Since a13f2ef168 ("x86/xen: remove 32-bit Xen PV guest support"),
RESERVE_BRK_ARRAY() has no user anymore so drop it.
Update related comments too.
Signed-off-by: Cao jin <jojing64@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210311083919.27530-1-jojing64@gmail.com
		
	
			
		
			
				
	
	
		
			1266 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1266 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  *
 | |
|  * This file contains the setup_arch() code, which handles the architecture-dependent
 | |
|  * parts of early kernel initialization.
 | |
|  */
 | |
| #include <linux/console.h>
 | |
| #include <linux/crash_dump.h>
 | |
| #include <linux/dma-map-ops.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <linux/efi.h>
 | |
| #include <linux/init_ohci1394_dma.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/iscsi_ibft.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/root_dev.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/tboot.h>
 | |
| #include <linux/usb/xhci-dbgp.h>
 | |
| #include <linux/static_call.h>
 | |
| #include <linux/swiotlb.h>
 | |
| 
 | |
| #include <uapi/linux/mount.h>
 | |
| 
 | |
| #include <xen/xen.h>
 | |
| 
 | |
| #include <asm/apic.h>
 | |
| #include <asm/numa.h>
 | |
| #include <asm/bios_ebda.h>
 | |
| #include <asm/bugs.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/efi.h>
 | |
| #include <asm/gart.h>
 | |
| #include <asm/hypervisor.h>
 | |
| #include <asm/io_apic.h>
 | |
| #include <asm/kasan.h>
 | |
| #include <asm/kaslr.h>
 | |
| #include <asm/mce.h>
 | |
| #include <asm/mtrr.h>
 | |
| #include <asm/realmode.h>
 | |
| #include <asm/olpc_ofw.h>
 | |
| #include <asm/pci-direct.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/unwind.h>
 | |
| #include <asm/vsyscall.h>
 | |
| #include <linux/vmalloc.h>
 | |
| 
 | |
| /*
 | |
|  * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
 | |
|  * max_pfn_mapped:     highest directly mapped pfn > 4 GB
 | |
|  *
 | |
|  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
 | |
|  * represented by pfn_mapped[].
 | |
|  */
 | |
| unsigned long max_low_pfn_mapped;
 | |
| unsigned long max_pfn_mapped;
 | |
| 
 | |
| #ifdef CONFIG_DMI
 | |
| RESERVE_BRK(dmi_alloc, 65536);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Range of the BSS area. The size of the BSS area is determined
 | |
|  * at link time, with RESERVE_BRK() facility reserving additional
 | |
|  * chunks.
 | |
|  */
 | |
| unsigned long _brk_start = (unsigned long)__brk_base;
 | |
| unsigned long _brk_end   = (unsigned long)__brk_base;
 | |
| 
 | |
| struct boot_params boot_params;
 | |
| 
 | |
| /*
 | |
|  * These are the four main kernel memory regions, we put them into
 | |
|  * the resource tree so that kdump tools and other debugging tools
 | |
|  * recover it:
 | |
|  */
 | |
| 
 | |
| static struct resource rodata_resource = {
 | |
| 	.name	= "Kernel rodata",
 | |
| 	.start	= 0,
 | |
| 	.end	= 0,
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 | |
| };
 | |
| 
 | |
| static struct resource data_resource = {
 | |
| 	.name	= "Kernel data",
 | |
| 	.start	= 0,
 | |
| 	.end	= 0,
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 | |
| };
 | |
| 
 | |
| static struct resource code_resource = {
 | |
| 	.name	= "Kernel code",
 | |
| 	.start	= 0,
 | |
| 	.end	= 0,
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 | |
| };
 | |
| 
 | |
| static struct resource bss_resource = {
 | |
| 	.name	= "Kernel bss",
