forked from Minki/linux
f039f44fc3
Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Max Gurtovoy <maxg@mellanox.com> Reviewed-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: Leon Romanovsky <leonro@mellanox.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2092 lines
53 KiB
C
2092 lines
53 KiB
C
/*
|
|
* Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
|
|
* Copyright (c) 2004 Infinicon Corporation. All rights reserved.
|
|
* Copyright (c) 2004 Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2004 Topspin Corporation. All rights reserved.
|
|
* Copyright (c) 2004 Voltaire Corporation. All rights reserved.
|
|
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
|
|
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/export.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/in.h>
|
|
#include <linux/in6.h>
|
|
#include <net/addrconf.h>
|
|
|
|
#include <rdma/ib_verbs.h>
|
|
#include <rdma/ib_cache.h>
|
|
#include <rdma/ib_addr.h>
|
|
#include <rdma/rw.h>
|
|
|
|
#include "core_priv.h"
|
|
|
|
static const char * const ib_events[] = {
|
|
[IB_EVENT_CQ_ERR] = "CQ error",
|
|
[IB_EVENT_QP_FATAL] = "QP fatal error",
|
|
[IB_EVENT_QP_REQ_ERR] = "QP request error",
|
|
[IB_EVENT_QP_ACCESS_ERR] = "QP access error",
|
|
[IB_EVENT_COMM_EST] = "communication established",
|
|
[IB_EVENT_SQ_DRAINED] = "send queue drained",
|
|
[IB_EVENT_PATH_MIG] = "path migration successful",
|
|
[IB_EVENT_PATH_MIG_ERR] = "path migration error",
|
|
[IB_EVENT_DEVICE_FATAL] = "device fatal error",
|
|
[IB_EVENT_PORT_ACTIVE] = "port active",
|
|
[IB_EVENT_PORT_ERR] = "port error",
|
|
[IB_EVENT_LID_CHANGE] = "LID change",
|
|
[IB_EVENT_PKEY_CHANGE] = "P_key change",
|
|
[IB_EVENT_SM_CHANGE] = "SM change",
|
|
[IB_EVENT_SRQ_ERR] = "SRQ error",
|
|
[IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
|
|
[IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
|
|
[IB_EVENT_CLIENT_REREGISTER] = "client reregister",
|
|
[IB_EVENT_GID_CHANGE] = "GID changed",
|
|
};
|
|
|
|
const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
|
|
{
|
|
size_t index = event;
|
|
|
|
return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
|
|
ib_events[index] : "unrecognized event";
|
|
}
|
|
EXPORT_SYMBOL(ib_event_msg);
|
|
|
|
static const char * const wc_statuses[] = {
|
|
[IB_WC_SUCCESS] = "success",
|
|
[IB_WC_LOC_LEN_ERR] = "local length error",
|
|
[IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
|
|
[IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
|
|
[IB_WC_LOC_PROT_ERR] = "local protection error",
|
|
[IB_WC_WR_FLUSH_ERR] = "WR flushed",
|
|
[IB_WC_MW_BIND_ERR] = "memory management operation error",
|
|
[IB_WC_BAD_RESP_ERR] = "bad response error",
|
|
[IB_WC_LOC_ACCESS_ERR] = "local access error",
|
|
[IB_WC_REM_INV_REQ_ERR] = "invalid request error",
|
|
[IB_WC_REM_ACCESS_ERR] = "remote access error",
|
|
[IB_WC_REM_OP_ERR] = "remote operation error",
|
|
[IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
|
|
[IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
|
|
[IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
|
|
[IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
|
|
[IB_WC_REM_ABORT_ERR] = "operation aborted",
|
|
[IB_WC_INV_EECN_ERR] = "invalid EE context number",
|
|
[IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
|
|
[IB_WC_FATAL_ERR] = "fatal error",
|
|
[IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
|
|
[IB_WC_GENERAL_ERR] = "general error",
|
|
};
|
|
|
|
const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
|
|
{
|
|
size_t index = status;
|
|
|
|
return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
|
|
wc_statuses[index] : "unrecognized status";
|
|
}
|
|
EXPORT_SYMBOL(ib_wc_status_msg);
|
|
|
|
__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
|
|
{
|
|
switch (rate) {
|
|
case IB_RATE_2_5_GBPS: return 1;
|
|
case IB_RATE_5_GBPS: return 2;
|
|
case IB_RATE_10_GBPS: return 4;
|
|
case IB_RATE_20_GBPS: return 8;
|
|
case IB_RATE_30_GBPS: return 12;
|
|
case IB_RATE_40_GBPS: return 16;
|
|
case IB_RATE_60_GBPS: return 24;
|
|
case IB_RATE_80_GBPS: return 32;
|
|
case IB_RATE_120_GBPS: return 48;
|
|
default: return -1;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ib_rate_to_mult);
|
|
|
|
__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
|
|
{
|
|
switch (mult) {
|
|
case 1: return IB_RATE_2_5_GBPS;
|
|
case 2: return IB_RATE_5_GBPS;
|
|
case 4: return IB_RATE_10_GBPS;
|
|
case 8: return IB_RATE_20_GBPS;
|
|
case 12: return IB_RATE_30_GBPS;
|
|
case 16: return IB_RATE_40_GBPS;
|
|
case 24: return IB_RATE_60_GBPS;
|
|
case 32: return IB_RATE_80_GBPS;
|
|
case 48: return IB_RATE_120_GBPS;
|
|
default: return IB_RATE_PORT_CURRENT;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(mult_to_ib_rate);
|
|
|
|
__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
|
|
{
|
|
switch (rate) {
|
|
case IB_RATE_2_5_GBPS: return 2500;
|
|
case IB_RATE_5_GBPS: return 5000;
|
|
case IB_RATE_10_GBPS: return 10000;
|
|
case IB_RATE_20_GBPS: return 20000;
|
|
case IB_RATE_30_GBPS: return 30000;
|
|
case IB_RATE_40_GBPS: return 40000;
|
|
case IB_RATE_60_GBPS: return 60000;
|
|
case IB_RATE_80_GBPS: return 80000;
|
|
case IB_RATE_120_GBPS: return 120000;
|
|
case IB_RATE_14_GBPS: return 14062;
|
|
case IB_RATE_56_GBPS: return 56250;
|
|
case IB_RATE_112_GBPS: return 112500;
|
|
case IB_RATE_168_GBPS: return 168750;
|
|
case IB_RATE_25_GBPS: return 25781;
|
|
case IB_RATE_100_GBPS: return 103125;
|
|
case IB_RATE_200_GBPS: return 206250;
|
|
case IB_RATE_300_GBPS: return 309375;
|
|
default: return -1;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ib_rate_to_mbps);
|
|
|
|
__attribute_const__ enum rdma_transport_type
|
|
rdma_node_get_transport(enum rdma_node_type node_type)
|
|
{
|
|
switch (node_type) {
|
|
case RDMA_NODE_IB_CA:
|
|
case RDMA_NODE_IB_SWITCH:
|
|
case RDMA_NODE_IB_ROUTER:
|
|
return RDMA_TRANSPORT_IB;
|
|
case RDMA_NODE_RNIC:
|
|
return RDMA_TRANSPORT_IWARP;
|
|
case RDMA_NODE_USNIC:
|
|
return RDMA_TRANSPORT_USNIC;
|
|
case RDMA_NODE_USNIC_UDP:
|
|
return RDMA_TRANSPORT_USNIC_UDP;
|
|
default:
|
|
BUG();
|
|
return 0;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(rdma_node_get_transport);
|
|
|
|
enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
|
|
{
|
|
if (device->get_link_layer)
|
|
return device->get_link_layer(device, port_num);
|
|
|
|
switch (rdma_node_get_transport(device->node_type)) {
|
|
case RDMA_TRANSPORT_IB:
|
|
return IB_LINK_LAYER_INFINIBAND;
|
|
case RDMA_TRANSPORT_IWARP:
|
|
case RDMA_TRANSPORT_USNIC:
|
|
case RDMA_TRANSPORT_USNIC_UDP:
|
|
return IB_LINK_LAYER_ETHERNET;
|
|
default:
|
|
return IB_LINK_LAYER_UNSPECIFIED;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(rdma_port_get_link_layer);
|
|
|
|
/* Protection domains */
|
|
|
|
/**
|
|
* ib_alloc_pd - Allocates an unused protection domain.
|
|
* @device: The device on which to allocate the protection domain.
|
|
*
|
|
* A protection domain object provides an association between QPs, shared
|
|
* receive queues, address handles, memory regions, and memory windows.
|
|
*
|
|
* Every PD has a local_dma_lkey which can be used as the lkey value for local
|
|
* memory operations.
