linux/drivers/char/tpm/tpm_i2c_nuvoton.c
Jason Gunthorpe 82cc1a49b6 tpm: Add TPM 2.0 support to the Nuvoton i2c driver (NPCT6xx family)
The command flow is exactly the same, the core simply needs to be
told to enable TPM2 mode when the compatible string indicates a
TPM2.

Signed-off-by: Andrew Azmansky <andrew.zamansky@nuvoton.com>
Tested-by: Andrew Zamansky <andrew.zamansky@nuvoton.com>
Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Acked-by: Rob Herring <robh@kernel.org>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2016-07-19 17:43:38 +03:00

669 lines
19 KiB
C

/******************************************************************************
* Nuvoton TPM I2C Device Driver Interface for WPCT301/NPCT501/NPCT6XX,
* based on the TCG TPM Interface Spec version 1.2.
* Specifications at www.trustedcomputinggroup.org
*
* Copyright (C) 2011, Nuvoton Technology Corporation.
* Dan Morav <dan.morav@nuvoton.com>
* Copyright (C) 2013, Obsidian Research Corp.
* Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see http://www.gnu.org/licenses/>.
*
* Nuvoton contact information: APC.Support@nuvoton.com
*****************************************************************************/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/i2c.h>
#include <linux/of_device.h>
#include "tpm.h"
/* I2C interface offsets */
#define TPM_STS 0x00
#define TPM_BURST_COUNT 0x01
#define TPM_DATA_FIFO_W 0x20
#define TPM_DATA_FIFO_R 0x40
#define TPM_VID_DID_RID 0x60
/* TPM command header size */
#define TPM_HEADER_SIZE 10
#define TPM_RETRY 5
/*
* I2C bus device maximum buffer size w/o counting I2C address or command
* i.e. max size required for I2C write is 34 = addr, command, 32 bytes data
*/
#define TPM_I2C_MAX_BUF_SIZE 32
#define TPM_I2C_RETRY_COUNT 32
#define TPM_I2C_BUS_DELAY 1 /* msec */
#define TPM_I2C_RETRY_DELAY_SHORT 2 /* msec */
#define TPM_I2C_RETRY_DELAY_LONG 10 /* msec */
#define OF_IS_TPM2 ((void *)1)
#define I2C_IS_TPM2 1
struct priv_data {
int irq;
unsigned int intrs;
wait_queue_head_t read_queue;
};
static s32 i2c_nuvoton_read_buf(struct i2c_client *client, u8 offset, u8 size,
u8 *data)
{
s32 status;
status = i2c_smbus_read_i2c_block_data(client, offset, size, data);
dev_dbg(&client->dev,
"%s(offset=%u size=%u data=%*ph) -> sts=%d\n", __func__,
offset, size, (int)size, data, status);
return status;
}
static s32 i2c_nuvoton_write_buf(struct i2c_client *client, u8 offset, u8 size,
u8 *data)
{
s32 status;
status = i2c_smbus_write_i2c_block_data(client, offset, size, data);
dev_dbg(&client->dev,
"%s(offset=%u size=%u data=%*ph) -> sts=%d\n", __func__,
offset, size, (int)size, data, status);
return status;
}
#define TPM_STS_VALID 0x80
#define TPM_STS_COMMAND_READY 0x40
#define TPM_STS_GO 0x20
#define TPM_STS_DATA_AVAIL 0x10
#define TPM_STS_EXPECT 0x08
#define TPM_STS_RESPONSE_RETRY 0x02
#define TPM_STS_ERR_VAL 0x07 /* bit2...bit0 reads always 0 */
#define TPM_I2C_SHORT_TIMEOUT 750 /* ms */
#define TPM_I2C_LONG_TIMEOUT 2000 /* 2 sec */
/* read TPM_STS register */
static u8 i2c_nuvoton_read_status(struct tpm_chip *chip)
{
struct i2c_client *client = to_i2c_client(chip->dev.parent);
