\*****************************************************************************/
static void sdhci_read_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 uninitialized_var(scratch);
u8 *buf;
DBG("PIO reading\n");
blksize = host->data->blksz;
chunk = 0;
local_irq_save(flags);
while (blksize) {
if (!sg_miter_next(&host->sg_miter))
BUG();
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
if (chunk == 0) {
scratch = sdhci_readl(host, SDHCI_BUFFER);
chunk = 4;
}
*buf = scratch & 0xFF;
buf++;
scratch >>= 8;
chunk--;
len--;
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_write_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 scratch;
u8 *buf;
DBG("PIO writing\n");
blksize = host->data->blksz;
chunk = 0;
scratch = 0;
local_irq_save(flags);
while (blksize) {
if (!sg_miter_next(&host->sg_miter))
BUG();
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
scratch |= (u32)*buf << (chunk * 8);
buf++;
chunk++;
len--;
if ((chunk == 4) || ((len == 0) && (blksize == 0))) {
sdhci_writel(host, scratch, SDHCI_BUFFER);
chunk = 0;
scratch = 0;
}
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_transfer_pio(struct sdhci_host *host)
{
u32 mask;
BUG_ON(!host->data);
if (host->blocks == 0)
return;
if (host->data->flags & MMC_DATA_READ)
mask = SDHCI_DATA_AVAILABLE;
else
mask = SDHCI_SPACE_AVAILABLE;
/*
* Some controllers (JMicron JMB38x) mess up the buffer bits
* for transfers < 4 bytes. As long as it is just one block,
* we can ignore the bits.
*/
if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) &&
(host->data->blocks == 1))
mask = ~0;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY)
udelay(100);
if (host->data->flags & MMC_DATA_READ)
sdhci_read_block_pio(host);
else
sdhci_write_block_pio(host);
host->blocks--;
if (host->blocks == 0)
break;
}
DBG("PIO transfer complete.\n");
}
static char *sdhci_kmap_atomic(struct scatterlist *sg, unsigned long *flags)
{
local_irq_save(*flags);
return kmap_atomic(sg_page(sg)) + sg->offset;
}
static void sdhci_kunmap_atomic(void *buffer, unsigned long *flags)
{
kunmap_atomic(buffer);
local_irq_restore(*flags);
}
static void sdhci_adma_write_desc(struct sdhci_host *host, void *desc,
dma_addr_t addr, int len, unsigned cmd)
{
struct sdhci_adma2_64_desc *dma_desc = desc;
/* 32-bit and 64-bit descriptors have these members in same position */
dma_desc->cmd = cpu_to_le16(cmd);
dma_desc->len = cpu_to_le16(len);
dma_desc->addr_lo = cpu_to_le32((u32)addr);
if (host->flags & SDHCI_USE_64_BIT_DMA)
dma_desc->addr_hi = cpu_to_le32((u64)addr >> 32);
}
static void sdhci_adma_mark_end(void *desc)
{
struct sdhci_adma2_64_desc *dma_desc = desc;
/* 32-bit and 64-bit descriptors have 'cmd' in same position */
dma_desc->cmd |= cpu_to_le16(ADMA2_END);
}
static int sdhci_adma_table_pre(struct sdhci_host *host,
struct mmc_data *data)
{
int direction;
void *desc;
void *align;
dma_addr_t addr;
dma_addr_t align_addr;
int len, offset;
struct scatterlist *sg;
int i;
char *buffer;
unsigned long flags;
/*
* The spec does not specify endianness of descriptor table.
* We currently guess that it is LE.
*/
if (data->flags & MMC_DATA_READ)
direction = DMA_FROM_DEVICE;
else
direction = DMA_TO_DEVICE;
host->align_addr = dma_map_single(mmc_dev(host->mmc),
host->align_buffer, host->align_buffer_sz, direction);
if (dma_mapping_error(mmc_dev(host->mmc), host->align_addr))
goto fail;
BUG_ON(host->align_addr & host->align_mask);
host->sg_count = sdhci_pre_dma_transfer(host, data, NULL);
if (host->sg_count < 0)
goto unmap_align;
desc = host->adma_table;
align = host->align_buffer;
align_addr = host->align_addr;
for_each_sg(data->sg, sg, host->sg_count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
/*
* The SDHCI specification states that ADMA
* addresses must be 32-bit aligned. If they
* aren't, then we use a bounce buffer for
* the (up to three) bytes that screw up the
* alignment.
*/
offset = (host->align_sz - (addr & host->align_mask)) &
host->align_mask;
if (offset) {
if (data->flags & MMC_DATA_WRITE) {
buffer = sdhci_kmap_atomic(sg, &flags);
memcpy(align, buffer, offset);
sdhci_kunmap_atomic(buffer, &flags);
}
/* tran, valid */
sdhci_adma_write_desc(host, desc, align_addr, offset,
ADMA2_TRAN_VALID);
BUG_ON(offset > 65536);
align += host->align_sz;
align_addr += host->align_sz;
desc += host->desc_sz;
addr += offset;
len -= offset;
}
BUG_ON(len > 65536);
/* tran, valid */
sdhci_adma_write_desc(host, desc, addr, len, ADMA2_TRAN_VALID);
desc += host->desc_sz;
/*
* If this triggers then we have a calculation bug
* somewhere. :/
*/
WARN_ON((desc - host->adma_table) >= host->adma_table_sz);
}
if (host->quirks & SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC) {
/*
* Mark the last descriptor as the terminating descriptor
*/
if (desc != host->adma_table) {
desc -= host->desc_sz;
sdhci_adma_mark_end(desc);
}
} else {
/*
* Add a terminating entry.
*/
/* nop, end, valid */
sdhci_adma_write_desc(host, desc, 0, 0, ADMA2_NOP_END_VALID);
}
/*
* Resync align buffer as we might have changed it.
*/
if (data->flags & MMC_DATA_WRITE) {
dma_sync_single_for_device(mmc_dev(host->mmc),
host->align_addr, host->align_buffer_sz, direction);
}
return 0;
unmap_align:
dma_unmap_single(mmc_dev(host->mmc), host->align_addr,
host->align_buffer_sz, direction);
fail:
return -EINVAL;
}
static void sdhci_adma_table_post(struct sdhci_host *host,
struct mmc_data *data)
{
int direction;
struct scatterlist *sg;
int i, size;
void *align;
char *buffer;
unsigned long flags;
bool has_unaligned;
if (data->flags & MMC_DATA_READ)
direction = DMA_FROM_DEVICE;
else
direction = DMA_TO_DEVICE;
dma_unmap_single(mmc_dev(host->mmc), host->align_addr,
host->align_buffer_sz, direction);
/* Do a quick scan of the SG list for any unaligned mappings */
has_unaligned = false;
for_each_sg(data->sg, sg, host->sg_count, i)
if (sg_dma_address(sg) & host->align_mask) {
has_unaligned = true;
break;
}
if (has_unaligned && data->flags & MMC_DATA_READ) {
dma_sync_sg_for_cpu(mmc_dev(host->mmc), data->sg,
data->sg_len, direction);
align = host->align_buffer;
for_each_sg(data->sg, sg, host->sg_count, i) {
if (sg_dma_address(sg) & host->align_mask) {
size = host->align_sz -
(sg_dma_address(sg) & host->align_mask);
buffer = sdhci_kmap_atomic(sg, &flags);
memcpy(buffer, align, size);
sdhci_kunmap_atomic(buffer, &flags);
align += host->align_sz;
}
}
}
if (!data->host_cookie)
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, direction);
}
static u8 sdhci_calc_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
u8 count;
struct mmc_data *data = cmd->data;
unsigned target_timeout, current_timeout;
/*
* If the host controller provides us with an incorrect timeout
* value, just skip the check and use 0xE. The hardware may take
* longer to time out, but that's much better than having a too-short
* timeout value.
*/
if (host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL)
return 0xE;
/* Unspecified timeout, assume max */
if (!data && !cmd->busy_timeout)
return 0xE;
/* timeout in us */
if (!data)
target_timeout = cmd->busy_timeout * 1000;
else {
target_timeout = data->timeout_ns / 1000;
if (host->clock)
target_timeout += data->timeout_clks / host->clock;
}
/*
* Figure out needed cycles.
* We do this in steps in order to fit inside a 32 bit int.
* The first step is the minimum timeout, which will have a
* minimum resolution of 6 bits:
* (1) 2^13*1000 > 2^22,
* (2) host->timeout_clk < 2^16
* =>
* (1) / (2) > 2^6
*/
count = 0;
current_timeout = (1 << 13) * 1000 / host->timeout_clk;
while (current_timeout < target_timeout) {
count++;
current_timeout <<= 1;
if (count >= 0xF)
break;
}
if (count >= 0xF) {
DBG("%s: Too large timeout 0x%x requested for CMD%d!\n",
mmc_hostname(host->mmc), count, cmd->opcode);
count = 0xE;
}
return count;
}
static void sdhci_set_transfer_irqs(struct sdhci_host *host)
{
u32 pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL;
u32 dma_irqs = SDHCI_INT_DMA_END | SDHCI_INT_ADMA_ERROR;
if (host->flags & SDHCI_REQ_USE_DMA)
host->ier = (host->ier & ~pio_irqs) | dma_irqs;
else
host->ier = (host->ier & ~dma_irqs) | pio_irqs;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
u8 count;
if (host->ops->set_timeout) {
host->ops->set_timeout(host, cmd);
} else {
count = sdhci_calc_timeout(host, cmd);
sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL);
}
}
static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_command *cmd)
{
u8 ctrl;
struct mmc_data *data = cmd->data;
int ret;
WARN_ON(host->data);
if (data || (cmd->flags & MMC_RSP_BUSY))
sdhci_set_timeout(host, cmd);
if (!data)
return;
/* Sanity checks */
BUG_ON(data->blksz * data->blocks > 524288);
BUG_ON(data->blksz > host->mmc->max_blk_size);
BUG_ON(data->blocks > 65535);
host->data = data;
host->data_early = 0;
host->data->bytes_xfered = 0;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))
host->flags |= SDHCI_REQ_USE_DMA;
/*
* FIXME: This doesn't account for merging when mapping the
* scatterlist.
*/
if (host->flags & SDHCI_REQ_USE_DMA) {
int broken, i;
struct scatterlist *sg;
broken = 0;
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE)
broken = 1;
} else {
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE)
broken = 1;
}
if (unlikely(broken)) {
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->length & 0x3) {
DBG("Reverting to PIO because of "
"transfer size (%d)\n",
sg->length);
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
}
}
}
/*
* The assumption here being that alignment is the same after
* translation to device address space.