 | |
| 	.start	= 0,
 | |
| 	.end	= 0,
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 | |
| };
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| /* CPU data as detected by the assembly code in head_32.S */
 | |
| struct cpuinfo_x86 new_cpu_data;
 | |
| 
 | |
| /* Common CPU data for all CPUs */
 | |
| struct cpuinfo_x86 boot_cpu_data __read_mostly;
 | |
| EXPORT_SYMBOL(boot_cpu_data);
 | |
| 
 | |
| unsigned int def_to_bigsmp;
 | |
| 
 | |
| struct apm_info apm_info;
 | |
| EXPORT_SYMBOL(apm_info);
 | |
| 
 | |
| #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 | |
| 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 | |
| struct ist_info ist_info;
 | |
| EXPORT_SYMBOL(ist_info);
 | |
| #else
 | |
| struct ist_info ist_info;
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| struct cpuinfo_x86 boot_cpu_data __read_mostly;
 | |
| EXPORT_SYMBOL(boot_cpu_data);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 | |
| __visible unsigned long mmu_cr4_features __ro_after_init;
 | |
| #else
 | |
| __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 | |
| #endif
 | |
| 
 | |
| /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 | |
| int bootloader_type, bootloader_version;
 | |
| 
 | |
| /*
 | |
|  * Setup options
 | |
|  */
 | |
| struct screen_info screen_info;
 | |
| EXPORT_SYMBOL(screen_info);
 | |
| struct edid_info edid_info;
 | |
| EXPORT_SYMBOL_GPL(edid_info);
 | |
| 
 | |
| extern int root_mountflags;
 | |
| 
 | |
| unsigned long saved_video_mode;
 | |
| 
 | |
| #define RAMDISK_IMAGE_START_MASK	0x07FF
 | |
| #define RAMDISK_PROMPT_FLAG		0x8000
 | |
| #define RAMDISK_LOAD_FLAG		0x4000
 | |
| 
 | |
| static char __initdata command_line[COMMAND_LINE_SIZE];
 | |
| #ifdef CONFIG_CMDLINE_BOOL
 | |
| static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 | |
| struct edd edd;
 | |
| #ifdef CONFIG_EDD_MODULE
 | |
| EXPORT_SYMBOL(edd);
 | |
| #endif
 | |
| /**
 | |
|  * copy_edd() - Copy the BIOS EDD information
 | |
|  *              from boot_params into a safe place.
 | |
|  *
 | |
|  */
 | |
| static inline void __init copy_edd(void)
 | |
| {
 | |
|      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 | |
| 	    sizeof(edd.mbr_signature));
 | |
|      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 | |
|      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 | |
|      edd.edd_info_nr = boot_params.eddbuf_entries;
 | |
| }
 | |
| #else
 | |
| static inline void __init copy_edd(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void * __init extend_brk(size_t size, size_t align)
 | |
| {
 | |
| 	size_t mask = align - 1;
 | |
| 	void *ret;
 | |
| 
 | |
| 	BUG_ON(_brk_start == 0);
 | |
| 	BUG_ON(align & mask);
 | |
| 
 | |
| 	_brk_end = (_brk_end + mask) & ~mask;
 | |
| 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 | |
| 
 | |
| 	ret = (void *)_brk_end;
 | |
| 	_brk_end += size;
 | |
| 
 | |
| 	memset(ret, 0, size);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| static void __init cleanup_highmap(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void __init reserve_brk(void)
 | |
| {
 | |
| 	if (_brk_end > _brk_start)
 | |
| 		memblock_reserve(__pa_symbol(_brk_start),
 | |
| 				 _brk_end - _brk_start);
 | |
| 
 | |
| 	/* Mark brk area as locked down and no longer taking any
 | |
| 	   new allocations */
 | |
| 	_brk_start = 0;
 | |
| }
 | |
| 
 | |
| u64 relocated_ramdisk;
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 