s32 status;
u8 data;
status = i2c_nuvoton_read_buf(client, TPM_STS, 1, &data);
if (status <= 0) {
dev_err(&chip->dev, "%s() error return %d\n", __func__,
status);
data = TPM_STS_ERR_VAL;
}
return data;
}
/* write byte to TPM_STS register */
static s32 i2c_nuvoton_write_status(struct i2c_client *client, u8 data)
{
s32 status;
int i;
/* this causes the current command to be aborted */
for (i = 0, status = -1; i < TPM_I2C_RETRY_COUNT && status < 0; i++) {
status = i2c_nuvoton_write_buf(client, TPM_STS, 1, &data);
msleep(TPM_I2C_BUS_DELAY);
}
return status;
}
/* write commandReady to TPM_STS register */
static void i2c_nuvoton_ready(struct tpm_chip *chip)
{
struct i2c_client *client = to_i2c_client(chip->dev.parent);
s32 status;
/* this causes the current command to be aborted */
status = i2c_nuvoton_write_status(client, TPM_STS_COMMAND_READY);
if (status < 0)
dev_err(&chip->dev,
"%s() fail to write TPM_STS.commandReady\n", __func__);
}
/* read burstCount field from TPM_STS register
* return -1 on fail to read */
static int i2c_nuvoton_get_burstcount(struct i2c_client *client,
struct tpm_chip *chip)
{
unsigned long stop = jiffies + chip->timeout_d;
s32 status;
int burst_count = -1;
u8 data;
/* wait for burstcount to be non-zero */
do {
/* in I2C burstCount is 1 byte */
status = i2c_nuvoton_read_buf(client, TPM_BURST_COUNT, 1,
&data);
if (status > 0 && data > 0) {
burst_count = min_t(u8, TPM_I2C_MAX_BUF_SIZE, data);
break;
}
msleep(TPM_I2C_BUS_DELAY);
} while (time_before(jiffies, stop));
return burst_count;
}
/*
* WPCT301/NPCT501/NPCT6XX SINT# supports only dataAvail
* any call to this function which is not waiting for dataAvail will
* set queue to NULL to avoid waiting for interrupt
*/
static bool i2c_nuvoton_check_status(struct tpm_chip *chip, u8 mask, u8 value)
{
u8 status = i2c_nuvoton_read_status(chip);
return (status != TPM_STS_ERR_VAL) && ((status & mask) == value);
}
static int i2c_nuvoton_wait_for_stat(struct tpm_chip *chip, u8 mask, u8 value,
u32 timeout, wait_queue_head_t *queue)
{
if ((chip->flags & TPM_CHIP_FLAG_IRQ) && queue) {
s32 rc;
struct priv_data *priv = dev_get_drvdata(&chip->dev);
unsigned int cur_intrs = priv->intrs;
enable_irq(priv->irq);
rc = wait_event_interruptible_timeout(*queue,
cur_intrs != priv->intrs,
timeout);
if (rc > 0)
return 0;
/* At this point we know that the SINT pin is asserted, so we
* do not need to do i2c_nuvoton_check_status */
} else {
unsigned long ten_msec, stop;
bool status_valid;
/* check current status */
status_valid = i2c_nuvoton_check_status(chip, mask, value);
if (status_valid)
return 0;
/* use polling to wait for the event */
ten_msec = jiffies + msecs_to_jiffies(TPM_I2C_RETRY_DELAY_LONG);
stop = jiffies + timeout;
do {
if (time_before(jiffies, ten_msec))
msleep(TPM_I2C_RETRY_DELAY_SHORT);
else
msleep(TPM_I2C_RETRY_DELAY_LONG);
status_valid = i2c_nuvoton_check_status(chip, mask,
value);
if (status_valid)
return 0;
} while (time_before(jiffies, stop));
}
dev_err(&chip->dev, "%s(%02x, %02x) -> timeout\n", __func__, mask,
value);
return -ETIMEDOUT;
}
/* wait for dataAvail field to be set in the TPM_STS register */