*/
if (host->flags & SDHCI_REQ_USE_DMA) {
int broken, i;
struct scatterlist *sg;
broken = 0;
if (host->flags & SDHCI_USE_ADMA) {
/*
* As we use 3 byte chunks to work around
* alignment problems, we need to check this
* quirk.
*/
if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE)
broken = 1;
} else {
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR)
broken = 1;
}
if (unlikely(broken)) {
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 0x3) {
DBG("Reverting to PIO because of "
"bad alignment\n");
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
}
}
}
if (host->flags & SDHCI_REQ_USE_DMA) {
if (host->flags & SDHCI_USE_ADMA) {
ret = sdhci_adma_table_pre(host, data);
if (ret) {
/*
* This only happens when someone fed
* us an invalid request.
*/
WARN_ON(1);
host->flags &= ~SDHCI_REQ_USE_DMA;
} else {
sdhci_writel(host, host->adma_addr,
SDHCI_ADMA_ADDRESS);
if (host->flags & SDHCI_USE_64_BIT_DMA)
sdhci_writel(host,
(u64)host->adma_addr >> 32,
SDHCI_ADMA_ADDRESS_HI);
}
} else {
int sg_cnt;
sg_cnt = sdhci_pre_dma_transfer(host, data, NULL);
if (sg_cnt == 0) {
/*
* This only happens when someone fed
* us an invalid request.
*/
WARN_ON(1);
host->flags &= ~SDHCI_REQ_USE_DMA;
} else {
WARN_ON(sg_cnt != 1);
sdhci_writel(host, sg_dma_address(data->sg),
SDHCI_DMA_ADDRESS);
}
}
}
/*
* Always adjust the DMA selection as some controllers
* (e.g. JMicron) can't do PIO properly when the selection
* is ADMA.
*/
if (host->version >= SDHCI_SPEC_200) {
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_DMA_MASK;
if ((host->flags & SDHCI_REQ_USE_DMA) &&
(host->flags & SDHCI_USE_ADMA)) {
if (host->flags & SDHCI_USE_64_BIT_DMA)
ctrl |= SDHCI_CTRL_ADMA64;
else
ctrl |= SDHCI_CTRL_ADMA32;
} else {
ctrl |= SDHCI_CTRL_SDMA;
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
if (!(host->flags & SDHCI_REQ_USE_DMA)) {
int flags;
flags = SG_MITER_ATOMIC;
if (host->data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->blocks = data->blocks;
}
sdhci_set_transfer_irqs(host);
/* Set the DMA boundary value and block size */
sdhci_writew(host, SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG,
data->blksz), SDHCI_BLOCK_SIZE);
sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT);
}
static void sdhci_set_transfer_mode(struct sdhci_host *host,
struct mmc_command *cmd)
{
u16 mode = 0;
struct mmc_data *data = cmd->data;
if (data == NULL) {
if (host->quirks2 &
SDHCI_QUIRK2_CLEAR_TRANSFERMODE_REG_BEFORE_CMD) {
sdhci_writew(host, 0x0, SDHCI_TRANSFER_MODE);
} else {
/* clear Auto CMD settings for no data CMDs */
mode = sdhci_readw(host, SDHCI_TRANSFER_MODE);
sdhci_writew(host, mode & ~(SDHCI_TRNS_AUTO_CMD12 |
SDHCI_TRNS_AUTO_CMD23), SDHCI_TRANSFER_MODE);
}
return;
}
WARN_ON(!host->data);
if (!(host->quirks2 & SDHCI_QUIRK2_SUPPORT_SINGLE))
mode = SDHCI_TRNS_BLK_CNT_EN;
if (mmc_op_multi(cmd->opcode) || data->blocks > 1) {
mode = SDHCI_TRNS_BLK_CNT_EN | SDHCI_TRNS_MULTI;
/*
* If we are sending CMD23, CMD12 never gets sent
* on successful completion (so no Auto-CMD12).
*/
if (!host->mrq->sbc && (host->flags & SDHCI_AUTO_CMD12))
mode |= SDHCI_TRNS_AUTO_CMD12;
else if (host->mrq->sbc && (host->flags & SDHCI_AUTO_CMD23)) {
mode |= SDHCI_TRNS_AUTO_CMD23;
sdhci_writel(host, host->mrq->sbc->arg, SDHCI_ARGUMENT2);
}
}
if (data->flags & MMC_DATA_READ)
mode |= SDHCI_TRNS_READ;
if (host->flags & SDHCI_REQ_USE_DMA)
mode |= SDHCI_TRNS_DMA;
sdhci_writew(host, mode, SDHCI_TRANSFER_MODE);
}
static void sdhci_finish_data(struct sdhci_host *host)
{
struct mmc_data *data;
BUG_ON(!host->data);
data = host->data;
host->data = NULL;
if (host->flags & SDHCI_REQ_USE_DMA) {
if (host->flags & SDHCI_USE_ADMA)
sdhci_adma_table_post(host, data);
else {
if (!data->host_cookie)
dma_unmap_sg(mmc_dev(host->mmc),
data->sg, data->sg_len,
(data->flags & MMC_DATA_READ) ?
DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
}
/*
* The specification states that the block count register must
* be updated, but it does not specify at what point in the
* data flow. That makes the register entirely useless to read
* back so we have to assume that nothing made it to the card
* in the event of an error.
*/
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blksz * data->blocks;
/*
* Need to send CMD12 if -
* a) open-ended multiblock transfer (no CMD23)
* b) error in multiblock transfer
*/
if (data->stop &&
(data->error ||
!host->mrq->sbc)) {
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (data->error) {
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
}
sdhci_send_command(host, data->stop);
} else
tasklet_schedule(&host->finish_tasklet);
}
void sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd)
{
int flags;
u32 mask;
unsigned long timeout;
WARN_ON(host->cmd);
/* Wait max 10 ms */
timeout = 10;
mask = SDHCI_CMD_INHIBIT;
if ((cmd->data != NULL) || (cmd->flags & MMC_RSP_BUSY))
mask |= SDHCI_DATA_INHIBIT;
/* We shouldn't wait for data inihibit for stop commands, even
though they might use busy signaling */
if (host->mrq->data && (cmd == host->mrq->data->stop))
mask &= ~SDHCI_DATA_INHIBIT;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (timeout == 0) {
pr_err("%s: Controller never released "
"inhibit bit(s).\n", mmc_hostname(host->mmc));
sdhci_dumpregs(host);
cmd->error = -EIO;
tasklet_schedule(&host->finish_tasklet);
return;
}
timeout--;
mdelay(1);
}
timeout = jiffies;
if (!cmd->data && cmd->busy_timeout > 9000)
timeout += DIV_ROUND_UP(cmd->busy_timeout, 1000) * HZ + HZ;
else
timeout += 10 * HZ;
mod_timer(&host->timer, timeout);
host->cmd = cmd;
host->busy_handle = 0;
sdhci_prepare_data(host, cmd);
sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT);
sdhci_set_transfer_mode(host, cmd);
if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
pr_err("%s: Unsupported response type!\n",
mmc_hostname(host->mmc));
cmd->error = -EINVAL;
tasklet_schedule(&host->finish_tasklet);
return;
}
if (!(cmd->flags & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->flags & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->flags & MMC_RSP_BUSY)
flags = SDHCI_CMD_RESP_SHORT_BUSY;
else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->flags & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->flags & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
/* CMD19 is special in that the Data Present Select should be set */
if (cmd->data || cmd->opcode == MMC_SEND_TUNING_BLOCK ||
cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200)
flags |= SDHCI_CMD_DATA;
sdhci_writew(host, SDHCI_MAKE_CMD(cmd->opcode, flags), SDHCI_COMMAND);
}
EXPORT_SYMBOL_GPL(sdhci_send_command);
static void sdhci_finish_command(struct sdhci_host *host)
{
int i;
BUG_ON(host->cmd == NULL);
if (host->cmd->flags & MMC_RSP_PRESENT) {
if (host->cmd->flags & MMC_RSP_136) {
/* CRC is stripped so we need to do some shifting. */
for (i = 0;i < 4;i++) {
host->cmd->resp[i] = sdhci_readl(host,
SDHCI_RESPONSE + (3-i)*4) << 8;
if (i != 3)
host->cmd->resp[i] |=
sdhci_readb(host,
SDHCI_RESPONSE + (3-i)*4-1);
}
} else {
host->cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE);
}
}
host->cmd->error = 0;
/* Finished CMD23, now send actual command. */
if (host->cmd == host->mrq->sbc) {
host->cmd = NULL;
sdhci_send_command(host, host->mrq->cmd);
} else {
/* Processed actual command. */
if (host->data && host->data_early)
sdhci_finish_data(host);
if (!host->cmd->data)
tasklet_schedule(&host->finish_tasklet);
host->cmd = NULL;
}
}
static u16 sdhci_get_preset_value(struct sdhci_host *host)
{
u16 preset = 0;
switch (host->timing) {
case MMC_TIMING_UHS_SDR12:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
case MMC_TIMING_UHS_SDR25:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR25);
break;
case MMC_TIMING_UHS_SDR50:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR50);
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR104);
break;
case MMC_TIMING_UHS_DDR50:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_DDR50);
break;
case MMC_TIMING_MMC_HS400:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_HS400);
break;
default:
pr_warn("%s: Invalid UHS-I mode selected\n",
mmc_hostname(host->mmc));
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
}
return preset;
}
void sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
int div = 0; /* Initialized for compiler warning */
int real_div = div, clk_mul = 1;
u16 clk = 0;
unsigned long timeout;
host->mmc->actual_clock = 0;
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
if (host->version >= SDHCI_SPEC_300) {
if (host->preset_enabled) {
u16 pre_val;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
pre_val = sdhci_get_preset_value(host);
div = (pre_val & SDHCI_PRESET_SDCLK_FREQ_MASK)
>> SDHCI_PRESET_SDCLK_FREQ_SHIFT;
if (host->clk_mul &&
(pre_val & SDHCI_PRESET_CLKGEN_SEL_MASK)) {
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div + 1;
clk_mul = host->clk_mul;
} else {
real_div = max_t(int, 1, div << 1);
}
goto clock_set;
}
/*
* Check if the Host Controller supports Programmable Clock
* Mode.
*/
if (host->clk_mul) {
for (div = 1; div <= 1024; div++) {
if ((host->max_clk * host->clk_mul / div)
<= clock)
break;
}
/*
* Set Programmable Clock Mode in the Clock
* Control register.