|
|
*/
|
|
struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
|
|
const char *caller)
|
|
{
|
|
struct ib_pd *pd;
|
|
int mr_access_flags = 0;
|
|
|
|
pd = device->alloc_pd(device, NULL, NULL);
|
|
if (IS_ERR(pd))
|
|
return pd;
|
|
|
|
pd->device = device;
|
|
pd->uobject = NULL;
|
|
pd->__internal_mr = NULL;
|
|
atomic_set(&pd->usecnt, 0);
|
|
pd->flags = flags;
|
|
|
|
if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
|
|
pd->local_dma_lkey = device->local_dma_lkey;
|
|
else
|
|
mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
|
|
|
|
if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
|
|
pr_warn("%s: enabling unsafe global rkey\n", caller);
|
|
mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
|
|
}
|
|
|
|
if (mr_access_flags) {
|
|
struct ib_mr *mr;
|
|
|
|
mr = pd->device->get_dma_mr(pd, mr_access_flags);
|
|
if (IS_ERR(mr)) {
|
|
ib_dealloc_pd(pd);
|
|
return ERR_CAST(mr);
|
|
}
|
|
|
|
mr->device = pd->device;
|
|
mr->pd = pd;
|
|
mr->uobject = NULL;
|
|
mr->need_inval = false;
|
|
|
|
pd->__internal_mr = mr;
|
|
|
|
if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
|
|
pd->local_dma_lkey = pd->__internal_mr->lkey;
|
|
|
|
if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
|
|
pd->unsafe_global_rkey = pd->__internal_mr->rkey;
|
|
}
|
|
|
|
return pd;
|
|
}
|
|
EXPORT_SYMBOL(__ib_alloc_pd);
|
|
|
|
/**
|
|
* ib_dealloc_pd - Deallocates a protection domain.
|
|
* @pd: The protection domain to deallocate.
|
|
*
|
|
* It is an error to call this function while any resources in the pd still
|
|
* exist. The caller is responsible to synchronously destroy them and
|
|
* guarantee no new allocations will happen.
|
|
*/
|
|
void ib_dealloc_pd(struct ib_pd *pd)
|
|
{
|
|
int ret;
|
|
|
|
if (pd->__internal_mr) {
|
|
ret = pd->device->dereg_mr(pd->__internal_mr);
|
|
WARN_ON(ret);
|
|
pd->__internal_mr = NULL;
|
|
}
|
|
|
|
/* uverbs manipulates usecnt with proper locking, while the kabi
|
|
requires the caller to guarantee we can't race here. */
|
|
WARN_ON(atomic_read(&pd->usecnt));
|
|
|
|
/* Making delalloc_pd a void return is a WIP, no driver should return
|
|
an error here. */
|
|
ret = pd->device->dealloc_pd(pd);
|
|
WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
|
|
}
|
|
EXPORT_SYMBOL(ib_dealloc_pd);
|
|
|
|
/* Address handles */
|
|
|
|
struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
|
|
{
|
|
struct ib_ah *ah;
|
|
|
|
ah = pd->device->create_ah(pd, ah_attr, NULL);
|
|
|
|
if (!IS_ERR(ah)) {
|
|
ah->device = pd->device;
|
|
ah->pd = pd;
|
|
ah->uobject = NULL;
|
|
atomic_inc(&pd->usecnt);
|
|
}
|
|
|
|
return ah;
|
|
}
|
|
EXPORT_SYMBOL(ib_create_ah);
|
|
|
|
int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
|
|
{
|
|
const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
|
|
struct iphdr ip4h_checked;
|
|
const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
|
|
|
|
/* If it's IPv6, the version must be 6, otherwise, the first
|
|
* 20 bytes (before the IPv4 header) are garbled.
|
|
*/
|
|
if (ip6h->version != 6)
|
|
return (ip4h->version == 4) ? 4 : 0;
|
|
/* version may be 6 or 4 because the first 20 bytes could be garbled */
|
|
|
|
/* RoCE v2 requires no options, thus header length
|
|
* must be 5 words
|
|
*/
|
|
if (ip4h->ihl != 5)
|
|
return 6;
|
|
|
|
/* Verify checksum.
|
|
* We can't write on scattered buffers so we need to copy to
|
|
* temp buffer.
|
|
*/
|
|
memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
|
|
ip4h_checked.check = 0;
|
|
ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
|
|
/* if IPv4 header checksum is OK, believe it */
|
|
if (ip4h->check == ip4h_checked.check)
|
|
return 4;
|
|
return 6;
|
|
}
|
|
EXPORT_SYMBOL(ib_get_rdma_header_version);
|
|
|
|
static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
|
|
u8 port_num,
|
|
const struct ib_grh *grh)
|
|
{
|
|
int grh_version;
|
|
|
|
if (rdma_protocol_ib(device, port_num))
|
|
return RDMA_NETWORK_IB;
|
|
|
|
grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
|
|
|
|
if (grh_version == 4)
|
|
return RDMA_NETWORK_IPV4;
|
|
|
|
if (grh->next_hdr == IPPROTO_UDP)
|
|
return RDMA_NETWORK_IPV6;
|
|
|
|
return RDMA_NETWORK_ROCE_V1;
|
|
}
|
|
|
|
struct find_gid_index_context {
|
|
u16 vlan_id;
|
|
enum ib_gid_type gid_type;
|
|
};
|
|
|
|
static bool find_gid_index(const union ib_gid *gid,
|
|
const struct ib_gid_attr *gid_attr,
|
|
void *context)
|
|
{
|
|
struct find_gid_index_context *ctx =
|
|
(struct find_gid_index_context *)context;
|
|
|
|
if (ctx->gid_type != gid_attr->gid_type)
|
|
return false;
|
|
|
|
if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
|
|
(is_vlan_dev(gid_attr->ndev) &&
|
|
vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
|
|
u16 vlan_id, const union ib_gid *sgid,
|
|
enum ib_gid_type gid_type,
|
|
u16 *gid_index)
|
|
{
|
|
struct find_gid_index_context context = {.vlan_id = vlan_id,
|
|
.gid_type = gid_type};
|
|
|
|
return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
|
|
&context, gid_index);
|
|
}
|
|
|
|
int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
|
|
enum rdma_network_type net_type,
|
|
union ib_gid *sgid, union ib_gid *dgid)
|
|
{
|
|
struct sockaddr_in src_in;
|
|
struct sockaddr_in dst_in;
|
|
__be32 src_saddr, dst_saddr;
|
|
|
|
if (!sgid || !dgid)
|
|
return -EINVAL;
|
|
|
|
if (net_type == RDMA_NETWORK_IPV4) {
|
|
memcpy(&src_in.sin_addr.s_addr,
|
|
&hdr->roce4grh.saddr, 4);
|
|
memcpy(&dst_in.sin_addr.s_addr,
|
|
&hdr->roce4grh.daddr, 4);
|
|
src_saddr = src_in.sin_addr.s_addr;
|
|
dst_saddr = dst_in.sin_addr.s_addr;
|
|
ipv6_addr_set_v4mapped(src_saddr,
|
|
(struct in6_addr *)sgid);
|
|
ipv6_addr_set_v4mapped(dst_saddr,
|
|
(struct in6_addr *)dgid);
|
|
return 0;
|
|
} else if (net_type == RDMA_NETWORK_IPV6 ||
|
|
net_type == RDMA_NETWORK_IB) {
|
|
*dgid = hdr->ibgrh.dgid;
|
|
*sgid = hdr->ibgrh.sgid;
|
|
return 0;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
|
|
|
|
int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
|
|
const struct ib_wc *wc, const struct ib_grh *grh,
|
|
struct ib_ah_attr *ah_attr)
|
|
{
|
|
u32 flow_class;
|
|
u16 gid_index;
|
|
int ret;
|
|
enum rdma_network_type net_type = RDMA_NETWORK_IB;
|
|
enum ib_gid_type gid_type = IB_GID_TYPE_IB;
|
|
int hoplimit = 0xff;
|
|
union ib_gid dgid;
|
|
union ib_gid sgid;
|
|
|
|
memset(ah_attr, 0, sizeof *ah_attr);
|
|
if (rdma_cap_eth_ah(device, port_num)) {
|
|
if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
|
|
net_type = wc->network_hdr_type;
|
|
else
|
|
net_type = ib_get_net_type_by_grh(device, port_num, grh);
|
|
gid_type = ib_network_to_gid_type(net_type);
|
|
}
|
|
ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
|
|
&sgid, &dgid);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (rdma_protocol_roce(device, port_num)) {
|
|
int if_index = 0;
|
|
u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
|
|
wc->vlan_id : 0xffff;
|
|
struct net_device *idev;
|
|
struct net_device *resolved_dev;
|
|
|
|
if (!(wc->wc_flags & IB_WC_GRH))
|
|
return -EPROTOTYPE;
|
|
|
|
if (!device->get_netdev)
|
|
return -EOPNOTSUPP;
|
|
|
|
idev = device->get_netdev(device, port_num);
|
|
if (!idev)
|
|
return -ENODEV;
|
|
|
|
ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
|
|
ah_attr->dmac,
|
|
wc->wc_flags & IB_WC_WITH_VLAN ?