static int i2c_nuvoton_wait_for_data_avail(struct tpm_chip *chip, u32 timeout,
wait_queue_head_t *queue)
{
return i2c_nuvoton_wait_for_stat(chip,
TPM_STS_DATA_AVAIL | TPM_STS_VALID,
TPM_STS_DATA_AVAIL | TPM_STS_VALID,
timeout, queue);
}
/* Read @count bytes into @buf from TPM_RD_FIFO register */
static int i2c_nuvoton_recv_data(struct i2c_client *client,
struct tpm_chip *chip, u8 *buf, size_t count)
{
struct priv_data *priv = dev_get_drvdata(&chip->dev);
s32 rc;
int burst_count, bytes2read, size = 0;
while (size < count &&
i2c_nuvoton_wait_for_data_avail(chip,
chip->timeout_c,
&priv->read_queue) == 0) {
burst_count = i2c_nuvoton_get_burstcount(client, chip);
if (burst_count < 0) {
dev_err(&chip->dev,
"%s() fail to read burstCount=%d\n", __func__,
burst_count);
return -EIO;
}
bytes2read = min_t(size_t, burst_count, count - size);
rc = i2c_nuvoton_read_buf(client, TPM_DATA_FIFO_R,
bytes2read, &buf[size]);
if (rc < 0) {
dev_err(&chip->dev,
"%s() fail on i2c_nuvoton_read_buf()=%d\n",
__func__, rc);
return -EIO;
}
dev_dbg(&chip->dev, "%s(%d):", __func__, bytes2read);
size += bytes2read;
}
return size;
}
/* Read TPM command results */
static int i2c_nuvoton_recv(struct tpm_chip *chip, u8 *buf, size_t count)
{
struct priv_data *priv = dev_get_drvdata(&chip->dev);
struct device *dev = chip->dev.parent;
struct i2c_client *client = to_i2c_client(dev);
s32 rc;
int expected, status, burst_count, retries, size = 0;
if (count < TPM_HEADER_SIZE) {
i2c_nuvoton_ready(chip); /* return to idle */
dev_err(dev, "%s() count < header size\n", __func__);
return -EIO;
}
for (retries = 0; retries < TPM_RETRY; retries++) {
if (retries > 0) {
/* if this is not the first trial, set responseRetry */
i2c_nuvoton_write_status(client,
TPM_STS_RESPONSE_RETRY);
}
/*
* read first available (> 10 bytes), including:
* tag, paramsize, and result
*/
status = i2c_nuvoton_wait_for_data_avail(
chip, chip->timeout_c, &priv->read_queue);
if (status != 0) {
dev_err(dev, "%s() timeout on dataAvail\n", __func__);
size = -ETIMEDOUT;
continue;
}
burst_count = i2c_nuvoton_get_burstcount(client, chip);
if (burst_count < 0) {
dev_err(dev, "%s() fail to get burstCount\n", __func__);
size = -EIO;
continue;
}
size = i2c_nuvoton_recv_data(client, chip, buf,
burst_count);
if (size < TPM_HEADER_SIZE) {
dev_err(dev, "%s() fail to read header\n", __func__);
size = -EIO;
continue;
}
/*
* convert number of expected bytes field from big endian 32 bit
* to machine native
*/
expected = be32_to_cpu(*(__be32 *) (buf + 2));
if (expected > count) {
dev_err(dev, "%s() expected > count\n", __func__);
size = -EIO;
continue;
}
rc = i2c_nuvoton_recv_data(client, chip, &buf[size],
expected - size);
size += rc;
if (rc < 0 || size < expected) {
dev_err(dev, "%s() fail to read remainder of result\n",
__func__);
size = -EIO;
continue;
}
if (i2c_nuvoton_wait_for_stat(
chip, TPM_STS_VALID | TPM_STS_DATA_AVAIL,
TPM_STS_VALID, chip->timeout_c,
NULL)) {
dev_err(dev, "%s() error left over data\n", __func__);
size = -ETIMEDOUT;
continue;
}
break;
}
i2c_nuvoton_ready(chip);
dev_dbg(&chip->dev, "%s() -> %d\n", __func__, size);
return size;
}
/*
* Send TPM command.