*/
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div;
clk_mul = host->clk_mul;
div--;
} else {
/* Version 3.00 divisors must be a multiple of 2. */
if (host->max_clk <= clock)
div = 1;
else {
for (div = 2; div < SDHCI_MAX_DIV_SPEC_300;
div += 2) {
if ((host->max_clk / div) <= clock)
break;
}
}
real_div = div;
div >>= 1;
}
} else {
/* Version 2.00 divisors must be a power of 2. */
for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) {
if ((host->max_clk / div) <= clock)
break;
}
real_div = div;
div >>= 1;
}
clock_set:
if (real_div)
host->mmc->actual_clock = (host->max_clk * clk_mul) / real_div;
clk |= (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT;
clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN)
<< SDHCI_DIVIDER_HI_SHIFT;
clk |= SDHCI_CLOCK_INT_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 20 ms */
timeout = 20;
while (!((clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL))
& SDHCI_CLOCK_INT_STABLE)) {
if (timeout == 0) {
pr_err("%s: Internal clock never "
"stabilised.\n", mmc_hostname(host->mmc));
sdhci_dumpregs(host);
return;
}
timeout--;
mdelay(1);
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_set_clock);
static void sdhci_set_power(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
struct mmc_host *mmc = host->mmc;
u8 pwr = 0;
if (!IS_ERR(mmc->supply.vmmc)) {
spin_unlock_irq(&host->lock);
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd);
spin_lock_irq(&host->lock);
if (mode != MMC_POWER_OFF)
sdhci_writeb(host, SDHCI_POWER_ON, SDHCI_POWER_CONTROL);
else
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
return;
}
if (mode != MMC_POWER_OFF) {
switch (1 << vdd) {
case MMC_VDD_165_195:
pwr = SDHCI_POWER_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
pwr = SDHCI_POWER_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
pwr = SDHCI_POWER_330;
break;
default:
BUG();
}
}
if (host->pwr == pwr)
return;
host->pwr = pwr;
if (pwr == 0) {
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
vdd = 0;
} else {
/*
* Spec says that we should clear the power reg before setting
* a new value. Some controllers don't seem to like this though.
*/
if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE))
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
/*
* At least the Marvell CaFe chip gets confused if we set the
* voltage and set turn on power at the same time, so set the
* voltage first.
*/
if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER)
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
pwr |= SDHCI_POWER_ON;
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_on(host);
/*
* Some controllers need an extra 10ms delay of 10ms before
* they can apply clock after applying power
*/
if (host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER)
mdelay(10);
}
}
/*****************************************************************************\
* *
* MMC callbacks *
* *
\*****************************************************************************/
static void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host;
int present;
unsigned long flags;
u32 tuning_opcode;
host = mmc_priv(mmc);
sdhci_runtime_pm_get(host);
present = mmc_gpio_get_cd(host->mmc);
spin_lock_irqsave(&host->lock, flags);
WARN_ON(host->mrq != NULL);
#ifndef SDHCI_USE_LEDS_CLASS
sdhci_activate_led(host);
#endif
/*
* Ensure we don't send the STOP for non-SET_BLOCK_COUNTED
* requests if Auto-CMD12 is enabled.
*/
if (!mrq->sbc && (host->flags & SDHCI_AUTO_CMD12)) {
if (mrq->stop) {
mrq->data->stop = NULL;
mrq->stop = NULL;
}
}
host->mrq = mrq;
/*
* Firstly check card presence from cd-gpio. The return could
* be one of the following possibilities:
* negative: cd-gpio is not available
* zero: cd-gpio is used, and card is removed
* one: cd-gpio is used, and card is present
*/
if (present < 0) {
/* If polling, assume that the card is always present. */
if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION)
present = 1;
else
present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
}
if (!present || host->flags & SDHCI_DEVICE_DEAD) {
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
} else {
u32 present_state;
present_state = sdhci_readl(host, SDHCI_PRESENT_STATE);
/*
* Check if the re-tuning timer has already expired and there
* is no on-going data transfer and DAT0 is not busy. If so,
* we need to execute tuning procedure before sending command.
*/
if ((host->flags & SDHCI_NEEDS_RETUNING) &&
!(present_state & (SDHCI_DOING_WRITE | SDHCI_DOING_READ)) &&
(present_state & SDHCI_DATA_0_LVL_MASK)) {
if (mmc->card) {
/* eMMC uses cmd21 but sd and sdio use cmd19 */
tuning_opcode =
mmc->card->type == MMC_TYPE_MMC ?
MMC_SEND_TUNING_BLOCK_HS200 :
MMC_SEND_TUNING_BLOCK;
/* Here we need to set the host->mrq to NULL,
* in case the pending finish_tasklet
* finishes it incorrectly.
*/
host->mrq = NULL;
spin_unlock_irqrestore(&host->lock, flags);
sdhci_execute_tuning(mmc, tuning_opcode);
spin_lock_irqsave(&host->lock, flags);
/* Restore original mmc_request structure */
host->mrq = mrq;
}
}
if (mrq->sbc && !(host->flags & SDHCI_AUTO_CMD23))
sdhci_send_command(host, mrq->sbc);
else
sdhci_send_command(host, mrq->cmd);
}
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
void sdhci_set_bus_width(struct sdhci_host *host, int width)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (width == MMC_BUS_WIDTH_8) {
ctrl &= ~SDHCI_CTRL_4BITBUS;
if (host->version >= SDHCI_SPEC_300)
ctrl |= SDHCI_CTRL_8BITBUS;
} else {
if (host->version >= SDHCI_SPEC_300)
ctrl &= ~SDHCI_CTRL_8BITBUS;
if (width == MMC_BUS_WIDTH_4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_set_bus_width);
void sdhci_set_uhs_signaling(struct sdhci_host *host, unsigned timing)
{
u16 ctrl_2;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
if ((timing == MMC_TIMING_MMC_HS200) ||
(timing == MMC_TIMING_UHS_SDR104))
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
else if (timing == MMC_TIMING_UHS_SDR12)
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
else if (timing == MMC_TIMING_UHS_SDR25)
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
else if (timing == MMC_TIMING_UHS_SDR50)
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
else if ((timing == MMC_TIMING_UHS_DDR50) ||
(timing == MMC_TIMING_MMC_DDR52))
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
else if (timing == MMC_TIMING_MMC_HS400)
ctrl_2 |= SDHCI_CTRL_HS400; /* Non-standard */
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
}
EXPORT_SYMBOL_GPL(sdhci_set_uhs_signaling);
static void sdhci_do_set_ios(struct sdhci_host *host, struct mmc_ios *ios)
{
unsigned long flags;
u8 ctrl;
struct mmc_host *mmc = host->mmc;
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD) {
spin_unlock_irqrestore(&host->lock, flags);
if (!IS_ERR(mmc->supply.vmmc) &&
ios->power_mode == MMC_POWER_OFF)
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
return;
}
/*
* Reset the chip on each power off.
* Should clear out any weird states.
*/
if (ios->power_mode == MMC_POWER_OFF) {
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
sdhci_reinit(host);
}
if (host->version >= SDHCI_SPEC_300 &&
(ios->power_mode == MMC_POWER_UP) &&
!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN))
sdhci_enable_preset_value(host, false);
if (!ios->clock || ios->clock != host->clock) {
host->ops->set_clock(host, ios->clock);
host->clock = ios->clock;
if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK &&
host->clock) {
host->timeout_clk = host->mmc->actual_clock ?
host->mmc->actual_clock / 1000 :
host->clock / 1000;
host->mmc->max_busy_timeout =
host->ops->get_max_timeout_count ?
host->ops->get_max_timeout_count(host) :
1 << 27;
host->mmc->max_busy_timeout /= host->timeout_clk;
}
}
sdhci_set_power(host, ios->power_mode, ios->vdd);
if (host->ops->platform_send_init_74_clocks)
host->ops->platform_send_init_74_clocks(host, ios->power_mode);
host->ops->set_bus_width(host, ios->bus_width);
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if ((ios->timing == MMC_TIMING_SD_HS ||
ios->timing == MMC_TIMING_MMC_HS)
&& !(host->quirks & SDHCI_QUIRK_NO_HISPD_BIT))
ctrl |= SDHCI_CTRL_HISPD;
else
ctrl &= ~SDHCI_CTRL_HISPD;
if (host->version >= SDHCI_SPEC_300) {
u16 clk, ctrl_2;
/* In case of UHS-I modes, set High Speed Enable */
if ((ios->timing == MMC_TIMING_MMC_HS400) ||
(ios->timing == MMC_TIMING_MMC_HS200) ||
(ios->timing == MMC_TIMING_MMC_DDR52) ||
(ios->timing == MMC_TIMING_UHS_SDR50) ||
(ios->timing == MMC_TIMING_UHS_SDR104) ||
(ios->timing == MMC_TIMING_UHS_DDR50) ||
(ios->timing == MMC_TIMING_UHS_SDR25))
ctrl |= SDHCI_CTRL_HISPD;
if (!host->preset_enabled) {
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/*
* We only need to set Driver Strength if the
* preset value enable is not set.
*/
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl_2 &= ~SDHCI_CTRL_DRV_TYPE_MASK;
if (ios->drv_type == MMC_SET_DRIVER_TYPE_A)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_A;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_C)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_C;
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
} else {
/*
* According to SDHC Spec v3.00, if the Preset Value
* Enable in the Host Control 2 register is set, we
* need to reset SD Clock Enable before changing High
* Speed Enable to avoid generating clock gliches.
*/
/* Reset SD Clock Enable */
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/* Re-enable SD Clock */
host->ops->set_clock(host, host->clock);
}
/* Reset SD Clock Enable */
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
host->ops->set_uhs_signaling(host, ios->timing);
host->timing = ios->timing;
if (!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN) &&
((ios->timing == MMC_TIMING_UHS_SDR12) ||
(ios->timing == MMC_TIMING_UHS_SDR25) ||
(ios->timing == MMC_TIMING_UHS_SDR50) ||
(ios->timing == MMC_TIMING_UHS_SDR104) ||
(ios->timing == MMC_TIMING_UHS_DDR50))) {
u16 preset;
sdhci_enable_preset_value(host, true);
preset = sdhci_get_preset_value(host);
ios->drv_type = (preset & SDHCI_PRESET_DRV_MASK)
>> SDHCI_PRESET_DRV_SHIFT;
}
/* Re-enable SD Clock */
host->ops->set_clock(host, host->clock);
} else
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/*
* Some (ENE) controllers go apeshit on some ios operation,
* signalling timeout and CRC errors even on CMD0. Resetting
* it on each ios seems to solve the problem.