|
|
NULL : &vlan_id,
|
|
&if_index, &hoplimit);
|
|
if (ret) {
|
|
dev_put(idev);
|
|
return ret;
|
|
}
|
|
|
|
resolved_dev = dev_get_by_index(&init_net, if_index);
|
|
if (resolved_dev->flags & IFF_LOOPBACK) {
|
|
dev_put(resolved_dev);
|
|
resolved_dev = idev;
|
|
dev_hold(resolved_dev);
|
|
}
|
|
rcu_read_lock();
|
|
if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
|
|
resolved_dev))
|
|
ret = -EHOSTUNREACH;
|
|
rcu_read_unlock();
|
|
dev_put(idev);
|
|
dev_put(resolved_dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = get_sgid_index_from_eth(device, port_num, vlan_id,
|
|
&dgid, gid_type, &gid_index);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ah_attr->dlid = wc->slid;
|
|
ah_attr->sl = wc->sl;
|
|
ah_attr->src_path_bits = wc->dlid_path_bits;
|
|
ah_attr->port_num = port_num;
|
|
|
|
if (wc->wc_flags & IB_WC_GRH) {
|
|
ah_attr->ah_flags = IB_AH_GRH;
|
|
ah_attr->grh.dgid = sgid;
|
|
|
|
if (!rdma_cap_eth_ah(device, port_num)) {
|
|
if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
|
|
ret = ib_find_cached_gid_by_port(device, &dgid,
|
|
IB_GID_TYPE_IB,
|
|
port_num, NULL,
|
|
&gid_index);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
gid_index = 0;
|
|
}
|
|
}
|
|
|
|
ah_attr->grh.sgid_index = (u8) gid_index;
|
|
flow_class = be32_to_cpu(grh->version_tclass_flow);
|
|
ah_attr->grh.flow_label = flow_class & 0xFFFFF;
|
|
ah_attr->grh.hop_limit = hoplimit;
|
|
ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ib_init_ah_from_wc);
|
|
|
|
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
|
|
const struct ib_grh *grh, u8 port_num)
|
|
{
|
|
struct ib_ah_attr ah_attr;
|
|
int ret;
|
|
|
|
ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return ib_create_ah(pd, &ah_attr);
|
|
}
|
|
EXPORT_SYMBOL(ib_create_ah_from_wc);
|
|
|
|
int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
|
|
{
|
|
return ah->device->modify_ah ?
|
|
ah->device->modify_ah(ah, ah_attr) :
|
|
-ENOSYS;
|
|
}
|
|
EXPORT_SYMBOL(ib_modify_ah);
|
|
|
|
int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
|
|
{
|
|
return ah->device->query_ah ?
|
|
ah->device->query_ah(ah, ah_attr) :
|
|
-ENOSYS;
|
|
}
|
|
EXPORT_SYMBOL(ib_query_ah);
|
|
|
|
int ib_destroy_ah(struct ib_ah *ah)
|
|
{
|
|
struct ib_pd *pd;
|
|
int ret;
|
|
|
|
pd = ah->pd;
|
|
ret = ah->device->destroy_ah(ah);
|
|
if (!ret)
|
|
atomic_dec(&pd->usecnt);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ib_destroy_ah);
|
|
|
|
/* Shared receive queues */
|
|
|
|
struct ib_srq *ib_create_srq(struct ib_pd *pd,
|
|
struct ib_srq_init_attr *srq_init_attr)
|
|
{
|
|
struct ib_srq *srq;
|
|
|
|
if (!pd->device->create_srq)
|
|
return ERR_PTR(-ENOSYS);
|
|
|
|
srq = pd->device->create_srq(pd, srq_init_attr, NULL);
|
|
|
|
if (!IS_ERR(srq)) {
|
|
srq->device = pd->device;
|
|
srq->pd = pd;
|
|
srq->uobject = NULL;
|
|
srq->event_handler = srq_init_attr->event_handler;
|
|
srq->srq_context = srq_init_attr->srq_context;
|
|
srq->srq_type = srq_init_attr->srq_type;
|
|
if (srq->srq_type == IB_SRQT_XRC) {
|
|
srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
|
|
srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
|
|
atomic_inc(&srq->ext.xrc.xrcd->usecnt);
|
|
atomic_inc(&srq->ext.xrc.cq->usecnt);
|
|
}
|
|
atomic_inc(&pd->usecnt);
|
|
atomic_set(&srq->usecnt, 0);
|
|
}
|
|
|
|
return srq;
|
|
}
|
|
EXPORT_SYMBOL(ib_create_srq);
|
|
|
|
int ib_modify_srq(struct ib_srq *srq,
|
|
struct ib_srq_attr *srq_attr,
|
|
enum ib_srq_attr_mask srq_attr_mask)
|
|
{
|
|
return srq->device->modify_srq ?
|
|
srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
|
|
-ENOSYS;
|
|
}
|
|
EXPORT_SYMBOL(ib_modify_srq);
|
|
|
|
int ib_query_srq(struct ib_srq *srq,
|
|
struct ib_srq_attr *srq_attr)
|
|
{
|
|
return srq->device->query_srq ?
|
|
srq->device->query_srq(srq, srq_attr) : -ENOSYS;
|
|
}
|
|
EXPORT_SYMBOL(ib_query_srq);
|
|
|
|
int ib_destroy_srq(struct ib_srq *srq)
|
|
{
|
|
struct ib_pd *pd;
|
|
enum ib_srq_type srq_type;
|
|
struct ib_xrcd *uninitialized_var(xrcd);
|
|
struct ib_cq *uninitialized_var(cq);
|
|
int ret;
|
|
|
|
if (atomic_read(&srq->usecnt))
|
|
return -EBUSY;
|
|
|
|
pd = srq->pd;
|
|
srq_type = srq->srq_type;
|
|
if (srq_type == IB_SRQT_XRC) {
|
|
xrcd = srq->ext.xrc.xrcd;
|
|
cq = srq->ext.xrc.cq;
|
|
}
|
|
|
|
ret = srq->device->destroy_srq(srq);
|
|
if (!ret) {
|
|
atomic_dec(&pd->usecnt);
|
|
if (srq_type == IB_SRQT_XRC) {
|
|
atomic_dec(&xrcd->usecnt);
|
|
atomic_dec(&cq->usecnt);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ib_destroy_srq);
|
|
|
|
/* Queue pairs */
|
|
|
|
static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
|
|
{
|
|
struct ib_qp *qp = context;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&qp->device->event_handler_lock, flags);
|
|
list_for_each_entry(event->element.qp, &qp->open_list, open_list)
|
|
if (event->element.qp->event_handler)
|
|
event->element.qp->event_handler(event, event->element.qp->qp_context);
|
|
spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
|
|
}
|
|
|
|
static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
|
|
{
|
|
mutex_lock(&xrcd->tgt_qp_mutex);
|
|
list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
|
|
mutex_unlock(&xrcd->tgt_qp_mutex);
|
|
}
|
|
|
|
static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
|
|
void (*event_handler)(struct ib_event *, void *),
|
|
void *qp_context)
|
|
{
|
|
struct ib_qp *qp;
|
|
unsigned long flags;
|
|
|
|
qp = kzalloc(sizeof *qp, GFP_KERNEL);
|
|
if (!qp)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
qp->real_qp = real_qp;
|
|
atomic_inc(&real_qp->usecnt);
|
|
qp->device = real_qp->device;
|
|
qp->event_handler = event_handler;
|
|
qp->qp_context = qp_context;
|
|
qp->qp_num = real_qp->qp_num;
|
|
qp->qp_type = real_qp->qp_type;
|
|
|
|
spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
|
|
list_add(&qp->open_list, &real_qp->open_list);
|
|
spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
|
|
|
|
return qp;
|
|
}
|
|
|
|
struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
|
|
struct ib_qp_open_attr *qp_open_attr)
|
|
{
|
|
struct ib_qp *qp, *real_qp;
|
|
|
|
if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
qp = ERR_PTR(-EINVAL);
|
|
mutex_lock(&xrcd->tgt_qp_mutex);
|
|
list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
|
|
if (real_qp->qp_num == qp_open_attr->qp_num) {
|
|
qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
|
|
qp_open_attr->qp_context);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&xrcd->tgt_qp_mutex);
|
|
return qp;
|
|
}
|
|
EXPORT_SYMBOL(ib_open_qp);
|
|
|
|
static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
|
|
struct ib_qp_init_attr *qp_init_attr)
|
|
{
|
|
struct ib_qp *real_qp = qp;
|
|
|
|
qp->event_handler = __ib_shared_qp_event_handler;
|
|
qp->qp_context = qp;
|
|
qp->pd = NULL;
|
|
qp->send_cq = qp->recv_cq = NULL;
|
|
qp->srq = NULL;
|
|
qp->xrcd = qp_init_attr->xrcd;
|
|
atomic_inc(&qp_init_attr->xrcd->usecnt);
|
|
INIT_LIST_HEAD(&qp->open_list);
|
|
|
|
qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
|
|
qp_init_attr->qp_context);
|
|
if (!IS_ERR(qp))
|
|
__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
|
|
else
|
|
real_qp->device->destroy_qp(real_qp);
|
|
return qp;
|
|
}
|
|
|
|
struct ib_qp *ib_create_qp(struct ib_pd *pd,
|
|
struct ib_qp_init_attr *qp_init_attr)
|
|
{
|
|
struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
|
|
struct ib_qp *qp;
|
|
int ret;
|
|
|
|
if (qp_init_attr->rwq_ind_tbl &&
|
|
(qp_init_attr->recv_cq ||
|
|
qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
|
|
qp_init_attr->cap.max_recv_sge))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/*
|
|
* If the callers is using the RDMA API calculate the resources
|
|
* needed for the RDMA READ/WRITE operations.