*
* If interrupts are used (signaled by an irq set in the vendor structure)
* tpm.c can skip polling for the data to be available as the interrupt is
* waited for here
*/
static int i2c_nuvoton_send(struct tpm_chip *chip, u8 *buf, size_t len)
{
struct priv_data *priv = dev_get_drvdata(&chip->dev);
struct device *dev = chip->dev.parent;
struct i2c_client *client = to_i2c_client(dev);
u32 ordinal;
size_t count = 0;
int burst_count, bytes2write, retries, rc = -EIO;
for (retries = 0; retries < TPM_RETRY; retries++) {
i2c_nuvoton_ready(chip);
if (i2c_nuvoton_wait_for_stat(chip, TPM_STS_COMMAND_READY,
TPM_STS_COMMAND_READY,
chip->timeout_b, NULL)) {
dev_err(dev, "%s() timeout on commandReady\n",
__func__);
rc = -EIO;
continue;
}
rc = 0;
while (count < len - 1) {
burst_count = i2c_nuvoton_get_burstcount(client,
chip);
if (burst_count < 0) {
dev_err(dev, "%s() fail get burstCount\n",
__func__);
rc = -EIO;
break;
}
bytes2write = min_t(size_t, burst_count,
len - 1 - count);
rc = i2c_nuvoton_write_buf(client, TPM_DATA_FIFO_W,
bytes2write, &buf[count]);
if (rc < 0) {
dev_err(dev, "%s() fail i2cWriteBuf\n",
__func__);
break;
}
dev_dbg(dev, "%s(%d):", __func__, bytes2write);
count += bytes2write;
rc = i2c_nuvoton_wait_for_stat(chip,
TPM_STS_VALID |
TPM_STS_EXPECT,
TPM_STS_VALID |
TPM_STS_EXPECT,
chip->timeout_c,
NULL);
if (rc < 0) {
dev_err(dev, "%s() timeout on Expect\n",
__func__);
rc = -ETIMEDOUT;
break;
}
}
if (rc < 0)
continue;
/* write last byte */
rc = i2c_nuvoton_write_buf(client, TPM_DATA_FIFO_W, 1,
&buf[count]);
if (rc < 0) {
dev_err(dev, "%s() fail to write last byte\n",
__func__);
rc = -EIO;
continue;
}
dev_dbg(dev, "%s(last): %02x", __func__, buf[count]);
rc = i2c_nuvoton_wait_for_stat(chip,
TPM_STS_VALID | TPM_STS_EXPECT,
TPM_STS_VALID,
chip->timeout_c, NULL);
if (rc) {
dev_err(dev, "%s() timeout on Expect to clear\n",
__func__);
rc = -ETIMEDOUT;
continue;
}
break;
}
if (rc < 0) {
/* retries == TPM_RETRY */
i2c_nuvoton_ready(chip);
return rc;
}
/* execute the TPM command */
rc = i2c_nuvoton_write_status(client, TPM_STS_GO);
if (rc < 0) {
dev_err(dev, "%s() fail to write Go\n", __func__);
i2c_nuvoton_ready(chip);
return rc;
}
ordinal = be32_to_cpu(*((__be32 *) (buf + 6)));
rc = i2c_nuvoton_wait_for_data_avail(chip,
tpm_calc_ordinal_duration(chip,
ordinal),
&priv->read_queue);
if (rc) {
dev_err(dev, "%s() timeout command duration\n", __func__);
i2c_nuvoton_ready(chip);
return rc;
}
dev_dbg(dev, "%s() -> %zd\n", __func__, len);
return len;
}
static bool i2c_nuvoton_req_canceled(struct tpm_chip *chip, u8 status)
{
return (status == TPM_STS_COMMAND_READY);
}