*/
if (host->quirks & SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS)
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
sdhci_runtime_pm_get(host);
sdhci_do_set_ios(host, ios);
sdhci_runtime_pm_put(host);
}
static int sdhci_do_get_cd(struct sdhci_host *host)
{
int gpio_cd = mmc_gpio_get_cd(host->mmc);
if (host->flags & SDHCI_DEVICE_DEAD)
return 0;
/* If polling/nonremovable, assume that the card is always present. */
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) ||
(host->mmc->caps & MMC_CAP_NONREMOVABLE))
return 1;
/* Try slot gpio detect */
if (!IS_ERR_VALUE(gpio_cd))
return !!gpio_cd;
/* Host native card detect */
return !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
}
static int sdhci_get_cd(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int ret;
sdhci_runtime_pm_get(host);
ret = sdhci_do_get_cd(host);
sdhci_runtime_pm_put(host);
return ret;
}
static int sdhci_check_ro(struct sdhci_host *host)
{
unsigned long flags;
int is_readonly;
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD)
is_readonly = 0;
else if (host->ops->get_ro)
is_readonly = host->ops->get_ro(host);
else
is_readonly = !(sdhci_readl(host, SDHCI_PRESENT_STATE)
& SDHCI_WRITE_PROTECT);
spin_unlock_irqrestore(&host->lock, flags);
/* This quirk needs to be replaced by a callback-function later */
return host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT ?
!is_readonly : is_readonly;
}
#define SAMPLE_COUNT 5
static int sdhci_do_get_ro(struct sdhci_host *host)
{
int i, ro_count;
if (!(host->quirks & SDHCI_QUIRK_UNSTABLE_RO_DETECT))
return sdhci_check_ro(host);
ro_count = 0;
for (i = 0; i < SAMPLE_COUNT; i++) {
if (sdhci_check_ro(host)) {
if (++ro_count > SAMPLE_COUNT / 2)
return 1;
}
msleep(30);
}
return 0;
}
static void sdhci_hw_reset(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
if (host->ops && host->ops->hw_reset)
host->ops->hw_reset(host);
}
static int sdhci_get_ro(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int ret;
sdhci_runtime_pm_get(host);
ret = sdhci_do_get_ro(host);
sdhci_runtime_pm_put(host);
return ret;
}
static void sdhci_enable_sdio_irq_nolock(struct sdhci_host *host, int enable)
{
if (!(host->flags & SDHCI_DEVICE_DEAD)) {
if (enable)
host->ier |= SDHCI_INT_CARD_INT;
else
host->ier &= ~SDHCI_INT_CARD_INT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
mmiowb();
}
}
static void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
sdhci_runtime_pm_get(host);
spin_lock_irqsave(&host->lock, flags);
if (enable)
host->flags |= SDHCI_SDIO_IRQ_ENABLED;
else
host->flags &= ~SDHCI_SDIO_IRQ_ENABLED;
sdhci_enable_sdio_irq_nolock(host, enable);
spin_unlock_irqrestore(&host->lock, flags);
sdhci_runtime_pm_put(host);
}
static int sdhci_do_start_signal_voltage_switch(struct sdhci_host *host,
struct mmc_ios *ios)
{
struct mmc_host *mmc = host->mmc;
u16 ctrl;
int ret;
/*
* Signal Voltage Switching is only applicable for Host Controllers
* v3.00 and above.
*/
if (host->version < SDHCI_SPEC_300)
return 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
ctrl &= ~SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = regulator_set_voltage(mmc->supply.vqmmc, 2700000,
3600000);
if (ret) {
pr_warn("%s: Switching to 3.3V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
/* Wait for 5ms */
usleep_range(5000, 5500);
/* 3.3V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_VDD_180))
return 0;
pr_warn("%s: 3.3V regulator output did not became stable\n",
mmc_hostname(mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_180:
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = regulator_set_voltage(mmc->supply.vqmmc,
1700000, 1950000);
if (ret) {
pr_warn("%s: Switching to 1.8V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
/*
* Enable 1.8V Signal Enable in the Host Control2
* register
*/
ctrl |= SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/* Some controller need to do more when switching */
if (host->ops->voltage_switch)
host->ops->voltage_switch(host);
/* 1.8V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (ctrl & SDHCI_CTRL_VDD_180)
return 0;
pr_warn("%s: 1.8V regulator output did not became stable\n",
mmc_hostname(mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_120:
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = regulator_set_voltage(mmc->supply.vqmmc, 1100000,
1300000);
if (ret) {
pr_warn("%s: Switching to 1.2V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
return 0;
default:
/* No signal voltage switch required */
return 0;
}
}
static int sdhci_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
int err;
if (host->version < SDHCI_SPEC_300)
return 0;
sdhci_runtime_pm_get(host);
err = sdhci_do_start_signal_voltage_switch(host, ios);
sdhci_runtime_pm_put(host);
return err;
}
static int sdhci_card_busy(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 present_state;
sdhci_runtime_pm_get(host);
/* Check whether DAT[3:0] is 0000 */
present_state = sdhci_readl(host, SDHCI_PRESENT_STATE);
sdhci_runtime_pm_put(host);
return !(present_state & SDHCI_DATA_LVL_MASK);
}
static int sdhci_prepare_hs400_tuning(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_HS400_TUNING;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
static int sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
u16 ctrl;
int tuning_loop_counter = MAX_TUNING_LOOP;
int err = 0;
unsigned long flags;
unsigned int tuning_count = 0;
bool hs400_tuning;
sdhci_runtime_pm_get(host);
spin_lock_irqsave(&host->lock, flags);
hs400_tuning = host->flags & SDHCI_HS400_TUNING;
host->flags &= ~SDHCI_HS400_TUNING;
if (host->tuning_mode == SDHCI_TUNING_MODE_1)
tuning_count = host->tuning_count;
/*
* The Host Controller needs tuning only in case of SDR104 mode
* and for SDR50 mode when Use Tuning for SDR50 is set in the
* Capabilities register.
* If the Host Controller supports the HS200 mode then the
* tuning function has to be executed.
*/
switch (host->timing) {
/* HS400 tuning is done in HS200 mode */
case MMC_TIMING_MMC_HS400:
err = -EINVAL;
goto out_unlock;
case MMC_TIMING_MMC_HS200:
/*
* Periodic re-tuning for HS400 is not expected to be needed, so
* disable it here.
*/
if (hs400_tuning)
tuning_count = 0;
break;
case MMC_TIMING_UHS_SDR104:
break;
case MMC_TIMING_UHS_SDR50:
if (host->flags & SDHCI_SDR50_NEEDS_TUNING ||
host->flags & SDHCI_SDR104_NEEDS_TUNING)
break;
/* FALLTHROUGH */
default:
goto out_unlock;
}
if (host->ops->platform_execute_tuning) {
spin_unlock_irqrestore(&host->lock, flags);
err = host->ops->platform_execute_tuning(host, opcode);
sdhci_runtime_pm_put(host);
return err;
}
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl |= SDHCI_CTRL_EXEC_TUNING;
if (host->quirks2 & SDHCI_QUIRK2_TUNING_WORK_AROUND)
ctrl |= SDHCI_CTRL_TUNED_CLK;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/*
* As per the Host Controller spec v3.00, tuning command
* generates Buffer Read Ready interrupt, so enable that.
*
* Note: The spec clearly says that when tuning sequence
* is being performed, the controller does not generate
* interrupts other than Buffer Read Ready interrupt. But
* to make sure we don't hit a controller bug, we _only_
* enable Buffer Read Ready interrupt here.
*/
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE);
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE);
/*
* Issue CMD19 repeatedly till Execute Tuning is set to 0 or the number
* of loops reaches 40 times or a timeout of 150ms occurs.
*/
do {
struct mmc_command cmd = {0};
struct mmc_request mrq = {NULL};
cmd.opcode = opcode;
cmd.arg = 0;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.retries = 0;
cmd.data = NULL;
cmd.error = 0;
if (tuning_loop_counter-- == 0)
break;
mrq.cmd = &cmd;
host->mrq = &mrq;
/*
* In response to CMD19, the card sends 64 bytes of tuning
* block to the Host Controller. So we set the block size
* to 64 here.
*/
if (cmd.opcode == MMC_SEND_TUNING_BLOCK_HS200) {
if (mmc->ios.bus_width == MMC_BUS_WIDTH_8)
sdhci_writew(host, SDHCI_MAKE_BLKSZ(7, 128),
SDHCI_BLOCK_SIZE);
else if (mmc->ios.bus_width == MMC_BUS_WIDTH_4)
sdhci_writew(host, SDHCI_MAKE_BLKSZ(7, 64),
SDHCI_BLOCK_SIZE);
} else {
sdhci_writew(host, SDHCI_MAKE_BLKSZ(7, 64),
SDHCI_BLOCK_SIZE);
}
/*
* The tuning block is sent by the card to the host controller.
* So we set the TRNS_READ bit in the Transfer Mode register.
* This also takes care of setting DMA Enable and Multi Block
* Select in the same register to 0.
*/
sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE);
sdhci_send_command(host, &cmd);
host->cmd = NULL;
host->mrq = NULL;
spin_unlock_irqrestore(&host->lock, flags);
/* Wait for Buffer Read Ready interrupt */
wait_event_interruptible_timeout(host->buf_ready_int,
(host->tuning_done == 1),
msecs_to_jiffies(50));
spin_lock_irqsave(&host->lock, flags);
if (!host->tuning_done) {
pr_info(DRIVER_NAME ": Timeout waiting for "
"Buffer Read Ready interrupt during tuning "
"procedure, falling back to fixed sampling "
"clock\n");
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
ctrl &= ~SDHCI_CTRL_EXEC_TUNING;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
err = -EIO;
goto out;
}
host->tuning_done = 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* eMMC spec does not require a delay between tuning cycles */
if (opcode == MMC_SEND_TUNING_BLOCK)
mdelay(1);
} while (ctrl & SDHCI_CTRL_EXEC_TUNING);
/*
* The Host Driver has exhausted the maximum number of loops allowed,
* so use fixed sampling frequency.
*/
if (tuning_loop_counter < 0) {
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
}
if (!(ctrl & SDHCI_CTRL_TUNED_CLK)) {
pr_info(DRIVER_NAME ": Tuning procedure"
" failed, falling back to fixed sampling"
" clock\n");
err = -EIO;
}
out:
host->flags &= ~SDHCI_NEEDS_RETUNING;
if (tuning_count) {
host->flags |= SDHCI_USING_RETUNING_TIMER;
mod_timer(&host->tuning_timer, jiffies + tuning_count * HZ);
}
/*
* In case tuning fails, host controllers which support re-tuning can
* try tuning again at a later time, when the re-tuning timer expires.
* So for these controllers, we return 0. Since there might be other
* controllers who do not have this capability, we return error for
* them. SDHCI_USING_RETUNING_TIMER means the host is currently using
* a retuning timer to do the retuning for the card.