|
|
*
|
|
* Note that these callers need to pass in a port number.
|
|
*/
|
|
if (qp_init_attr->cap.max_rdma_ctxs)
|
|
rdma_rw_init_qp(device, qp_init_attr);
|
|
|
|
qp = device->create_qp(pd, qp_init_attr, NULL);
|
|
if (IS_ERR(qp))
|
|
return qp;
|
|
|
|
qp->device = device;
|
|
qp->real_qp = qp;
|
|
qp->uobject = NULL;
|
|
qp->qp_type = qp_init_attr->qp_type;
|
|
qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
|
|
|
|
atomic_set(&qp->usecnt, 0);
|
|
qp->mrs_used = 0;
|
|
spin_lock_init(&qp->mr_lock);
|
|
INIT_LIST_HEAD(&qp->rdma_mrs);
|
|
INIT_LIST_HEAD(&qp->sig_mrs);
|
|
|
|
if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
|
|
return ib_create_xrc_qp(qp, qp_init_attr);
|
|
|
|
qp->event_handler = qp_init_attr->event_handler;
|
|
qp->qp_context = qp_init_attr->qp_context;
|
|
if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
|
|
qp->recv_cq = NULL;
|
|
qp->srq = NULL;
|
|
} else {
|
|
qp->recv_cq = qp_init_attr->recv_cq;
|
|
if (qp_init_attr->recv_cq)
|
|
atomic_inc(&qp_init_attr->recv_cq->usecnt);
|
|
qp->srq = qp_init_attr->srq;
|
|
if (qp->srq)
|
|
atomic_inc(&qp_init_attr->srq->usecnt);
|
|
}
|
|
|
|
qp->pd = pd;
|
|
qp->send_cq = qp_init_attr->send_cq;
|
|
qp->xrcd = NULL;
|
|
|
|
atomic_inc(&pd->usecnt);
|
|
if (qp_init_attr->send_cq)
|
|
atomic_inc(&qp_init_attr->send_cq->usecnt);
|
|
if (qp_init_attr->rwq_ind_tbl)
|
|
atomic_inc(&qp->rwq_ind_tbl->usecnt);
|
|
|
|
if (qp_init_attr->cap.max_rdma_ctxs) {
|
|
ret = rdma_rw_init_mrs(qp, qp_init_attr);
|
|
if (ret) {
|
|
pr_err("failed to init MR pool ret= %d\n", ret);
|
|
ib_destroy_qp(qp);
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note: all hw drivers guarantee that max_send_sge is lower than
|
|
* the device RDMA WRITE SGE limit but not all hw drivers ensure that
|
|
* max_send_sge <= max_sge_rd.
|
|
*/
|
|
qp->max_write_sge = qp_init_attr->cap.max_send_sge;
|
|
qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
|
|
device->attrs.max_sge_rd);
|
|
|
|
return qp;
|
|
}
|
|
EXPORT_SYMBOL(ib_create_qp);
|
|
|
|
static const struct {
|
|
int valid;
|
|
enum ib_qp_attr_mask req_param[IB_QPT_MAX];
|
|
enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
|
|
} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
|
|
[IB_QPS_RESET] = {
|
|
[IB_QPS_RESET] = { .valid = 1 },
|
|
[IB_QPS_INIT] = {
|
|
.valid = 1,
|
|
.req_param = {
|
|
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_PORT |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_RAW_PACKET] = IB_QP_PORT,
|
|
[IB_QPT_UC] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_PORT |
|
|
IB_QP_ACCESS_FLAGS),
|
|
[IB_QPT_RC] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_PORT |
|
|
IB_QP_ACCESS_FLAGS),
|
|
[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_PORT |
|
|
IB_QP_ACCESS_FLAGS),
|
|
[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_PORT |
|
|
IB_QP_ACCESS_FLAGS),
|
|
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_QKEY),
|
|
}
|
|
},
|
|
},
|
|
[IB_QPS_INIT] = {
|
|
[IB_QPS_RESET] = { .valid = 1 },
|
|
[IB_QPS_ERR] = { .valid = 1 },
|
|
[IB_QPS_INIT] = {
|
|
.valid = 1,
|
|
.opt_param = {
|
|
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_PORT |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_UC] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_PORT |
|
|
IB_QP_ACCESS_FLAGS),
|
|
[IB_QPT_RC] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_PORT |
|
|
IB_QP_ACCESS_FLAGS),
|
|
[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_PORT |
|
|
IB_QP_ACCESS_FLAGS),
|
|
[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_PORT |
|
|
IB_QP_ACCESS_FLAGS),
|
|
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_QKEY),
|
|
}
|
|
},
|
|
[IB_QPS_RTR] = {
|
|
.valid = 1,
|
|
.req_param = {
|
|
[IB_QPT_UC] = (IB_QP_AV |
|
|
IB_QP_PATH_MTU |
|
|
IB_QP_DEST_QPN |
|
|
IB_QP_RQ_PSN),
|
|
[IB_QPT_RC] = (IB_QP_AV |
|
|
IB_QP_PATH_MTU |
|
|
IB_QP_DEST_QPN |
|
|
IB_QP_RQ_PSN |
|
|
IB_QP_MAX_DEST_RD_ATOMIC |
|
|
IB_QP_MIN_RNR_TIMER),
|
|
[IB_QPT_XRC_INI] = (IB_QP_AV |
|
|
IB_QP_PATH_MTU |
|
|
IB_QP_DEST_QPN |
|
|
IB_QP_RQ_PSN),
|
|
[IB_QPT_XRC_TGT] = (IB_QP_AV |
|
|
IB_QP_PATH_MTU |
|
|
IB_QP_DEST_QPN |
|
|
IB_QP_RQ_PSN |
|
|
IB_QP_MAX_DEST_RD_ATOMIC |
|
|
IB_QP_MIN_RNR_TIMER),
|
|
},
|
|
.opt_param = {
|
|
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_UC] = (IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PKEY_INDEX),
|
|
[IB_QPT_RC] = (IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PKEY_INDEX),
|
|
[IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PKEY_INDEX),
|
|
[IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PKEY_INDEX),
|
|
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_QKEY),
|
|
},
|
|
},
|
|
},
|
|
[IB_QPS_RTR] = {
|
|
[IB_QPS_RESET] = { .valid = 1 },
|
|
[IB_QPS_ERR] = { .valid = 1 },
|
|
[IB_QPS_RTS] = {
|
|
.valid = 1,
|
|
.req_param = {
|
|
[IB_QPT_UD] = IB_QP_SQ_PSN,
|
|
[IB_QPT_UC] = IB_QP_SQ_PSN,
|
|
[IB_QPT_RC] = (IB_QP_TIMEOUT |
|
|
IB_QP_RETRY_CNT |
|
|
IB_QP_RNR_RETRY |
|
|
IB_QP_SQ_PSN |
|
|
IB_QP_MAX_QP_RD_ATOMIC),
|
|
[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
|
|
IB_QP_RETRY_CNT |
|
|
IB_QP_RNR_RETRY |
|
|
IB_QP_SQ_PSN |
|
|
IB_QP_MAX_QP_RD_ATOMIC),
|
|
[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
|
|
IB_QP_SQ_PSN),
|
|
[IB_QPT_SMI] = IB_QP_SQ_PSN,
|
|
[IB_QPT_GSI] = IB_QP_SQ_PSN,
|
|
},
|
|
.opt_param = {
|
|
[IB_QPT_UD] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_UC] = (IB_QP_CUR_STATE |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_RC] = (IB_QP_CUR_STATE |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_MIN_RNR_TIMER |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_MIN_RNR_TIMER |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