static const struct tpm_class_ops tpm_i2c = {
.flags = TPM_OPS_AUTO_STARTUP,
.status = i2c_nuvoton_read_status,
.recv = i2c_nuvoton_recv,
.send = i2c_nuvoton_send,
.cancel = i2c_nuvoton_ready,
.req_complete_mask = TPM_STS_DATA_AVAIL | TPM_STS_VALID,
.req_complete_val = TPM_STS_DATA_AVAIL | TPM_STS_VALID,
.req_canceled = i2c_nuvoton_req_canceled,
};
/* The only purpose for the handler is to signal to any waiting threads that
* the interrupt is currently being asserted. The driver does not do any
* processing triggered by interrupts, and the chip provides no way to mask at
* the source (plus that would be slow over I2C). Run the IRQ as a one-shot,
* this means it cannot be shared. */
static irqreturn_t i2c_nuvoton_int_handler(int dummy, void *dev_id)
{
struct tpm_chip *chip = dev_id;
struct priv_data *priv = dev_get_drvdata(&chip->dev);
priv->intrs++;
wake_up(&priv->read_queue);
disable_irq_nosync(priv->irq);
return IRQ_HANDLED;
}
static int get_vid(struct i2c_client *client, u32 *res)
{
static const u8 vid_did_rid_value[] = { 0x50, 0x10, 0xfe };
u32 temp;
s32 rc;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
rc = i2c_nuvoton_read_buf(client, TPM_VID_DID_RID, 4, (u8 *)&temp);
if (rc < 0)
return rc;
/* check WPCT301 values - ignore RID */
if (memcmp(&temp, vid_did_rid_value, sizeof(vid_did_rid_value))) {
/*
* f/w rev 2.81 has an issue where the VID_DID_RID is not
* reporting the right value. so give it another chance at
* offset 0x20 (FIFO_W).
*/
rc = i2c_nuvoton_read_buf(client, TPM_DATA_FIFO_W, 4,
(u8 *) (&temp));
if (rc < 0)
return rc;
/* check WPCT301 values - ignore RID */
if (memcmp(&temp, vid_did_rid_value,
sizeof(vid_did_rid_value)))
return -ENODEV;
}
*res = temp;
return 0;
}
static int i2c_nuvoton_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int rc;
struct tpm_chip *chip;
struct device *dev = &client->dev;
struct priv_data *priv;
u32 vid = 0;
rc = get_vid(client, &vid);
if (rc)
return rc;
dev_info(dev, "VID: %04X DID: %02X RID: %02X\n", (u16) vid,
(u8) (vid >> 16), (u8) (vid >> 24));
chip = tpmm_chip_alloc(dev, &tpm_i2c);
if (IS_ERR(chip))
return PTR_ERR(chip);
priv = devm_kzalloc(dev, sizeof(struct priv_data), GFP_KERNEL);
if (!priv)
return -ENOMEM;
if (dev->of_node) {
const struct of_device_id *of_id;
of_id = of_match_device(dev->driver->of_match_table, dev);
if (of_id && of_id->data == OF_IS_TPM2)
chip->flags |= TPM_CHIP_FLAG_TPM2;
} else
if (id->driver_data == I2C_IS_TPM2)
chip->flags |= TPM_CHIP_FLAG_TPM2;
init_waitqueue_head(&priv->read_queue);
/* Default timeouts */
chip->timeout_a = msecs_to_jiffies(TPM_I2C_SHORT_TIMEOUT);