*/
if (err && (host->flags & SDHCI_USING_RETUNING_TIMER))
err = 0;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
out_unlock:
spin_unlock_irqrestore(&host->lock, flags);
sdhci_runtime_pm_put(host);
return err;
}
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable)
{
/* Host Controller v3.00 defines preset value registers */
if (host->version < SDHCI_SPEC_300)
return;
/*
* We only enable or disable Preset Value if they are not already
* enabled or disabled respectively. Otherwise, we bail out.
*/
if (host->preset_enabled != enable) {
u16 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (enable)
ctrl |= SDHCI_CTRL_PRESET_VAL_ENABLE;
else
ctrl &= ~SDHCI_CTRL_PRESET_VAL_ENABLE;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (enable)
host->flags |= SDHCI_PV_ENABLED;
else
host->flags &= ~SDHCI_PV_ENABLED;
host->preset_enabled = enable;
}
}
static void sdhci_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct sdhci_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (host->flags & SDHCI_REQ_USE_DMA) {
if (data->host_cookie)
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
data->flags & MMC_DATA_WRITE ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
mrq->data->host_cookie = 0;
}
}
static int sdhci_pre_dma_transfer(struct sdhci_host *host,
struct mmc_data *data,
struct sdhci_host_next *next)
{
int sg_count;
if (!next && data->host_cookie &&
data->host_cookie != host->next_data.cookie) {
pr_debug(DRIVER_NAME "[%s] invalid cookie: %d, next-cookie %d\n",
__func__, data->host_cookie, host->next_data.cookie);
data->host_cookie = 0;
}
/* Check if next job is already prepared */
if (next ||
(!next && data->host_cookie != host->next_data.cookie)) {
sg_count = dma_map_sg(mmc_dev(host->mmc), data->sg,
data->sg_len,
data->flags & MMC_DATA_WRITE ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
} else {
sg_count = host->next_data.sg_count;
host->next_data.sg_count = 0;
}
if (sg_count == 0)
return -EINVAL;
if (next) {
next->sg_count = sg_count;
data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
} else
host->sg_count = sg_count;
return sg_count;
}
static void sdhci_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
bool is_first_req)
{
struct sdhci_host *host = mmc_priv(mmc);
if (mrq->data->host_cookie) {
mrq->data->host_cookie = 0;
return;
}
if (host->flags & SDHCI_REQ_USE_DMA)
if (sdhci_pre_dma_transfer(host,
mrq->data,
&host->next_data) < 0)
mrq->data->host_cookie = 0;
}
static void sdhci_card_event(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
int present;
/* First check if client has provided their own card event */
if (host->ops->card_event)
host->ops->card_event(host);
present = sdhci_do_get_cd(host);
spin_lock_irqsave(&host->lock, flags);
/* Check host->mrq first in case we are runtime suspended */
if (host->mrq && !present) {
pr_err("%s: Card removed during transfer!\n",
mmc_hostname(host->mmc));
pr_err("%s: Resetting controller.\n",
mmc_hostname(host->mmc));
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static const struct mmc_host_ops sdhci_ops = {
.request = sdhci_request,
.post_req = sdhci_post_req,
.pre_req = sdhci_pre_req,
.set_ios = sdhci_set_ios,
.get_cd = sdhci_get_cd,
.get_ro = sdhci_get_ro,
.hw_reset = sdhci_hw_reset,
.enable_sdio_irq = sdhci_enable_sdio_irq,
.start_signal_voltage_switch = sdhci_start_signal_voltage_switch,
.prepare_hs400_tuning = sdhci_prepare_hs400_tuning,
.execute_tuning = sdhci_execute_tuning,
.card_event = sdhci_card_event,
.card_busy = sdhci_card_busy,
};
/*****************************************************************************\
* *
* Tasklets *
* *
\*****************************************************************************/
static void sdhci_tasklet_finish(unsigned long param)
{
struct sdhci_host *host;
unsigned long flags;
struct mmc_request *mrq;
host = (struct sdhci_host*)param;
spin_lock_irqsave(&host->lock, flags);
/*
* If this tasklet gets rescheduled while running, it will
* be run again afterwards but without any active request.
*/
if (!host->mrq) {
spin_unlock_irqrestore(&host->lock, flags);
return;
}
del_timer(&host->timer);
mrq = host->mrq;
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (!(host->flags & SDHCI_DEVICE_DEAD) &&
((mrq->cmd && mrq->cmd->error) ||
(mrq->sbc && mrq->sbc->error) ||
(mrq->data && ((mrq->data->error && !mrq->data->stop) ||
(mrq->data->stop && mrq->data->stop->error))) ||
(host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) {
/* Some controllers need this kick or reset won't work here */
if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)
/* This is to force an update */
host->ops->set_clock(host, host->clock);
/* Spec says we should do both at the same time, but Ricoh
controllers do not like that. */
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
}
host->mrq = NULL;
host->cmd = NULL;
host->data = NULL;
#ifndef SDHCI_USE_LEDS_CLASS
sdhci_deactivate_led(host);
#endif
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(host->mmc, mrq);
sdhci_runtime_pm_put(host);
}
static void sdhci_timeout_timer(unsigned long data)
{
struct sdhci_host *host;
unsigned long flags;
host = (struct sdhci_host*)data;
spin_lock_irqsave(&host->lock, flags);
if (host->mrq) {
pr_err("%s: Timeout waiting for hardware "
"interrupt.\n", mmc_hostname(host->mmc));
sdhci_dumpregs(host);
if (host->data) {
host->data->error = -ETIMEDOUT;
sdhci_finish_data(host);
} else {
if (host->cmd)
host->cmd->error = -ETIMEDOUT;
else
host->mrq->cmd->error = -ETIMEDOUT;
tasklet_schedule(&host->finish_tasklet);
}
}
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_tuning_timer(unsigned long data)
{
struct sdhci_host *host;
unsigned long flags;
host = (struct sdhci_host *)data;
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_NEEDS_RETUNING;
spin_unlock_irqrestore(&host->lock, flags);
}
/*****************************************************************************\
* *
* Interrupt handling *
* *
\*****************************************************************************/
static void sdhci_cmd_irq(struct sdhci_host *host, u32 intmask, u32 *mask)
{
BUG_ON(intmask == 0);
if (!host->cmd) {
pr_err("%s: Got command interrupt 0x%08x even "
"though no command operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & SDHCI_INT_TIMEOUT)
host->cmd->error = -ETIMEDOUT;
else if (intmask & (SDHCI_INT_CRC | SDHCI_INT_END_BIT |
SDHCI_INT_INDEX))
host->cmd->error = -EILSEQ;
if (host->cmd->error) {
tasklet_schedule(&host->finish_tasklet);
return;
}
/*
* The host can send and interrupt when the busy state has
* ended, allowing us to wait without wasting CPU cycles.
* Unfortunately this is overloaded on the "data complete"
* interrupt, so we need to take some care when handling
* it.
*
* Note: The 1.0 specification is a bit ambiguous about this
* feature so there might be some problems with older
* controllers.
*/
if (host->cmd->flags & MMC_RSP_BUSY) {
if (host->cmd->data)
DBG("Cannot wait for busy signal when also "
"doing a data transfer");
else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ)
&& !host->busy_handle) {
/* Mark that command complete before busy is ended */
host->busy_handle = 1;
return;
}
/* The controller does not support the end-of-busy IRQ,
* fall through and take the SDHCI_INT_RESPONSE */
} else if ((host->quirks2 & SDHCI_QUIRK2_STOP_WITH_TC) &&
host->cmd->opcode == MMC_STOP_TRANSMISSION && !host->data) {
*mask &= ~SDHCI_INT_DATA_END;
}
if (intmask & SDHCI_INT_RESPONSE)
sdhci_finish_command(host);
}
#ifdef CONFIG_MMC_DEBUG
static void sdhci_adma_show_error(struct sdhci_host *host)
{
const char *name = mmc_hostname(host->mmc);
void *desc = host->adma_table;
sdhci_dumpregs(host);
while (true) {
struct sdhci_adma2_64_desc *dma_desc = desc;
if (host->flags & SDHCI_USE_64_BIT_DMA)
DBG("%s: %p: DMA 0x%08x%08x, LEN 0x%04x, Attr=0x%02x\n",
name, desc, le32_to_cpu(dma_desc->addr_hi),
le32_to_cpu(dma_desc->addr_lo),
le16_to_cpu(dma_desc->len),
le16_to_cpu(dma_desc->cmd));
else
DBG("%s: %p: DMA 0x%08x, LEN 0x%04x, Attr=0x%02x\n",
name, desc, le32_to_cpu(dma_desc->addr_lo),
le16_to_cpu(dma_desc->len),
le16_to_cpu(dma_desc->cmd));
desc += host->desc_sz;
if (dma_desc->cmd & cpu_to_le16(ADMA2_END))
break;
}
}
#else
static void sdhci_adma_show_error(struct sdhci_host *host) { }
#endif
static void sdhci_data_irq(struct sdhci_host *host, u32 intmask)
{
u32 command;
BUG_ON(intmask == 0);
/* CMD19 generates _only_ Buffer Read Ready interrupt */
if (intmask & SDHCI_INT_DATA_AVAIL) {
command = SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND));
if (command == MMC_SEND_TUNING_BLOCK ||
command == MMC_SEND_TUNING_BLOCK_HS200) {
host->tuning_done = 1;
wake_up(&host->buf_ready_int);
return;
}
}
if (!host->data) {
/*
* The "data complete" interrupt is also used to
* indicate that a busy state has ended. See comment
* above in sdhci_cmd_irq().
*/
if (host->cmd && (host->cmd->flags & MMC_RSP_BUSY)) {
if (intmask & SDHCI_INT_DATA_TIMEOUT) {
host->cmd->error = -ETIMEDOUT;
tasklet_schedule(&host->finish_tasklet);
return;
}
if (intmask & SDHCI_INT_DATA_END) {
/*
* Some cards handle busy-end interrupt
* before the command completed, so make
* sure we do things in the proper order.
*/
if (host->busy_handle)
sdhci_finish_command(host);
else
host->busy_handle = 1;
return;
}
}
pr_err("%s: Got data interrupt 0x%08x even "
"though no data operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & SDHCI_INT_DATA_TIMEOUT)
host->data->error = -ETIMEDOUT;
else if (intmask & SDHCI_INT_DATA_END_BIT)
host->data->error = -EILSEQ;
else if ((intmask & SDHCI_INT_DATA_CRC) &&
SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND))
!= MMC_BUS_TEST_R)
host->data->error = -EILSEQ;
else if (intmask & SDHCI_INT_ADMA_ERROR) {
pr_err("%s: ADMA error\n", mmc_hostname(host->mmc));
sdhci_adma_show_error(host);
host->data->error = -EIO;
if (host->ops->adma_workaround)
host->ops->adma_workaround(host, intmask);
}
if (host->data->error)
sdhci_finish_data(host);
else {
if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL))
sdhci_transfer_pio(host);
/*
* We currently don't do anything fancy with DMA
* boundaries, but as we can't disable the feature
* we need to at least restart the transfer.