|
|
}
|
|
}
|
|
},
|
|
[IB_QPS_RTS] = {
|
|
[IB_QPS_RESET] = { .valid = 1 },
|
|
[IB_QPS_ERR] = { .valid = 1 },
|
|
[IB_QPS_RTS] = {
|
|
.valid = 1,
|
|
.opt_param = {
|
|
[IB_QPT_UD] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_UC] = (IB_QP_CUR_STATE |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_RC] = (IB_QP_CUR_STATE |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_PATH_MIG_STATE |
|
|
IB_QP_MIN_RNR_TIMER),
|
|
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_PATH_MIG_STATE |
|
|
IB_QP_MIN_RNR_TIMER),
|
|
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
|
|
}
|
|
},
|
|
[IB_QPS_SQD] = {
|
|
.valid = 1,
|
|
.opt_param = {
|
|
[IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
|
|
[IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
|
|
[IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
|
|
[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
|
|
[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
|
|
[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
|
|
[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
|
|
}
|
|
},
|
|
},
|
|
[IB_QPS_SQD] = {
|
|
[IB_QPS_RESET] = { .valid = 1 },
|
|
[IB_QPS_ERR] = { .valid = 1 },
|
|
[IB_QPS_RTS] = {
|
|
.valid = 1,
|
|
.opt_param = {
|
|
[IB_QPT_UD] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_UC] = (IB_QP_CUR_STATE |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_RC] = (IB_QP_CUR_STATE |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_MIN_RNR_TIMER |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_MIN_RNR_TIMER |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
}
|
|
},
|
|
[IB_QPS_SQD] = {
|
|
.valid = 1,
|
|
.opt_param = {
|
|
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_UC] = (IB_QP_AV |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PKEY_INDEX |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_RC] = (IB_QP_PORT |
|
|
IB_QP_AV |
|
|
IB_QP_TIMEOUT |
|
|
IB_QP_RETRY_CNT |
|
|
IB_QP_RNR_RETRY |
|
|
IB_QP_MAX_QP_RD_ATOMIC |
|
|
IB_QP_MAX_DEST_RD_ATOMIC |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PKEY_INDEX |
|
|
IB_QP_MIN_RNR_TIMER |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_XRC_INI] = (IB_QP_PORT |
|
|
IB_QP_AV |
|
|
IB_QP_TIMEOUT |
|
|
IB_QP_RETRY_CNT |
|
|
IB_QP_RNR_RETRY |
|
|
IB_QP_MAX_QP_RD_ATOMIC |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PKEY_INDEX |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_XRC_TGT] = (IB_QP_PORT |
|
|
IB_QP_AV |
|
|
IB_QP_TIMEOUT |
|
|
IB_QP_MAX_DEST_RD_ATOMIC |
|
|
IB_QP_ALT_PATH |
|
|
IB_QP_ACCESS_FLAGS |
|
|
IB_QP_PKEY_INDEX |
|
|
IB_QP_MIN_RNR_TIMER |
|
|
IB_QP_PATH_MIG_STATE),
|
|
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
|
|
IB_QP_QKEY),
|
|
}
|
|
}
|
|
},
|
|
[IB_QPS_SQE] = {
|
|
[IB_QPS_RESET] = { .valid = 1 },
|
|
[IB_QPS_ERR] = { .valid = 1 },
|
|
[IB_QPS_RTS] = {
|
|
.valid = 1,
|
|
.opt_param = {
|
|
[IB_QPT_UD] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_UC] = (IB_QP_CUR_STATE |
|
|
IB_QP_ACCESS_FLAGS),
|
|
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
|
|
IB_QP_QKEY),
|
|
}
|
|
}
|
|
},
|
|
[IB_QPS_ERR] = {
|
|
[IB_QPS_RESET] = { .valid = 1 },
|
|
[IB_QPS_ERR] = { .valid = 1 }
|
|
}
|
|
};
|
|
|
|
int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
|
|
enum ib_qp_type type, enum ib_qp_attr_mask mask,
|
|
enum rdma_link_layer ll)
|
|
{
|
|
enum ib_qp_attr_mask req_param, opt_param;
|
|
|
|
if (cur_state < 0 || cur_state > IB_QPS_ERR ||
|
|
next_state < 0 || next_state > IB_QPS_ERR)
|
|
return 0;
|
|
|
|
if (mask & IB_QP_CUR_STATE &&
|
|
cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
|
|
cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
|
|
return 0;
|
|
|
|
if (!qp_state_table[cur_state][next_state].valid)
|
|
return 0;
|
|
|
|
req_param = qp_state_table[cur_state][next_state].req_param[type];
|
|
opt_param = qp_state_table[cur_state][next_state].opt_param[type];
|
|
|
|
if ((mask & req_param) != req_param)
|
|
return 0;
|
|
|
|
if (mask & ~(req_param | opt_param | IB_QP_STATE))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(ib_modify_qp_is_ok);
|
|
|
|
int ib_resolve_eth_dmac(struct ib_device *device,
|
|
struct ib_ah_attr *ah_attr)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!rdma_is_port_valid(device, ah_attr->port_num))
|
|
return -EINVAL;
|
|
|
|
if (!rdma_cap_eth_ah(device, ah_attr->port_num))
|
|
return 0;
|
|
|
|
if (rdma_link_local_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
|
|
rdma_get_ll_mac((struct in6_addr *)ah_attr->grh.dgid.raw,
|
|
ah_attr->dmac);
|
|
} else {
|
|
union ib_gid sgid;
|
|
struct ib_gid_attr sgid_attr;
|
|
int ifindex;
|
|
int hop_limit;
|
|
|
|
ret = ib_query_gid(device,
|
|
ah_attr->port_num,
|
|
ah_attr->grh.sgid_index,
|
|
&sgid, &sgid_attr);
|
|
|
|
if (ret || !sgid_attr.ndev) {
|
|
if (!ret)
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
ifindex = sgid_attr.ndev->ifindex;
|
|
|
|
ret = rdma_addr_find_l2_eth_by_grh(&sgid,
|
|
&ah_attr->grh.dgid,
|
|
ah_attr->dmac,
|
|
NULL, &ifindex, &hop_limit);
|
|
|
|
dev_put(sgid_attr.ndev);
|
|
|
|
ah_attr->grh.hop_limit = hop_limit;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ib_resolve_eth_dmac);
|
|
|
|
int ib_modify_qp(struct ib_qp *qp,
|
|
struct ib_qp_attr *qp_attr,
|
|
int qp_attr_mask)
|
|
{
|
|
|
|
if (qp_attr_mask & IB_QP_AV) {
|
|
int ret;
|
|
|
|
ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
|
|
}
|
|
EXPORT_SYMBOL(ib_modify_qp);
|
|
|
|
int ib_query_qp(struct ib_qp *qp,
|
|
struct ib_qp_attr *qp_attr,
|
|
int qp_attr_mask,
|
|
struct ib_qp_init_attr *qp_init_attr)
|
|
{
|
|
return qp->device->query_qp ?