 | |
| static u64 __init get_ramdisk_image(void)
 | |
| {
 | |
| 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 | |
| 
 | |
| 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 | |
| 
 | |
| 	if (ramdisk_image == 0)
 | |
| 		ramdisk_image = phys_initrd_start;
 | |
| 
 | |
| 	return ramdisk_image;
 | |
| }
 | |
| static u64 __init get_ramdisk_size(void)
 | |
| {
 | |
| 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 | |
| 
 | |
| 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 | |
| 
 | |
| 	if (ramdisk_size == 0)
 | |
| 		ramdisk_size = phys_initrd_size;
 | |
| 
 | |
| 	return ramdisk_size;
 | |
| }
 | |
| 
 | |
| static void __init relocate_initrd(void)
 | |
| {
 | |
| 	/* Assume only end is not page aligned */
 | |
| 	u64 ramdisk_image = get_ramdisk_image();
 | |
| 	u64 ramdisk_size  = get_ramdisk_size();
 | |
| 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 | |
| 
 | |
| 	/* We need to move the initrd down into directly mapped mem */
 | |
| 	relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 | |
| 						      PFN_PHYS(max_pfn_mapped));
 | |
| 	if (!relocated_ramdisk)
 | |
| 		panic("Cannot find place for new RAMDISK of size %lld\n",
 | |
| 		      ramdisk_size);
 | |
| 
 | |
| 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 | |
| 	initrd_end   = initrd_start + ramdisk_size;
 | |
| 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 | |
| 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 | |
| 
 | |
| 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 | |
| 
 | |
| 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 | |
| 		" [mem %#010llx-%#010llx]\n",
 | |
| 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 | |
| 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 | |
| }
 | |
| 
 | |
| static void __init early_reserve_initrd(void)
 | |
| {
 | |
| 	/* Assume only end is not page aligned */
 | |
| 	u64 ramdisk_image = get_ramdisk_image();
 | |
| 	u64 ramdisk_size  = get_ramdisk_size();
 | |
| 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 | |
| 
 | |
| 	if (!boot_params.hdr.type_of_loader ||
 | |
| 	    !ramdisk_image || !ramdisk_size)
 | |
| 		return;		/* No initrd provided by bootloader */
 | |
| 
 | |
| 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 | |
| }
 | |
| 
 | |
| static void __init reserve_initrd(void)
 | |
| {
 | |
| 	/* Assume only end is not page aligned */
 | |
| 	u64 ramdisk_image = get_ramdisk_image();
 | |
| 	u64 ramdisk_size  = get_ramdisk_size();
 | |
| 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 | |
| 
 | |
| 	if (!boot_params.hdr.type_of_loader ||
 | |
| 	    !ramdisk_image || !ramdisk_size)
 | |
| 		return;		/* No initrd provided by bootloader */
 | |
| 
 | |
| 	initrd_start = 0;
 | |
| 
 | |
| 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 | |
| 			ramdisk_end - 1);
 | |
| 
 | |
| 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 | |
| 				PFN_DOWN(ramdisk_end))) {
 | |
| 		/* All are mapped, easy case */
 | |
| 		initrd_start = ramdisk_image + PAGE_OFFSET;
 | |
| 		initrd_end = initrd_start + ramdisk_size;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	relocate_initrd();
 | |
| 
 | |
| 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static void __init early_reserve_initrd(void)
 | |
| {
 | |
| }
 | |
| static void __init reserve_initrd(void)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_BLK_DEV_INITRD */
 | |
| 
 | |