*
* According to the spec sdhci_readl(host, SDHCI_DMA_ADDRESS)
* should return a valid address to continue from, but as
* some controllers are faulty, don't trust them.
*/
if (intmask & SDHCI_INT_DMA_END) {
u32 dmastart, dmanow;
dmastart = sg_dma_address(host->data->sg);
dmanow = dmastart + host->data->bytes_xfered;
/*
* Force update to the next DMA block boundary.
*/
dmanow = (dmanow &
~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
SDHCI_DEFAULT_BOUNDARY_SIZE;
host->data->bytes_xfered = dmanow - dmastart;
DBG("%s: DMA base 0x%08x, transferred 0x%06x bytes,"
" next 0x%08x\n",
mmc_hostname(host->mmc), dmastart,
host->data->bytes_xfered, dmanow);
sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
}
if (intmask & SDHCI_INT_DATA_END) {
if (host->cmd) {
/*
* Data managed to finish before the
* command completed. Make sure we do
* things in the proper order.
*/
host->data_early = 1;
} else {
sdhci_finish_data(host);
}
}
}
}
static irqreturn_t sdhci_irq(int irq, void *dev_id)
{
irqreturn_t result = IRQ_NONE;
struct sdhci_host *host = dev_id;
u32 intmask, mask, unexpected = 0;
int max_loops = 16;
spin_lock(&host->lock);
if (host->runtime_suspended && !sdhci_sdio_irq_enabled(host)) {
spin_unlock(&host->lock);
return IRQ_NONE;
}
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
if (!intmask || intmask == 0xffffffff) {
result = IRQ_NONE;
goto out;
}
do {
/* Clear selected interrupts. */
mask = intmask & (SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK |
SDHCI_INT_BUS_POWER);
sdhci_writel(host, mask, SDHCI_INT_STATUS);
DBG("*** %s got interrupt: 0x%08x\n",
mmc_hostname(host->mmc), intmask);
if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
u32 present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
/*
* There is a observation on i.mx esdhc. INSERT
* bit will be immediately set again when it gets
* cleared, if a card is inserted. We have to mask
* the irq to prevent interrupt storm which will
* freeze the system. And the REMOVE gets the
* same situation.
*
* More testing are needed here to ensure it works
* for other platforms though.
*/
host->ier &= ~(SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE);
host->ier |= present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS);
host->thread_isr |= intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE);
result = IRQ_WAKE_THREAD;
}
if (intmask & SDHCI_INT_CMD_MASK)
sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK,
&intmask);
if (intmask & SDHCI_INT_DATA_MASK)
sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK);
if (intmask & SDHCI_INT_BUS_POWER)
pr_err("%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
if (intmask & SDHCI_INT_CARD_INT) {
sdhci_enable_sdio_irq_nolock(host, false);
host->thread_isr |= SDHCI_INT_CARD_INT;
result = IRQ_WAKE_THREAD;
}
intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE |
SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK |
SDHCI_INT_ERROR | SDHCI_INT_BUS_POWER |
SDHCI_INT_CARD_INT);
if (intmask) {
unexpected |= intmask;
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
}
if (result == IRQ_NONE)
result = IRQ_HANDLED;
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
} while (intmask && --max_loops);
out:
spin_unlock(&host->lock);
if (unexpected) {
pr_err("%s: Unexpected interrupt 0x%08x.\n",
mmc_hostname(host->mmc), unexpected);
sdhci_dumpregs(host);
}
return result;
}
static irqreturn_t sdhci_thread_irq(int irq, void *dev_id)
{
struct sdhci_host *host = dev_id;
unsigned long flags;
u32 isr;
spin_lock_irqsave(&host->lock, flags);
isr = host->thread_isr;
host->thread_isr = 0;
spin_unlock_irqrestore(&host->lock, flags);
if (isr & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
sdhci_card_event(host->mmc);
mmc_detect_change(host->mmc, msecs_to_jiffies(200));
}
if (isr & SDHCI_INT_CARD_INT) {
sdio_run_irqs(host->mmc);
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_SDIO_IRQ_ENABLED)
sdhci_enable_sdio_irq_nolock(host, true);
spin_unlock_irqrestore(&host->lock, flags);
}
return isr ? IRQ_HANDLED : IRQ_NONE;
}
/*****************************************************************************\
* *
* Suspend/resume *
* *
\*****************************************************************************/
#ifdef CONFIG_PM
void sdhci_enable_irq_wakeups(struct sdhci_host *host)
{
u8 val;
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE
| SDHCI_WAKE_ON_INT;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val |= mask ;
/* Avoid fake wake up */
if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION)
val &= ~(SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE);
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_enable_irq_wakeups);
static void sdhci_disable_irq_wakeups(struct sdhci_host *host)
{
u8 val;
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE
| SDHCI_WAKE_ON_INT;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val &= ~mask;
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
}
int sdhci_suspend_host(struct sdhci_host *host)
{
sdhci_disable_card_detection(host);
/* Disable tuning since we are suspending */
if (host->flags & SDHCI_USING_RETUNING_TIMER) {
del_timer_sync(&host->tuning_timer);
host->flags &= ~SDHCI_NEEDS_RETUNING;
}
if (!device_may_wakeup(mmc_dev(host->mmc))) {
host->ier = 0;
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
} else {
sdhci_enable_irq_wakeups(host);
enable_irq_wake(host->irq);
}
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_suspend_host);
int sdhci_resume_host(struct sdhci_host *host)
{
int ret = 0;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
if (!device_may_wakeup(mmc_dev(host->mmc))) {
ret = request_threaded_irq(host->irq, sdhci_irq,
sdhci_thread_irq, IRQF_SHARED,
mmc_hostname(host->mmc), host);
if (ret)
return ret;
} else {
sdhci_disable_irq_wakeups(host);
disable_irq_wake(host->irq);
}
if ((host->mmc->pm_flags & MMC_PM_KEEP_POWER) &&
(host->quirks2 & SDHCI_QUIRK2_HOST_OFF_CARD_ON)) {
/* Card keeps power but host controller does not */
sdhci_init(host, 0);
host->pwr = 0;
host->clock = 0;
sdhci_do_set_ios(host, &host->mmc->ios);
} else {
sdhci_init(host, (host->mmc->pm_flags & MMC_PM_KEEP_POWER));
mmiowb();
}
sdhci_enable_card_detection(host);
/* Set the re-tuning expiration flag */
if (host->flags & SDHCI_USING_RETUNING_TIMER)
host->flags |= SDHCI_NEEDS_RETUNING;
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_resume_host);
static int sdhci_runtime_pm_get(struct sdhci_host *host)
{
return pm_runtime_get_sync(host->mmc->parent);
}
static int sdhci_runtime_pm_put(struct sdhci_host *host)
{
pm_runtime_mark_last_busy(host->mmc->parent);
return pm_runtime_put_autosuspend(host->mmc->parent);
}
static void sdhci_runtime_pm_bus_on(struct sdhci_host *host)
{
if (host->runtime_suspended || host->bus_on)
return;
host->bus_on = true;
pm_runtime_get_noresume(host->mmc->parent);
}
static void sdhci_runtime_pm_bus_off(struct sdhci_host *host)
{
if (host->runtime_suspended || !host->bus_on)
return;
host->bus_on = false;
pm_runtime_put_noidle(host->mmc->parent);
}
int sdhci_runtime_suspend_host(struct sdhci_host *host)
{
unsigned long flags;
/* Disable tuning since we are suspending */
if (host->flags & SDHCI_USING_RETUNING_TIMER) {
del_timer_sync(&host->tuning_timer);
host->flags &= ~SDHCI_NEEDS_RETUNING;
}
spin_lock_irqsave(&host->lock, flags);
host->ier &= SDHCI_INT_CARD_INT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
spin_unlock_irqrestore(&host->lock, flags);
synchronize_hardirq(host->irq);
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = true;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_runtime_suspend_host);
int sdhci_runtime_resume_host(struct sdhci_host *host)
{
unsigned long flags;
int host_flags = host->flags;
if (host_flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
sdhci_init(host, 0);
/* Force clock and power re-program */
host->pwr = 0;
host->clock = 0;
sdhci_do_start_signal_voltage_switch(host, &host->mmc->ios);
sdhci_do_set_ios(host, &host->mmc->ios);
if ((host_flags & SDHCI_PV_ENABLED) &&
!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN)) {
spin_lock_irqsave(&host->lock, flags);
sdhci_enable_preset_value(host, true);
spin_unlock_irqrestore(&host->lock, flags);
}
/* Set the re-tuning expiration flag */
if (host->flags & SDHCI_USING_RETUNING_TIMER)
host->flags |= SDHCI_NEEDS_RETUNING;
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = false;
/* Enable SDIO IRQ */
if (host->flags & SDHCI_SDIO_IRQ_ENABLED)
sdhci_enable_sdio_irq_nolock(host, true);
/* Enable Card Detection */
sdhci_enable_card_detection(host);
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_runtime_resume_host);
#endif /* CONFIG_PM */
/*****************************************************************************\
* *
* Device allocation/registration *
* *
\*****************************************************************************/
struct sdhci_host *sdhci_alloc_host(struct device *dev,
size_t priv_size)
{
struct mmc_host *mmc;
struct sdhci_host *host;
WARN_ON(dev == NULL);
mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev);
if (!mmc)
return ERR_PTR(-ENOMEM);
host = mmc_priv(mmc);
host->mmc = mmc;
return host;
}
EXPORT_SYMBOL_GPL(sdhci_alloc_host);
int sdhci_add_host(struct sdhci_host *host)
{
struct mmc_host *mmc;
u32 caps[2] = {0, 0};
u32 max_current_caps;
unsigned int ocr_avail;
unsigned int override_timeout_clk;
int ret;
WARN_ON(host == NULL);
if (host == NULL)
return -EINVAL;
mmc = host->mmc;
if (debug_quirks)
host->quirks = debug_quirks;
if (debug_quirks2)
host->quirks2 = debug_quirks2;
override_timeout_clk = host->timeout_clk;
sdhci_do_reset(host, SDHCI_RESET_ALL);
host->version = sdhci_readw(host, SDHCI_HOST_VERSION);
host->version = (host->version & SDHCI_SPEC_VER_MASK)
>> SDHCI_SPEC_VER_SHIFT;
if (host->version > SDHCI_SPEC_300) {
pr_err("%s: Unknown controller version (%d). "
"You may experience problems.\n", mmc_hostname(mmc),
host->version);
}
caps[0] = (host->quirks & SDHCI_QUIRK_MISSING_CAPS) ? host->caps :
sdhci_readl(host, SDHCI_CAPABILITIES);
if (host->version >= SDHCI_SPEC_300)
caps[1] = (host->quirks & SDHCI_QUIRK_MISSING_CAPS) ?
host->caps1 :
sdhci_readl(host, SDHCI_CAPABILITIES_1);
if (host->quirks & SDHCI_QUIRK_FORCE_DMA)
host->flags |= SDHCI_USE_SDMA;
else if (!(caps[0] & SDHCI_CAN_DO_SDMA))
DBG("Controller doesn't have SDMA capability\n");
else
host->flags |= SDHCI_USE_SDMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_DMA) &&
(host->flags & SDHCI_USE_SDMA)) {
DBG("Disabling DMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_SDMA;
}
if ((host->version >= SDHCI_SPEC_200) &&
(caps[0] & SDHCI_CAN_DO_ADMA2))
host->flags |= SDHCI_USE_ADMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_ADMA) &&
(host->flags & SDHCI_USE_ADMA)) {
DBG("Disabling ADMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_ADMA;
}
/*
* It is assumed that a 64-bit capable device has set a 64-bit DMA mask
* and *must* do 64-bit DMA. A driver has the opportunity to change
* that during the first call to ->enable_dma(). Similarly
* SDHCI_QUIRK2_BROKEN_64_BIT_DMA must be left to the drivers to
* implement.