|
|
qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
|
|
-ENOSYS;
|
|
}
|
|
EXPORT_SYMBOL(ib_query_qp);
|
|
|
|
int ib_close_qp(struct ib_qp *qp)
|
|
{
|
|
struct ib_qp *real_qp;
|
|
unsigned long flags;
|
|
|
|
real_qp = qp->real_qp;
|
|
if (real_qp == qp)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
|
|
list_del(&qp->open_list);
|
|
spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
|
|
|
|
atomic_dec(&real_qp->usecnt);
|
|
kfree(qp);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ib_close_qp);
|
|
|
|
static int __ib_destroy_shared_qp(struct ib_qp *qp)
|
|
{
|
|
struct ib_xrcd *xrcd;
|
|
struct ib_qp *real_qp;
|
|
int ret;
|
|
|
|
real_qp = qp->real_qp;
|
|
xrcd = real_qp->xrcd;
|
|
|
|
mutex_lock(&xrcd->tgt_qp_mutex);
|
|
ib_close_qp(qp);
|
|
if (atomic_read(&real_qp->usecnt) == 0)
|
|
list_del(&real_qp->xrcd_list);
|
|
else
|
|
real_qp = NULL;
|
|
mutex_unlock(&xrcd->tgt_qp_mutex);
|
|
|
|
if (real_qp) {
|
|
ret = ib_destroy_qp(real_qp);
|
|
if (!ret)
|
|
atomic_dec(&xrcd->usecnt);
|
|
else
|
|
__ib_insert_xrcd_qp(xrcd, real_qp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ib_destroy_qp(struct ib_qp *qp)
|
|
{
|
|
struct ib_pd *pd;
|
|
struct ib_cq *scq, *rcq;
|
|
struct ib_srq *srq;
|
|
struct ib_rwq_ind_table *ind_tbl;
|
|
int ret;
|
|
|
|
WARN_ON_ONCE(qp->mrs_used > 0);
|
|
|
|
if (atomic_read(&qp->usecnt))
|
|
return -EBUSY;
|
|
|
|
if (qp->real_qp != qp)
|
|
return __ib_destroy_shared_qp(qp);
|
|
|
|
pd = qp->pd;
|
|
scq = qp->send_cq;
|
|
rcq = qp->recv_cq;
|
|
srq = qp->srq;
|
|
ind_tbl = qp->rwq_ind_tbl;
|
|
|
|
if (!qp->uobject)
|
|
rdma_rw_cleanup_mrs(qp);
|
|
|
|
ret = qp->device->destroy_qp(qp);
|
|
if (!ret) {
|
|
if (pd)
|
|
atomic_dec(&pd->usecnt);
|
|
if (scq)
|
|
atomic_dec(&scq->usecnt);
|
|
if (rcq)
|
|
atomic_dec(&rcq->usecnt);
|
|
if (srq)
|
|
atomic_dec(&srq->usecnt);
|
|
if (ind_tbl)
|
|
atomic_dec(&ind_tbl->usecnt);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ib_destroy_qp);
|
|
|
|
/* Completion queues */
|
|
|
|
struct ib_cq *ib_create_cq(struct ib_device *device,
|
|
ib_comp_handler comp_handler,
|
|
void (*event_handler)(struct ib_event *, void *),
|
|
void *cq_context,
|
|
const struct ib_cq_init_attr *cq_attr)
|
|
{
|
|
struct ib_cq *cq;
|
|
|
|
cq = device->create_cq(device, cq_attr, NULL, NULL);
|
|
|
|
if (!IS_ERR(cq)) {
|
|
cq->device = device;
|
|
cq->uobject = NULL;
|
|
cq->comp_handler = comp_handler;
|
|
cq->event_handler = event_handler;
|
|
cq->cq_context = cq_context;
|
|
atomic_set(&cq->usecnt, 0);
|
|
}
|
|
|
|
return cq;
|
|
}
|
|
EXPORT_SYMBOL(ib_create_cq);
|
|
|
|
int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
|
|
{
|
|
return cq->device->modify_cq ?
|
|
cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
|
|
}
|
|
EXPORT_SYMBOL(ib_modify_cq);
|
|
|
|
int ib_destroy_cq(struct ib_cq *cq)
|
|
{
|
|
if (atomic_read(&cq->usecnt))
|
|
return -EBUSY;
|
|
|
|
return cq->device->destroy_cq(cq);
|
|
}
|
|
EXPORT_SYMBOL(ib_destroy_cq);
|
|
|
|
int ib_resize_cq(struct ib_cq *cq, int cqe)
|
|
{
|
|
return cq->device->resize_cq ?
|
|
cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
|
|
}
|
|
EXPORT_SYMBOL(ib_resize_cq);
|
|
|
|
/* Memory regions */
|
|
|
|
int ib_dereg_mr(struct ib_mr *mr)
|
|
{
|
|
struct ib_pd *pd = mr->pd;
|
|
int ret;
|
|
|
|
ret = mr->device->dereg_mr(mr);
|
|
if (!ret)
|
|
atomic_dec(&pd->usecnt);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ib_dereg_mr);
|
|
|
|
/**
|
|
* ib_alloc_mr() - Allocates a memory region
|
|
* @pd: protection domain associated with the region
|
|
* @mr_type: memory region type
|
|
* @max_num_sg: maximum sg entries available for registration.
|
|
*
|
|
* Notes:
|
|
* Memory registeration page/sg lists must not exceed max_num_sg.
|
|
* For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
|
|
* max_num_sg * used_page_size.
|
|
*
|
|
*/
|
|
struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
|
|
enum ib_mr_type mr_type,
|
|
u32 max_num_sg)
|
|
{
|
|
struct ib_mr *mr;
|
|
|
|
if (!pd->device->alloc_mr)
|
|
return ERR_PTR(-ENOSYS);
|
|
|
|
mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
|
|
if (!IS_ERR(mr)) {
|
|
mr->device = pd->device;
|
|
mr->pd = pd;
|
|
mr->uobject = NULL;
|
|
atomic_inc(&pd->usecnt);
|
|
mr->need_inval = false;
|
|
}
|
|
|
|
return mr;
|
|
}
|
|
EXPORT_SYMBOL(ib_alloc_mr);
|
|
|
|
/* "Fast" memory regions */
|
|
|
|
struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
|
|
int mr_access_flags,
|
|
struct ib_fmr_attr *fmr_attr)
|
|
{
|
|
struct ib_fmr *fmr;
|
|
|
|
if (!pd->device->alloc_fmr)
|
|
return ERR_PTR(-ENOSYS);
|
|
|
|
fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
|
|
if (!IS_ERR(fmr)) {
|
|
fmr->device = pd->device;
|
|
fmr->pd = pd;
|
|
atomic_inc(&pd->usecnt);
|
|
}
|
|
|
|
return fmr;
|
|
}
|
|
EXPORT_SYMBOL(ib_alloc_fmr);
|
|
|
|
int ib_unmap_fmr(struct list_head *fmr_list)
|
|
{
|
|
struct ib_fmr *fmr;
|
|
|
|
if (list_empty(fmr_list))
|
|
return 0;
|
|
|
|
fmr = list_entry(fmr_list->next, struct ib_fmr, list);
|
|
return fmr->device->unmap_fmr(fmr_list);
|
|
}
|
|
EXPORT_SYMBOL(ib_unmap_fmr);
|
|
|
|
int ib_dealloc_fmr(struct ib_fmr *fmr)
|
|
{
|
|
struct ib_pd *pd;
|
|
int ret;
|
|
|
|
pd = fmr->pd;
|
|
ret = fmr->device->dealloc_fmr(fmr);
|
|
if (!ret)
|
|
atomic_dec(&pd->usecnt);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ib_dealloc_fmr);
|
|
|
|
/* Multicast groups */
|
|
|
|
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
|
|
{
|
|
int ret;
|
|
|
|
if (!qp->device->attach_mcast)
|
|
return -ENOSYS;
|
|
if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
|
|
return -EINVAL;
|
|
|
|
ret = qp->device->attach_mcast(qp, gid, lid);
|
|
if (!ret)
|
|
atomic_inc(&qp->usecnt);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ib_attach_mcast);
|
|
|
|
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
|
|
{
|
|
int ret;
|
|
|
|
if (!qp->device->detach_mcast)
|
|
return -ENOSYS;
|
|
if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
|
|
return -EINVAL;
|
|
|
|
ret = qp->device->detach_mcast(qp, gid, lid);
|
|
if (!ret)
|
|
atomic_dec(&qp->usecnt);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ib_detach_mcast);
|
|
|
|
struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
|
|
{
|
|
struct ib_xrcd *xrcd;
|
|
|
|
if (!device->alloc_xrcd)
|
|
return ERR_PTR(-ENOSYS);
|
|
|
|
xrcd = device->alloc_xrcd(device, NULL, NULL);
|
|
if (!IS_ERR(xrcd)) {
|
|
xrcd->device = device;
|
|
xrcd->inode = NULL;
|
|
atomic_set(&xrcd->usecnt, 0);
|
|
mutex_init(&xrcd->tgt_qp_mutex);
|
|
INIT_LIST_HEAD(&xrcd->tgt_qp_list);
|
|
}
|
|
|
|
return xrcd;
|
|
}
|
|
EXPORT_SYMBOL(ib_alloc_xrcd);
|
|
|
|
int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
|
|
{
|
|
struct ib_qp *qp;
|
|
int ret;
|
|
|
|
if (atomic_read(&xrcd->usecnt))
|
|
return -EBUSY;
|
|
|
|
while (!list_empty(&xrcd->tgt_qp_list)) {
|
|
qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
|
|
ret = ib_destroy_qp(qp);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return xrcd->device->dealloc_xrcd(xrcd);
|
|
}
|
|
EXPORT_SYMBOL(ib_dealloc_xrcd);
|
|
|
|
/**
|
|
* ib_create_wq - Creates a WQ associated with the specified protection
|
|
* domain.
|
|
* @pd: The protection domain associated with the WQ.