| static void __init parse_setup_data(void)
 | |
| {
 | |
| 	struct setup_data *data;
 | |
| 	u64 pa_data, pa_next;
 | |
| 
 | |
| 	pa_data = boot_params.hdr.setup_data;
 | |
| 	while (pa_data) {
 | |
| 		u32 data_len, data_type;
 | |
| 
 | |
| 		data = early_memremap(pa_data, sizeof(*data));
 | |
| 		data_len = data->len + sizeof(struct setup_data);
 | |
| 		data_type = data->type;
 | |
| 		pa_next = data->next;
 | |
| 		early_memunmap(data, sizeof(*data));
 | |
| 
 | |
| 		switch (data_type) {
 | |
| 		case SETUP_E820_EXT:
 | |
| 			e820__memory_setup_extended(pa_data, data_len);
 | |
| 			break;
 | |
| 		case SETUP_DTB:
 | |
| 			add_dtb(pa_data);
 | |
| 			break;
 | |
| 		case SETUP_EFI:
 | |
| 			parse_efi_setup(pa_data, data_len);
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 		pa_data = pa_next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init memblock_x86_reserve_range_setup_data(void)
 | |
| {
 | |
| 	struct setup_data *data;
 | |
| 	u64 pa_data;
 | |
| 
 | |
| 	pa_data = boot_params.hdr.setup_data;
 | |
| 	while (pa_data) {
 | |
| 		data = early_memremap(pa_data, sizeof(*data));
 | |
| 		memblock_reserve(pa_data, sizeof(*data) + data->len);
 | |
| 
 | |
| 		if (data->type == SETUP_INDIRECT &&
 | |
| 		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
 | |
| 			memblock_reserve(((struct setup_indirect *)data->data)->addr,
 | |
| 					 ((struct setup_indirect *)data->data)->len);
 | |
| 
 | |
| 		pa_data = data->next;
 | |
| 		early_memunmap(data, sizeof(*data));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * --------- Crashkernel reservation ------------------------------
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_CORE
 | |
| 
 | |
| /* 16M alignment for crash kernel regions */
 | |
| #define CRASH_ALIGN		SZ_16M
 | |
| 
 | |
| /*
 | |
|  * Keep the crash kernel below this limit.
 | |
|  *
 | |
|  * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
 | |
|  * due to mapping restrictions.
 | |
|  *
 | |
|  * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
 | |
|  * the upper limit of system RAM in 4-level paging mode. Since the kdump
 | |
|  * jump could be from 5-level paging to 4-level paging, the jump will fail if
 | |
|  * the kernel is put above 64 TB, and during the 1st kernel bootup there's
 | |
|  * no good way to detect the paging mode of the target kernel which will be
 | |
|  * loaded for dumping.
 | |
|  */
 | |
| #ifdef CONFIG_X86_32
 | |
| # define CRASH_ADDR_LOW_MAX	SZ_512M
 | |
| # define CRASH_ADDR_HIGH_MAX	SZ_512M
 | |
| #else
 | |
| # define CRASH_ADDR_LOW_MAX	SZ_4G
 | |
| # define CRASH_ADDR_HIGH_MAX	SZ_64T
 | |
| #endif
 | |
| 
 | |
| static int __init reserve_crashkernel_low(void)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	unsigned long long base, low_base = 0, low_size = 0;
 | |
| 	unsigned long low_mem_limit;
 | |
| 	int ret;
 | |
| 
 | |
| 	low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
 | |
| 
 | |
| 	/* crashkernel=Y,low */
 | |
| 	ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
 | |
| 	if (ret) {
 | |
| 		/*
 | |
| 		 * two parts from kernel/dma/swiotlb.c:
 | |
| 		 * -swiotlb size: user-specified with swiotlb= or default.
 | |
| 		 *
 | |
| 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 | |
| 		 * to 8M for other buffers that may need to stay low too. Also
 | |
| 		 * make sure we allocate enough extra low memory so that we
 | |
| 		 * don't run out of DMA buffers for 32-bit devices.