*/
if (sdhci_readl(host, SDHCI_CAPABILITIES) & SDHCI_CAN_64BIT)
host->flags |= SDHCI_USE_64_BIT_DMA;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma) {
if (host->ops->enable_dma(host)) {
pr_warn("%s: No suitable DMA available - falling back to PIO\n",
mmc_hostname(mmc));
host->flags &=
~(SDHCI_USE_SDMA | SDHCI_USE_ADMA);
}
}
}
/* SDMA does not support 64-bit DMA */
if (host->flags & SDHCI_USE_64_BIT_DMA)
host->flags &= ~SDHCI_USE_SDMA;
if (host->flags & SDHCI_USE_ADMA) {
/*
* The DMA descriptor table size is calculated as the maximum
* number of segments times 2, to allow for an alignment
* descriptor for each segment, plus 1 for a nop end descriptor,
* all multipled by the descriptor size.
*/
if (host->flags & SDHCI_USE_64_BIT_DMA) {
host->adma_table_sz = (SDHCI_MAX_SEGS * 2 + 1) *
SDHCI_ADMA2_64_DESC_SZ;
host->align_buffer_sz = SDHCI_MAX_SEGS *
SDHCI_ADMA2_64_ALIGN;
host->desc_sz = SDHCI_ADMA2_64_DESC_SZ;
host->align_sz = SDHCI_ADMA2_64_ALIGN;
host->align_mask = SDHCI_ADMA2_64_ALIGN - 1;
} else {
host->adma_table_sz = (SDHCI_MAX_SEGS * 2 + 1) *
SDHCI_ADMA2_32_DESC_SZ;
host->align_buffer_sz = SDHCI_MAX_SEGS *
SDHCI_ADMA2_32_ALIGN;
host->desc_sz = SDHCI_ADMA2_32_DESC_SZ;
host->align_sz = SDHCI_ADMA2_32_ALIGN;
host->align_mask = SDHCI_ADMA2_32_ALIGN - 1;
}
host->adma_table = dma_alloc_coherent(mmc_dev(mmc),
host->adma_table_sz,
&host->adma_addr,
GFP_KERNEL);
host->align_buffer = kmalloc(host->align_buffer_sz, GFP_KERNEL);
if (!host->adma_table || !host->align_buffer) {
dma_free_coherent(mmc_dev(mmc), host->adma_table_sz,
host->adma_table, host->adma_addr);
kfree(host->align_buffer);
pr_warn("%s: Unable to allocate ADMA buffers - falling back to standard DMA\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_ADMA;
host->adma_table = NULL;
host->align_buffer = NULL;
} else if (host->adma_addr & host->align_mask) {
pr_warn("%s: unable to allocate aligned ADMA descriptor\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_ADMA;
dma_free_coherent(mmc_dev(mmc), host->adma_table_sz,
host->adma_table, host->adma_addr);
kfree(host->align_buffer);
host->adma_table = NULL;
host->align_buffer = NULL;
}
}
/*
* If we use DMA, then it's up to the caller to set the DMA
* mask, but PIO does not need the hw shim so we set a new
* mask here in that case.
*/
if (!(host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))) {
host->dma_mask = DMA_BIT_MASK(64);
mmc_dev(mmc)->dma_mask = &host->dma_mask;
}
if (host->version >= SDHCI_SPEC_300)
host->max_clk = (caps[0] & SDHCI_CLOCK_V3_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT;
else
host->max_clk = (caps[0] & SDHCI_CLOCK_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT;
host->max_clk *= 1000000;
if (host->max_clk == 0 || host->quirks &
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN) {
if (!host->ops->get_max_clock) {
pr_err("%s: Hardware doesn't specify base clock "
"frequency.\n", mmc_hostname(mmc));
return -ENODEV;
}
host->max_clk = host->ops->get_max_clock(host);
}
host->next_data.cookie = 1;
/*
* In case of Host Controller v3.00, find out whether clock
* multiplier is supported.
*/
host->clk_mul = (caps[1] & SDHCI_CLOCK_MUL_MASK) >>
SDHCI_CLOCK_MUL_SHIFT;
/*
* In case the value in Clock Multiplier is 0, then programmable
* clock mode is not supported, otherwise the actual clock
* multiplier is one more than the value of Clock Multiplier
* in the Capabilities Register.
*/
if (host->clk_mul)
host->clk_mul += 1;
/*
* Set host parameters.
*/
mmc->ops = &sdhci_ops;
mmc->f_max = host->max_clk;
if (host->ops->get_min_clock)
mmc->f_min = host->ops->get_min_clock(host);
else if (host->version >= SDHCI_SPEC_300) {
if (host->clk_mul) {
mmc->f_min = (host->max_clk * host->clk_mul) / 1024;
mmc->f_max = host->max_clk * host->clk_mul;
} else
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_300;
} else
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_200;
if (!(host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)) {
host->timeout_clk = (caps[0] & SDHCI_TIMEOUT_CLK_MASK) >>
SDHCI_TIMEOUT_CLK_SHIFT;
if (host->timeout_clk == 0) {
if (host->ops->get_timeout_clock) {
host->timeout_clk =
host->ops->get_timeout_clock(host);
} else {
pr_err("%s: Hardware doesn't specify timeout clock frequency.\n",
mmc_hostname(mmc));
return -ENODEV;
}
}
if (caps[0] & SDHCI_TIMEOUT_CLK_UNIT)
host->timeout_clk *= 1000;
mmc->max_busy_timeout = host->ops->get_max_timeout_count ?
host->ops->get_max_timeout_count(host) : 1 << 27;
mmc->max_busy_timeout /= host->timeout_clk;
}
if (override_timeout_clk)
host->timeout_clk = override_timeout_clk;
mmc->caps |= MMC_CAP_SDIO_IRQ | MMC_CAP_ERASE | MMC_CAP_CMD23;
mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
if (host->quirks & SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12)
host->flags |= SDHCI_AUTO_CMD12;
/* Auto-CMD23 stuff only works in ADMA or PIO. */
if ((host->version >= SDHCI_SPEC_300) &&
((host->flags & SDHCI_USE_ADMA) ||
!(host->flags & SDHCI_USE_SDMA))) {
host->flags |= SDHCI_AUTO_CMD23;
DBG("%s: Auto-CMD23 available\n", mmc_hostname(mmc));
} else {
DBG("%s: Auto-CMD23 unavailable\n", mmc_hostname(mmc));
}
/*
* A controller may support 8-bit width, but the board itself
* might not have the pins brought out. Boards that support
* 8-bit width must set "mmc->caps |= MMC_CAP_8_BIT_DATA;" in
* their platform code before calling sdhci_add_host(), and we
* won't assume 8-bit width for hosts without that CAP.
*/
if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA))
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (host->quirks2 & SDHCI_QUIRK2_HOST_NO_CMD23)
mmc->caps &= ~MMC_CAP_CMD23;
if (caps[0] & SDHCI_CAN_DO_HISPD)
mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&
!(mmc->caps & MMC_CAP_NONREMOVABLE))
mmc->caps |= MMC_CAP_NEEDS_POLL;
/* If there are external regulators, get them */
if (mmc_regulator_get_supply(mmc) == -EPROBE_DEFER)
return -EPROBE_DEFER;
/* If vqmmc regulator and no 1.8V signalling, then there's no UHS */
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = regulator_enable(mmc->supply.vqmmc);
if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 1700000,
1950000))
caps[1] &= ~(SDHCI_SUPPORT_SDR104 |
SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50);
if (ret) {
pr_warn("%s: Failed to enable vqmmc regulator: %d\n",
mmc_hostname(mmc), ret);
mmc->supply.vqmmc = ERR_PTR(-EINVAL);
}
}
if (host->quirks2 & SDHCI_QUIRK2_NO_1_8_V)
caps[1] &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50);
/* Any UHS-I mode in caps implies SDR12 and SDR25 support. */
if (caps[1] & (SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50))
mmc->caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
/* SDR104 supports also implies SDR50 support */
if (caps[1] & SDHCI_SUPPORT_SDR104) {
mmc->caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
/* SD3.0: SDR104 is supported so (for eMMC) the caps2
* field can be promoted to support HS200.