|
|
* @wq_init_attr: A list of initial attributes required to create the
|
|
* WQ. If WQ creation succeeds, then the attributes are updated to
|
|
* the actual capabilities of the created WQ.
|
|
*
|
|
* wq_init_attr->max_wr and wq_init_attr->max_sge determine
|
|
* the requested size of the WQ, and set to the actual values allocated
|
|
* on return.
|
|
* If ib_create_wq() succeeds, then max_wr and max_sge will always be
|
|
* at least as large as the requested values.
|
|
*/
|
|
struct ib_wq *ib_create_wq(struct ib_pd *pd,
|
|
struct ib_wq_init_attr *wq_attr)
|
|
{
|
|
struct ib_wq *wq;
|
|
|
|
if (!pd->device->create_wq)
|
|
return ERR_PTR(-ENOSYS);
|
|
|
|
wq = pd->device->create_wq(pd, wq_attr, NULL);
|
|
if (!IS_ERR(wq)) {
|
|
wq->event_handler = wq_attr->event_handler;
|
|
wq->wq_context = wq_attr->wq_context;
|
|
wq->wq_type = wq_attr->wq_type;
|
|
wq->cq = wq_attr->cq;
|
|
wq->device = pd->device;
|
|
wq->pd = pd;
|
|
wq->uobject = NULL;
|
|
atomic_inc(&pd->usecnt);
|
|
atomic_inc(&wq_attr->cq->usecnt);
|
|
atomic_set(&wq->usecnt, 0);
|
|
}
|
|
return wq;
|
|
}
|
|
EXPORT_SYMBOL(ib_create_wq);
|
|
|
|
/**
|
|
* ib_destroy_wq - Destroys the specified WQ.
|
|
* @wq: The WQ to destroy.
|
|
*/
|
|
int ib_destroy_wq(struct ib_wq *wq)
|
|
{
|
|
int err;
|
|
struct ib_cq *cq = wq->cq;
|
|
struct ib_pd *pd = wq->pd;
|
|
|
|
if (atomic_read(&wq->usecnt))
|
|
return -EBUSY;
|
|
|
|
err = wq->device->destroy_wq(wq);
|
|
if (!err) {
|
|
atomic_dec(&pd->usecnt);
|
|
atomic_dec(&cq->usecnt);
|
|
}
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(ib_destroy_wq);
|
|
|
|
/**
|
|
* ib_modify_wq - Modifies the specified WQ.
|
|
* @wq: The WQ to modify.
|
|
* @wq_attr: On input, specifies the WQ attributes to modify.
|
|
* @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
|
|
* are being modified.
|
|
* On output, the current values of selected WQ attributes are returned.
|
|
*/
|
|
int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
|
|
u32 wq_attr_mask)
|
|
{
|
|
int err;
|
|
|
|
if (!wq->device->modify_wq)
|
|
return -ENOSYS;
|
|
|
|
err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(ib_modify_wq);
|
|
|
|
/*
|
|
* ib_create_rwq_ind_table - Creates a RQ Indirection Table.
|
|
* @device: The device on which to create the rwq indirection table.
|
|
* @ib_rwq_ind_table_init_attr: A list of initial attributes required to
|
|
* create the Indirection Table.
|
|
*
|
|
* Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
|
|
* than the created ib_rwq_ind_table object and the caller is responsible
|
|
* for its memory allocation/free.
|
|
*/
|
|
struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
|
|
struct ib_rwq_ind_table_init_attr *init_attr)
|
|
{
|
|
struct ib_rwq_ind_table *rwq_ind_table;
|
|
int i;
|
|
u32 table_size;
|
|
|
|
if (!device->create_rwq_ind_table)
|
|
return ERR_PTR(-ENOSYS);
|
|
|
|
table_size = (1 << init_attr->log_ind_tbl_size);
|
|
rwq_ind_table = device->create_rwq_ind_table(device,
|
|
init_attr, NULL);
|
|
if (IS_ERR(rwq_ind_table))
|
|
return rwq_ind_table;
|
|
|
|
rwq_ind_table->ind_tbl = init_attr->ind_tbl;
|
|
rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
|
|
rwq_ind_table->device = device;
|
|
rwq_ind_table->uobject = NULL;
|
|
atomic_set(&rwq_ind_table->usecnt, 0);
|
|
|
|
for (i = 0; i < table_size; i++)
|
|
atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
|
|
|
|
return rwq_ind_table;
|
|
}
|
|
EXPORT_SYMBOL(ib_create_rwq_ind_table);
|
|
|
|
/*
|
|
* ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
|
|
* @wq_ind_table: The Indirection Table to destroy.
|
|
*/
|
|
int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
|
|
{
|
|
int err, i;
|
|
u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
|
|
struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
|
|
|
|
if (atomic_read(&rwq_ind_table->usecnt))
|
|
return -EBUSY;
|
|
|
|
err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
|
|
if (!err) {
|
|
for (i = 0; i < table_size; i++)
|
|
atomic_dec(&ind_tbl[i]->usecnt);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
|
|
|
|
struct ib_flow *ib_create_flow(struct ib_qp *qp,
|
|
struct ib_flow_attr *flow_attr,
|
|
int domain)
|
|
{
|
|
struct ib_flow *flow_id;
|
|
if (!qp->device->create_flow)
|
|
return ERR_PTR(-ENOSYS);
|
|
|
|
flow_id = qp->device->create_flow(qp, flow_attr, domain);
|
|
if (!IS_ERR(flow_id)) {
|
|
atomic_inc(&qp->usecnt);
|
|
flow_id->qp = qp;
|
|
}
|
|
return flow_id;
|
|
}
|
|
EXPORT_SYMBOL(ib_create_flow);
|
|
|
|
int ib_destroy_flow(struct ib_flow *flow_id)
|
|
{
|
|
int err;
|
|
struct ib_qp *qp = flow_id->qp;
|
|
|
|
err = qp->device->destroy_flow(flow_id);
|
|
if (!err)
|
|
atomic_dec(&qp->usecnt);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(ib_destroy_flow);
|
|
|
|
int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
|
|
struct ib_mr_status *mr_status)
|
|
{
|
|
return mr->device->check_mr_status ?
|
|
mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
|
|
}
|
|
EXPORT_SYMBOL(ib_check_mr_status);
|
|
|
|
int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
|
|
int state)
|
|
{
|
|
if (!device->set_vf_link_state)
|
|
return -ENOSYS;
|
|
|
|
return device->set_vf_link_state(device, vf, port, state);
|
|
}
|
|
EXPORT_SYMBOL(ib_set_vf_link_state);
|
|
|
|
int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
|
|
struct ifla_vf_info *info)
|
|
{
|
|
if (!device->get_vf_config)
|
|
return -ENOSYS;
|
|
|
|
return device->get_vf_config(device, vf, port, info);
|
|
}
|
|
EXPORT_SYMBOL(ib_get_vf_config);
|
|
|
|
int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
|
|
struct ifla_vf_stats *stats)
|
|
{
|
|
if (!device->get_vf_stats)
|
|
return -ENOSYS;
|
|
|
|
return device->get_vf_stats(device, vf, port, stats);
|
|
}
|
|
EXPORT_SYMBOL(ib_get_vf_stats);
|
|
|
|
int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
|
|
int type)
|
|
{
|
|
if (!device->set_vf_guid)
|
|
return -ENOSYS;
|
|
|
|
return device->set_vf_guid(device, vf, port, guid, type);
|
|
}
|
|
EXPORT_SYMBOL(ib_set_vf_guid);
|
|
|
|
/**
|
|
* ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
|
|
* and set it the memory region.
|
|
* @mr: memory region
|
|
* @sg: dma mapped scatterlist
|
|
* @sg_nents: number of entries in sg
|
|
* @sg_offset: offset in bytes into sg
|
|
* @page_size: page vector desired page size
|
|
*
|
|
* Constraints:
|
|
* - The first sg element is allowed to have an offset.
|
|
* - Each sg element must either be aligned to page_size or virtually
|
|
* contiguous to the previous element. In case an sg element has a
|
|
* non-contiguous offset, the mapping prefix will not include it.
|
|
* - The last sg element is allowed to have length less than page_size.
|
|
* - If sg_nents total byte length exceeds the mr max_num_sge * page_size
|
|
* then only max_num_sg entries will be mapped.
|
|
* - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
|
|
* constraints holds and the page_size argument is ignored.
|
|
*
|
|
* Returns the number of sg elements that were mapped to the memory region.
|
|
*
|
|
* After this completes successfully, the memory region
|
|
* is ready for registration.