 | |
| 		 */
 | |
| 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 | |
| 	} else {
 | |
| 		/* passed with crashkernel=0,low ? */
 | |
| 		if (!low_size)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
 | |
| 	if (!low_base) {
 | |
| 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 | |
| 		       (unsigned long)(low_size >> 20));
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
 | |
| 		(unsigned long)(low_size >> 20),
 | |
| 		(unsigned long)(low_base >> 20),
 | |
| 		(unsigned long)(low_mem_limit >> 20));
 | |
| 
 | |
| 	crashk_low_res.start = low_base;
 | |
| 	crashk_low_res.end   = low_base + low_size - 1;
 | |
| 	insert_resource(&iomem_resource, &crashk_low_res);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init reserve_crashkernel(void)
 | |
| {
 | |
| 	unsigned long long crash_size, crash_base, total_mem;
 | |
| 	bool high = false;
 | |
| 	int ret;
 | |
| 
 | |
| 	total_mem = memblock_phys_mem_size();
 | |
| 
 | |
| 	/* crashkernel=XM */
 | |
| 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 | |
| 	if (ret != 0 || crash_size <= 0) {
 | |
| 		/* crashkernel=X,high */
 | |
| 		ret = parse_crashkernel_high(boot_command_line, total_mem,
 | |
| 					     &crash_size, &crash_base);
 | |
| 		if (ret != 0 || crash_size <= 0)
 | |
| 			return;
 | |
| 		high = true;
 | |
| 	}
 | |
| 
 | |
| 	if (xen_pv_domain()) {
 | |
| 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* 0 means: find the address automatically */
 | |
| 	if (!crash_base) {
 | |
| 		/*
 | |
| 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 | |
| 		 * crashkernel=x,high reserves memory over 4G, also allocates
 | |
| 		 * 256M extra low memory for DMA buffers and swiotlb.
 | |
| 		 * But the extra memory is not required for all machines.
 | |
| 		 * So try low memory first and fall back to high memory
 | |
| 		 * unless "crashkernel=size[KMG],high" is specified.
 | |
| 		 */
 | |
| 		if (!high)
 | |
| 			crash_base = memblock_phys_alloc_range(crash_size,
 | |
| 						CRASH_ALIGN, CRASH_ALIGN,
 | |
| 						CRASH_ADDR_LOW_MAX);
 | |
| 		if (!crash_base)
 | |
| 			crash_base = memblock_phys_alloc_range(crash_size,
 | |
| 						CRASH_ALIGN, CRASH_ALIGN,
 | |
| 						CRASH_ADDR_HIGH_MAX);
 | |
| 		if (!crash_base) {
 | |
| 			pr_info("crashkernel reservation failed - No suitable area found.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	} else {
 | |
| 		unsigned long long start;
 | |
| 
 | |
| 		start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
 | |
| 						  crash_base + crash_size);
 | |
| 		if (start != crash_base) {
 | |
| 			pr_info("crashkernel reservation failed - memory is in use.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 | |
| 		memblock_free(crash_base, crash_size);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 | |
| 		(unsigned long)(crash_size >> 20),
 | |
| 		(unsigned long)(crash_base >> 20),
 | |
| 		(unsigned long)(total_mem >> 20));
 | |
| 
 | |
| 	crashk_res.start = crash_base;
 | |
| 	crashk_res.end   = crash_base + crash_size - 1;
 | |
| 	insert_resource(&iomem_resource, &crashk_res);
 | |
| }
 | |
| #else
 | |
| static void __init reserve_crashkernel(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct resource standard_io_resources[] = {
 | |
| 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "pic1", .start = 0x20, .end = 0x21,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "timer0", .start = 0x40, .end = 0x43,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "timer1", .start = 0x50, .end = 0x53,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 | |
| };
 | |
| 
 | |
| void __init reserve_standard_io_resources(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* request I/O space for devices used on all i[345]86 PCs */
 | |
| 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 | |
| 		request_resource(&ioport_resource, &standard_io_resources[i]);
 | |
| 
 | |
| }
 | |
| 
 | |
| static __init void reserve_ibft_region(void)
 | |
| {
 | |
| 	unsigned long addr, size = 0;
 | |
| 
 | |
| 	addr = find_ibft_region(&size);
 | |
| 
 | |
| 	if (size)
 | |
| 		memblock_reserve(addr, size);
 | |
| }
 | |
| 
 | |
| static bool __init snb_gfx_workaround_needed(void)
 | |
| {
 | |
| #ifdef CONFIG_PCI
 | |
| 	int i;
 | |
| 	u16 vendor, devid;
 | |
| 	static const __initconst u16 snb_ids[] = {
 | |
| 		0x0102,
 | |
| 		0x0112,
 | |
| 		0x0122,
 | |
| 		0x0106,
 | |
| 		0x0116,
 | |
| 		0x0126,
 | |
| 		0x010a,
 | |
| 	};
 | |
| 
 | |
| 	/* Assume no if something weird is going on with PCI */
 | |
| 	if (!early_pci_allowed())
 | |
| 		return false;
 | |
| 
 | |
| 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 | |
| 	if (vendor != 0x8086)
 | |
| 		return false;
 | |
| 
 | |
| 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 | |
| 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 | |
| 		if (devid == snb_ids[i])
 | |
| 			return true;
 | |
| #endif
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sandy Bridge graphics has trouble with certain ranges, exclude
 | |
|  * them from allocation.