chip->timeout_b = msecs_to_jiffies(TPM_I2C_LONG_TIMEOUT);
chip->timeout_c = msecs_to_jiffies(TPM_I2C_SHORT_TIMEOUT);
chip->timeout_d = msecs_to_jiffies(TPM_I2C_SHORT_TIMEOUT);
dev_set_drvdata(&chip->dev, priv);
/*
* I2C intfcaps (interrupt capabilitieis) in the chip are hard coded to:
* TPM_INTF_INT_LEVEL_LOW | TPM_INTF_DATA_AVAIL_INT
* The IRQ should be set in the i2c_board_info (which is done
* automatically in of_i2c_register_devices, for device tree users */
priv->irq = client->irq;
if (client->irq) {
dev_dbg(dev, "%s() priv->irq\n", __func__);
rc = devm_request_irq(dev, client->irq,
i2c_nuvoton_int_handler,
IRQF_TRIGGER_LOW,
dev_name(&chip->dev),
chip);
if (rc) {
dev_err(dev, "%s() Unable to request irq: %d for use\n",
__func__, priv->irq);
priv->irq = 0;
} else {
chip->flags |= TPM_CHIP_FLAG_IRQ;
/* Clear any pending interrupt */
i2c_nuvoton_ready(chip);
/* - wait for TPM_STS==0xA0 (stsValid, commandReady) */
rc = i2c_nuvoton_wait_for_stat(chip,
TPM_STS_COMMAND_READY,
TPM_STS_COMMAND_READY,
chip->timeout_b,
NULL);
if (rc == 0) {
/*
* TIS is in ready state
* write dummy byte to enter reception state
* TPM_DATA_FIFO_W <- rc (0)
*/
rc = i2c_nuvoton_write_buf(client,
TPM_DATA_FIFO_W,
1, (u8 *) (&rc));
if (rc < 0)
return rc;
/* TPM_STS <- 0x40 (commandReady) */
i2c_nuvoton_ready(chip);
} else {
/*
* timeout_b reached - command was
* aborted. TIS should now be in idle state -
* only TPM_STS_VALID should be set
*/
if (i2c_nuvoton_read_status(chip) !=
TPM_STS_VALID)
return -EIO;
}
}
}
return tpm_chip_register(chip);
}
static int i2c_nuvoton_remove(struct i2c_client *client)
{
struct tpm_chip *chip = i2c_get_clientdata(client);
tpm_chip_unregister(chip);
return 0;
}
static const struct i2c_device_id i2c_nuvoton_id[] = {
{"tpm_i2c_nuvoton"},
{"tpm2_i2c_nuvoton", .driver_data = I2C_IS_TPM2},
{}
};
MODULE_DEVICE_TABLE(i2c, i2c_nuvoton_id);
#ifdef CONFIG_OF
static const struct of_device_id i2c_nuvoton_of_match[] = {
{.compatible = "nuvoton,npct501"},
{.compatible = "winbond,wpct301"},
{.compatible = "nuvoton,npct601", .data = OF_IS_TPM2},
{},
};
MODULE_DEVICE_TABLE(of, i2c_nuvoton_of_match);
#endif
static SIMPLE_DEV_PM_OPS(i2c_nuvoton_pm_ops, tpm_pm_suspend, tpm_pm_resume);
static struct i2c_driver i2c_nuvoton_driver = {
.id_table = i2c_nuvoton_id,
.probe = i2c_nuvoton_probe,
.remove = i2c_nuvoton_remove,
.driver = {
.name = "tpm_i2c_nuvoton",
.pm = &i2c_nuvoton_pm_ops,
.of_match_table = of_match_ptr(i2c_nuvoton_of_match),
},
};
module_i2c_driver(i2c_nuvoton_driver);
MODULE_AUTHOR("Dan Morav (dan.morav@nuvoton.com)");
MODULE_DESCRIPTION("Nuvoton TPM I2C Driver");
MODULE_LICENSE("GPL");