|
|
*/
|
|
int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
|
|
unsigned int *sg_offset, unsigned int page_size)
|
|
{
|
|
if (unlikely(!mr->device->map_mr_sg))
|
|
return -ENOSYS;
|
|
|
|
mr->page_size = page_size;
|
|
|
|
return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
|
|
}
|
|
EXPORT_SYMBOL(ib_map_mr_sg);
|
|
|
|
/**
|
|
* ib_sg_to_pages() - Convert the largest prefix of a sg list
|
|
* to a page vector
|
|
* @mr: memory region
|
|
* @sgl: dma mapped scatterlist
|
|
* @sg_nents: number of entries in sg
|
|
* @sg_offset_p: IN: start offset in bytes into sg
|
|
* OUT: offset in bytes for element n of the sg of the first
|
|
* byte that has not been processed where n is the return
|
|
* value of this function.
|
|
* @set_page: driver page assignment function pointer
|
|
*
|
|
* Core service helper for drivers to convert the largest
|
|
* prefix of given sg list to a page vector. The sg list
|
|
* prefix converted is the prefix that meet the requirements
|
|
* of ib_map_mr_sg.
|
|
*
|
|
* Returns the number of sg elements that were assigned to
|
|
* a page vector.
|
|
*/
|
|
int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
|
|
unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
|
|
{
|
|
struct scatterlist *sg;
|
|
u64 last_end_dma_addr = 0;
|
|
unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
|
|
unsigned int last_page_off = 0;
|
|
u64 page_mask = ~((u64)mr->page_size - 1);
|
|
int i, ret;
|
|
|
|
if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
|
|
return -EINVAL;
|
|
|
|
mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
|
|
mr->length = 0;
|
|
|
|
for_each_sg(sgl, sg, sg_nents, i) {
|
|
u64 dma_addr = sg_dma_address(sg) + sg_offset;
|
|
u64 prev_addr = dma_addr;
|
|
unsigned int dma_len = sg_dma_len(sg) - sg_offset;
|
|
u64 end_dma_addr = dma_addr + dma_len;
|
|
u64 page_addr = dma_addr & page_mask;
|
|
|
|
/*
|
|
* For the second and later elements, check whether either the
|
|
* end of element i-1 or the start of element i is not aligned
|
|
* on a page boundary.
|
|
*/
|
|
if (i && (last_page_off != 0 || page_addr != dma_addr)) {
|
|
/* Stop mapping if there is a gap. */
|
|
if (last_end_dma_addr != dma_addr)
|
|
break;
|
|
|
|
/*
|
|
* Coalesce this element with the last. If it is small
|
|
* enough just update mr->length. Otherwise start
|
|
* mapping from the next page.
|
|
*/
|
|
goto next_page;
|
|
}
|
|
|
|
do {
|
|
ret = set_page(mr, page_addr);
|
|
if (unlikely(ret < 0)) {
|
|
sg_offset = prev_addr - sg_dma_address(sg);
|
|
mr->length += prev_addr - dma_addr;
|
|
if (sg_offset_p)
|
|
*sg_offset_p = sg_offset;
|
|
return i || sg_offset ? i : ret;
|
|
}
|
|
prev_addr = page_addr;
|
|
next_page:
|
|
page_addr += mr->page_size;
|
|
} while (page_addr < end_dma_addr);
|
|
|
|
mr->length += dma_len;
|
|
last_end_dma_addr = end_dma_addr;
|
|
last_page_off = end_dma_addr & ~page_mask;
|
|
|
|
sg_offset = 0;
|
|
}
|
|
|
|
if (sg_offset_p)
|
|
*sg_offset_p = 0;
|
|
return i;
|
|
}
|
|
EXPORT_SYMBOL(ib_sg_to_pages);
|
|
|
|
struct ib_drain_cqe {
|
|
struct ib_cqe cqe;
|
|
struct completion done;
|
|
};
|
|
|
|
static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
|
|
cqe);
|
|
|
|
complete(&cqe->done);
|
|
}
|
|
|
|
/*
|
|
* Post a WR and block until its completion is reaped for the SQ.
|
|
*/
|
|
static void __ib_drain_sq(struct ib_qp *qp)
|
|
{
|
|
struct ib_cq *cq = qp->send_cq;
|
|
struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
|
|
struct ib_drain_cqe sdrain;
|
|
struct ib_send_wr swr = {}, *bad_swr;
|
|
int ret;
|
|
|
|
swr.wr_cqe = &sdrain.cqe;
|
|
sdrain.cqe.done = ib_drain_qp_done;
|
|
init_completion(&sdrain.done);
|
|
|
|
ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
|
|
if (ret) {
|
|
WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
ret = ib_post_send(qp, &swr, &bad_swr);
|
|
if (ret) {
|
|
WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
if (cq->poll_ctx == IB_POLL_DIRECT)
|
|
while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
|
|
ib_process_cq_direct(cq, -1);
|
|
else
|
|
wait_for_completion(&sdrain.done);
|
|
}
|
|
|
|
/*
|
|
* Post a WR and block until its completion is reaped for the RQ.
|
|
*/
|
|
static void __ib_drain_rq(struct ib_qp *qp)
|
|
{
|
|
struct ib_cq *cq = qp->recv_cq;
|
|
struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
|
|
struct ib_drain_cqe rdrain;
|
|
struct ib_recv_wr rwr = {}, *bad_rwr;
|
|
int ret;
|
|
|
|
rwr.wr_cqe = &rdrain.cqe;
|
|
rdrain.cqe.done = ib_drain_qp_done;
|
|
init_completion(&rdrain.done);
|
|
|
|
ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
|
|
if (ret) {
|
|
WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
ret = ib_post_recv(qp, &rwr, &bad_rwr);
|
|
if (ret) {
|
|
WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
if (cq->poll_ctx == IB_POLL_DIRECT)
|
|
while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
|
|
ib_process_cq_direct(cq, -1);
|
|
else
|
|
wait_for_completion(&rdrain.done);
|
|
}
|
|
|
|
/**
|
|
* ib_drain_sq() - Block until all SQ CQEs have been consumed by the
|
|
* application.
|
|
* @qp: queue pair to drain
|
|
*
|
|
* If the device has a provider-specific drain function, then
|
|
* call that. Otherwise call the generic drain function
|
|
* __ib_drain_sq().
|
|
*
|
|
* The caller must:
|
|
*
|
|
* ensure there is room in the CQ and SQ for the drain work request and
|
|
* completion.
|
|
*
|
|
* allocate the CQ using ib_alloc_cq().
|
|
*
|
|
* ensure that there are no other contexts that are posting WRs concurrently.
|
|
* Otherwise the drain is not guaranteed.
|
|
*/
|
|
void ib_drain_sq(struct ib_qp *qp)
|
|
{
|
|
if (qp->device->drain_sq)
|
|
qp->device->drain_sq(qp);
|
|
else
|
|
__ib_drain_sq(qp);
|
|
}
|
|
EXPORT_SYMBOL(ib_drain_sq);
|
|
|
|
/**
|
|
* ib_drain_rq() - Block until all RQ CQEs have been consumed by the
|
|
* application.
|
|
* @qp: queue pair to drain
|
|
*
|
|
* If the device has a provider-specific drain function, then
|
|
* call that. Otherwise call the generic drain function
|
|
* __ib_drain_rq().
|
|
*
|
|
* The caller must:
|
|
*
|
|
* ensure there is room in the CQ and RQ for the drain work request and
|
|
* completion.
|
|
*
|
|
* allocate the CQ using ib_alloc_cq().
|
|
*
|
|
* ensure that there are no other contexts that are posting WRs concurrently.
|
|
* Otherwise the drain is not guaranteed.
|
|
*/
|
|
void ib_drain_rq(struct ib_qp *qp)
|
|
{
|
|
if (qp->device->drain_rq)
|
|
qp->device->drain_rq(qp);
|
|
else
|
|
__ib_drain_rq(qp);
|
|
}
|
|
EXPORT_SYMBOL(ib_drain_rq);
|
|
|
|
/**
|
|
* ib_drain_qp() - Block until all CQEs have been consumed by the
|
|
* application on both the RQ and SQ.
|
|
* @qp: queue pair to drain
|
|
*
|
|
* The caller must:
|
|
*
|
|
* ensure there is room in the CQ(s), SQ, and RQ for drain work requests
|
|
* and completions.
|
|
*
|
|
* allocate the CQs using ib_alloc_cq().
|
|
*
|
|
* ensure that there are no other contexts that are posting WRs concurrently.
|
|
* Otherwise the drain is not guaranteed.
|
|
*/
|
|
void ib_drain_qp(struct ib_qp *qp)
|
|
{
|
|
ib_drain_sq(qp);
|
|
if (!qp->srq)
|
|
ib_drain_rq(qp);
|
|
}
|
|
EXPORT_SYMBOL(ib_drain_qp);
|