 | |
|  */
 | |
| static void __init trim_snb_memory(void)
 | |
| {
 | |
| 	static const __initconst unsigned long bad_pages[] = {
 | |
| 		0x20050000,
 | |
| 		0x20110000,
 | |
| 		0x20130000,
 | |
| 		0x20138000,
 | |
| 		0x40004000,
 | |
| 	};
 | |
| 	int i;
 | |
| 
 | |
| 	if (!snb_gfx_workaround_needed())
 | |
| 		return;
 | |
| 
 | |
| 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve all memory below the 1 MB mark that has not
 | |
| 	 * already been reserved.
 | |
| 	 */
 | |
| 	memblock_reserve(0, 1<<20);
 | |
| 	
 | |
| 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 | |
| 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 | |
| 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 | |
| 			       bad_pages[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Here we put platform-specific memory range workarounds, i.e.
 | |
|  * memory known to be corrupt or otherwise in need to be reserved on
 | |
|  * specific platforms.
 | |
|  *
 | |
|  * If this gets used more widely it could use a real dispatch mechanism.
 | |
|  */
 | |
| static void __init trim_platform_memory_ranges(void)
 | |
| {
 | |
| 	trim_snb_memory();
 | |
| }
 | |
| 
 | |
| static void __init trim_bios_range(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * A special case is the first 4Kb of memory;
 | |
| 	 * This is a BIOS owned area, not kernel ram, but generally
 | |
| 	 * not listed as such in the E820 table.
 | |
| 	 *
 | |
| 	 * This typically reserves additional memory (64KiB by default)
 | |
| 	 * since some BIOSes are known to corrupt low memory.  See the
 | |
| 	 * Kconfig help text for X86_RESERVE_LOW.
 | |
| 	 */
 | |
| 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 | |
| 
 | |
| 	/*
 | |
| 	 * special case: Some BIOSes report the PC BIOS
 | |
| 	 * area (640Kb -> 1Mb) as RAM even though it is not.
 | |
| 	 * take them out.
 | |
| 	 */
 | |
| 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 | |
| 
 | |
| 	e820__update_table(e820_table);
 | |
| }
 | |
| 
 | |
| /* called before trim_bios_range() to spare extra sanitize */
 | |
| static void __init e820_add_kernel_range(void)
 | |
| {
 | |
| 	u64 start = __pa_symbol(_text);
 | |
| 	u64 size = __pa_symbol(_end) - start;
 | |
| 
 | |
| 	/*
 | |
| 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 | |
| 	 * attempt to fix it by adding the range. We may have a confused BIOS,
 | |
| 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 | |
| 	 * exclude kernel range. If we really are running on top non-RAM,
 | |
| 	 * we will crash later anyways.