*/
if (!(host->quirks2 & SDHCI_QUIRK2_BROKEN_HS200))
mmc->caps2 |= MMC_CAP2_HS200;
} else if (caps[1] & SDHCI_SUPPORT_SDR50)
mmc->caps |= MMC_CAP_UHS_SDR50;
if (host->quirks2 & SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 &&
(caps[1] & SDHCI_SUPPORT_HS400))
mmc->caps2 |= MMC_CAP2_HS400;
if ((mmc->caps2 & MMC_CAP2_HSX00_1_2V) &&
(IS_ERR(mmc->supply.vqmmc) ||
!regulator_is_supported_voltage(mmc->supply.vqmmc, 1100000,
1300000)))
mmc->caps2 &= ~MMC_CAP2_HSX00_1_2V;
if ((caps[1] & SDHCI_SUPPORT_DDR50) &&
!(host->quirks2 & SDHCI_QUIRK2_BROKEN_DDR50))
mmc->caps |= MMC_CAP_UHS_DDR50;
/* Does the host need tuning for SDR50? */
if (caps[1] & SDHCI_USE_SDR50_TUNING)
host->flags |= SDHCI_SDR50_NEEDS_TUNING;
/* Does the host need tuning for SDR104 / HS200? */
if (mmc->caps2 & MMC_CAP2_HS200)
host->flags |= SDHCI_SDR104_NEEDS_TUNING;
/* Driver Type(s) (A, C, D) supported by the host */
if (caps[1] & SDHCI_DRIVER_TYPE_A)
mmc->caps |= MMC_CAP_DRIVER_TYPE_A;
if (caps[1] & SDHCI_DRIVER_TYPE_C)
mmc->caps |= MMC_CAP_DRIVER_TYPE_C;
if (caps[1] & SDHCI_DRIVER_TYPE_D)
mmc->caps |= MMC_CAP_DRIVER_TYPE_D;
/* Initial value for re-tuning timer count */
host->tuning_count = (caps[1] & SDHCI_RETUNING_TIMER_COUNT_MASK) >>
SDHCI_RETUNING_TIMER_COUNT_SHIFT;
/*
* In case Re-tuning Timer is not disabled, the actual value of
* re-tuning timer will be 2 ^ (n - 1).
*/
if (host->tuning_count)
host->tuning_count = 1 << (host->tuning_count - 1);
/* Re-tuning mode supported by the Host Controller */
host->tuning_mode = (caps[1] & SDHCI_RETUNING_MODE_MASK) >>
SDHCI_RETUNING_MODE_SHIFT;
ocr_avail = 0;
/*
* According to SD Host Controller spec v3.00, if the Host System
* can afford more than 150mA, Host Driver should set XPC to 1. Also
* the value is meaningful only if Voltage Support in the Capabilities
* register is set. The actual current value is 4 times the register
* value.
*/
max_current_caps = sdhci_readl(host, SDHCI_MAX_CURRENT);
if (!max_current_caps && !IS_ERR(mmc->supply.vmmc)) {
int curr = regulator_get_current_limit(mmc->supply.vmmc);
if (curr > 0) {
/* convert to SDHCI_MAX_CURRENT format */
curr = curr/1000; /* convert to mA */
curr = curr/SDHCI_MAX_CURRENT_MULTIPLIER;
curr = min_t(u32, curr, SDHCI_MAX_CURRENT_LIMIT);
max_current_caps =
(curr << SDHCI_MAX_CURRENT_330_SHIFT) |
(curr << SDHCI_MAX_CURRENT_300_SHIFT) |
(curr << SDHCI_MAX_CURRENT_180_SHIFT);
}
}
if (caps[0] & SDHCI_CAN_VDD_330) {
ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->max_current_330 = ((max_current_caps &
SDHCI_MAX_CURRENT_330_MASK) >>
SDHCI_MAX_CURRENT_330_SHIFT) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (caps[0] & SDHCI_CAN_VDD_300) {
ocr_avail |= MMC_VDD_29_30 | MMC_VDD_30_31;
mmc->max_current_300 = ((max_current_caps &
SDHCI_MAX_CURRENT_300_MASK) >>
SDHCI_MAX_CURRENT_300_SHIFT) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (caps[0] & SDHCI_CAN_VDD_180) {
ocr_avail |= MMC_VDD_165_195;
mmc->max_current_180 = ((max_current_caps &
SDHCI_MAX_CURRENT_180_MASK) >>
SDHCI_MAX_CURRENT_180_SHIFT) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
/* If OCR set by external regulators, use it instead */
if (mmc->ocr_avail)
ocr_avail = mmc->ocr_avail;
if (host->ocr_mask)
ocr_avail &= host->ocr_mask;
mmc->ocr_avail = ocr_avail;
mmc->ocr_avail_sdio = ocr_avail;
if (host->ocr_avail_sdio)
mmc->ocr_avail_sdio &= host->ocr_avail_sdio;
mmc->ocr_avail_sd = ocr_avail;
if (host->ocr_avail_sd)
mmc->ocr_avail_sd &= host->ocr_avail_sd;
else /* normal SD controllers don't support 1.8V */
mmc->ocr_avail_sd &= ~MMC_VDD_165_195;
mmc->ocr_avail_mmc = ocr_avail;
if (host->ocr_avail_mmc)
mmc->ocr_avail_mmc &= host->ocr_avail_mmc;
if (mmc->ocr_avail == 0) {
pr_err("%s: Hardware doesn't report any "
"support voltages.\n", mmc_hostname(mmc));
return -ENODEV;
}
spin_lock_init(&host->lock);
/*
* Maximum number of segments. Depends on if the hardware
* can do scatter/gather or not.
*/
if (host->flags & SDHCI_USE_ADMA)
mmc->max_segs = SDHCI_MAX_SEGS;
else if (host->flags & SDHCI_USE_SDMA)
mmc->max_segs = 1;
else /* PIO */
mmc->max_segs = SDHCI_MAX_SEGS;
/*
* Maximum number of sectors in one transfer. Limited by SDMA boundary
* size (512KiB). Note some tuning modes impose a 4MiB limit, but this
* is less anyway.
*/
mmc->max_req_size = 524288;
/*
* Maximum segment size. Could be one segment with the maximum number
* of bytes. When doing hardware scatter/gather, each entry cannot
* be larger than 64 KiB though.
*/
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC)
mmc->max_seg_size = 65535;
else
mmc->max_seg_size = 65536;
} else {
mmc->max_seg_size = mmc->max_req_size;
}
/*
* Maximum block size. This varies from controller to controller and
* is specified in the capabilities register.
*/
if (host->quirks & SDHCI_QUIRK_FORCE_BLK_SZ_2048) {
mmc->max_blk_size = 2;
} else {
mmc->max_blk_size = (caps[0] & SDHCI_MAX_BLOCK_MASK) >>
SDHCI_MAX_BLOCK_SHIFT;
if (mmc->max_blk_size >= 3) {
pr_warn("%s: Invalid maximum block size, assuming 512 bytes\n",
mmc_hostname(mmc));
mmc->max_blk_size = 0;
}
}
mmc->max_blk_size = 512 << mmc->max_blk_size;
/*
* Maximum block count.
*/
mmc->max_blk_count = (host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535;
/*
* Init tasklets.
*/
tasklet_init(&host->finish_tasklet,
sdhci_tasklet_finish, (unsigned long)host);
setup_timer(&host->timer, sdhci_timeout_timer, (unsigned long)host);
init_waitqueue_head(&host->buf_ready_int);
if (host->version >= SDHCI_SPEC_300) {
/* Initialize re-tuning timer */
init_timer(&host->tuning_timer);
host->tuning_timer.data = (unsigned long)host;
host->tuning_timer.function = sdhci_tuning_timer;
}
sdhci_init(host, 0);
ret = request_threaded_irq(host->irq, sdhci_irq, sdhci_thread_irq,
IRQF_SHARED, mmc_hostname(mmc), host);
if (ret) {
pr_err("%s: Failed to request IRQ %d: %d\n",
mmc_hostname(mmc), host->irq, ret);
goto untasklet;
}
#ifdef CONFIG_MMC_DEBUG
sdhci_dumpregs(host);
#endif
#ifdef SDHCI_USE_LEDS_CLASS
snprintf(host->led_name, sizeof(host->led_name),
"%s::", mmc_hostname(mmc));
host->led.name = host->led_name;
host->led.brightness = LED_OFF;
host->led.default_trigger = mmc_hostname(mmc);
host->led.brightness_set = sdhci_led_control;
ret = led_classdev_register(mmc_dev(mmc), &host->led);
if (ret) {
pr_err("%s: Failed to register LED device: %d\n",
mmc_hostname(mmc), ret);
goto reset;
}
#endif
mmiowb();
mmc_add_host(mmc);
pr_info("%s: SDHCI controller on %s [%s] using %s\n",
mmc_hostname(mmc), host->hw_name, dev_name(mmc_dev(mmc)),
(host->flags & SDHCI_USE_ADMA) ?
(host->flags & SDHCI_USE_64_BIT_DMA) ? "ADMA 64-bit" : "ADMA" :
(host->flags & SDHCI_USE_SDMA) ? "DMA" : "PIO");
sdhci_enable_card_detection(host);
return 0;
#ifdef SDHCI_USE_LEDS_CLASS
reset:
sdhci_do_reset(host, SDHCI_RESET_ALL);
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
#endif
untasklet:
tasklet_kill(&host->finish_tasklet);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_add_host);
void sdhci_remove_host(struct sdhci_host *host, int dead)
{
struct mmc_host *mmc = host->mmc;
unsigned long flags;
if (dead) {
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_DEVICE_DEAD;
if (host->mrq) {
pr_err("%s: Controller removed during "
" transfer!\n", mmc_hostname(mmc));
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
}
spin_unlock_irqrestore(&host->lock, flags);
}
sdhci_disable_card_detection(host);
mmc_remove_host(mmc);
#ifdef SDHCI_USE_LEDS_CLASS
led_classdev_unregister(&host->led);
#endif
if (!dead)
sdhci_do_reset(host, SDHCI_RESET_ALL);
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
del_timer_sync(&host->timer);
tasklet_kill(&host->finish_tasklet);
if (!IS_ERR(mmc->supply.vqmmc))
regulator_disable(mmc->supply.vqmmc);
if (host->adma_table)
dma_free_coherent(mmc_dev(mmc), host->adma_table_sz,
host->adma_table, host->adma_addr);
kfree(host->align_buffer);
host->adma_table = NULL;
host->align_buffer = NULL;
}
EXPORT_SYMBOL_GPL(sdhci_remove_host);
void sdhci_free_host(struct sdhci_host *host)
{
mmc_free_host(host->mmc);
}
EXPORT_SYMBOL_GPL(sdhci_free_host);
/*****************************************************************************\
* *
* Driver init/exit *
* *
\*****************************************************************************/
static int __init sdhci_drv_init(void)
{
pr_info(DRIVER_NAME
": Secure Digital Host Controller Interface driver\n");
pr_info(DRIVER_NAME ": Copyright(c) Pierre Ossman\n");
return 0;
}
static void __exit sdhci_drv_exit(void)
{
}
module_init(sdhci_drv_init);
module_exit(sdhci_drv_exit);
module_param(debug_quirks, uint, 0444);
module_param(debug_quirks2, uint, 0444);
MODULE_AUTHOR("Pierre Ossman <pierre@ossman.eu>");
MODULE_DESCRIPTION("Secure Digital Host Controller Interface core driver");
MODULE_LICENSE("GPL");
MODULE_PARM_DESC(debug_quirks, "Force certain quirks.");
MODULE_PARM_DESC(debug_quirks2, "Force certain other quirks.");