 | |
| 	 */
 | |
| 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 | |
| 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 | |
| 	e820__range_add(start, size, E820_TYPE_RAM);
 | |
| }
 | |
| 
 | |
| static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 | |
| 
 | |
| static int __init parse_reservelow(char *p)
 | |
| {
 | |
| 	unsigned long long size;
 | |
| 
 | |
| 	if (!p)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	size = memparse(p, &p);
 | |
| 
 | |
| 	if (size < 4096)
 | |
| 		size = 4096;
 | |
| 
 | |
| 	if (size > 640*1024)
 | |
| 		size = 640*1024;
 | |
| 
 | |
| 	reserve_low = size;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| early_param("reservelow", parse_reservelow);
 | |
| 
 | |
| static void __init trim_low_memory_range(void)
 | |
| {
 | |
| 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 | |
| }
 | |
| 	
 | |
| /*
 | |
|  * Dump out kernel offset information on panic.
 | |
|  */
 | |
| static int
 | |
| dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 | |
| {
 | |
| 	if (kaslr_enabled()) {
 | |
| 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 | |
| 			 kaslr_offset(),
 | |
| 			 __START_KERNEL,
 | |
| 			 __START_KERNEL_map,
 | |
| 			 MODULES_VADDR-1);
 | |
| 	} else {
 | |
| 		pr_emerg("Kernel Offset: disabled\n");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if we were loaded by an EFI loader.  If so, then we have also been
 | |
|  * passed the efi memmap, systab, etc., so we should use these data structures
 | |
|  * for initialization.  Note, the efi init code path is determined by the
 | |
|  * global efi_enabled. This allows the same kernel image to be used on existing
 | |
|  * systems (with a traditional BIOS) as well as on EFI systems.
 | |
|  */
 | |
| /*
 | |
|  * setup_arch - architecture-specific boot-time initializations
 | |
|  *
 | |
|  * Note: On x86_64, fixmaps are ready for use even before this is called.
 | |
|  */
 | |
| 
 | |
| void __init setup_arch(char **cmdline_p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Reserve the memory occupied by the kernel between _text and
 | |
| 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
 | |
| 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
 | |
| 	 * separate memblock_reserve() or they will be discarded.
 | |
| 	 */
 | |
| 	memblock_reserve(__pa_symbol(_text),
 | |
| 			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure page 0 is always reserved because on systems with
 | |
| 	 * L1TF its contents can be leaked to user processes.
 | |
| 	 */
 | |
| 	memblock_reserve(0, PAGE_SIZE);
 | |
| 
 | |
| 	early_reserve_initrd();
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point everything still needed from the boot loader
 | |
| 	 * or BIOS or kernel text should be early reserved or marked not
 | |
| 	 * RAM in e820. All other memory is free game.
 | |
| 	 */
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 | |
| 
 | |
| 	/*
 | |
| 	 * copy kernel address range established so far and switch
 | |
| 	 * to the proper swapper page table
 | |
| 	 */
 | |
| 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 | |
| 			initial_page_table + KERNEL_PGD_BOUNDARY,
 | |
| 			KERNEL_PGD_PTRS);
 | |
| 
 | |
| 	load_cr3(swapper_pg_dir);
 | |
| 	/*
 | |
| 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 | |
| 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 | |
| 	 * will not flush anything because the CPU quirk which clears
 | |
| 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 | |
| 	 * load_cr3() above the TLB has been flushed already. The
 | |
| 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 | |
| 	 * so proper operation is guaranteed.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| #else
 | |
| 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 | |
| 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 | |
| 	 * reserve_top(), so do this before touching the ioremap area.
 | |
| 	 */
 | |
| 	olpc_ofw_detect();
 | |
| 
 | |
| 	idt_setup_early_traps();
 | |
| 	early_cpu_init();
 | |
| 	arch_init_ideal_nops();
 | |
| 	jump_label_init();
 | |
| 	static_call_init();
 | |
| 	early_ioremap_init();
 | |
| 
 | |
| 	setup_olpc_ofw_pgd();
 | |
| 
 | |
| 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 | |
| 	screen_info = boot_params.screen_info;
 | |
| 	edid_info = boot_params.edid_info;
 | |
| #ifdef CONFIG_X86_32
 | |
| 	apm_info.bios = boot_params.apm_bios_info;
 | |
| 	ist_info = boot_params.ist_info;
 | |
| #endif
 | |
| 	saved_video_mode = boot_params.hdr.vid_mode;
 | |
| 	bootloader_type = boot_params.hdr.type_of_loader;
 | |
| 	if ((bootloader_type >> 4) == 0xe) {
 | |
| 		bootloader_type &= 0xf;
 | |
| 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 | |
| 	}
 | |
| 	bootloader_version  = bootloader_type & 0xf;
 | |
| 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_RAM
 | |
| 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 | |
| #endif
 | |
| #ifdef CONFIG_EFI
 | |
| 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 | |
| 		     EFI32_LOADER_SIGNATURE, 4)) {
 | |
| 		set_bit(EFI_BOOT, &efi.flags);
 | |
| 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 | |
| 		     EFI64_LOADER_SIGNATURE, 4)) {
 | |
| 		set_bit(EFI_BOOT, &efi.flags);
 | |
| 		set_bit(EFI_64BIT, &efi.flags);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	x86_init.oem.arch_setup();
 | |
| 
 | |
| 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 | |
| 	e820__memory_setup();
 | |
| 	parse_setup_data();
 | |
| 
 | |
| 	copy_edd();
 | |
| 
 | |
| 	if (!boot_params.hdr.root_flags)
 | |
| 		root_mountflags &= ~MS_RDONLY;
 | |
| 	init_mm.start_code = (unsigned long) _text;
 | |
| 	init_mm.end_code = (unsigned long) _etext;
 | |
| 	init_mm.end_data = (unsigned long) _edata;
 | |
| 	init_mm.brk = _brk_end;
 | |
| 
 | |
| 	code_resource.start = __pa_symbol(_text);
 | |
| 	code_resource.end = __pa_symbol(_etext)-1;
 | |
| 	rodata_resource.start = __pa_symbol(__start_rodata);
 | |
| 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
 | |
| 	data_resource.start = __pa_symbol(_sdata);
 | |
| 	data_resource.end = __pa_symbol(_edata)-1;
 | |
| 	bss_resource.start = __pa_symbol(__bss_start);
 | |
| 	bss_resource.end = __pa_symbol(__bss_stop)-1;
 | |
| 
 | |
| #ifdef CONFIG_CMDLINE_BOOL
 | |
| #ifdef CONFIG_CMDLINE_OVERRIDE
 | |
| 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 | |
| #else
 | |
| 	if (builtin_cmdline[0]) {
 | |
| 		/* append boot loader cmdline to builtin */
 | |
| 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 | |
| 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 | |
| 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 | |
| 	}
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 | |
| 	*cmdline_p = command_line;
 | |
| 
 | |
| 	/*
 | |
| 	 * x86_configure_nx() is called before parse_early_param() to detect
 | |
| 	 * whether hardware doesn't support NX (so that the early EHCI debug
 | |
| 	 * console setup can safely call set_fixmap()). It may then be called
 | |
| 	 * again from within noexec_setup() during parsing early parameters
 | |
| 	 * to honor the respective command line option.
 | |
| 	 */
 | |
| 	x86_configure_nx();
 | |
| 
 | |
| 	parse_early_param();
 | |
| 
 | |
| 	if (efi_enabled(EFI_BOOT))
 | |
| 		efi_memblock_x86_reserve_range();
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| 	/*
 | |
| 	 * Memory used by the kernel cannot be hot-removed because Linux
 | |
| 	 * cannot migrate the kernel pages. When memory hotplug is
 | |
| 	 * enabled, we should prevent memblock from allocating memory
 | |
| 	 * for the kernel.
 | |
| 	 *
 | |
| 	 * ACPI SRAT records all hotpluggable memory ranges. But before
 | |
| 	 * SRAT is parsed, we don't know about it.
 | |
| 	 *
 | |
| 	 * The kernel image is loaded into memory at very early time. We
 | |
| 	 * cannot prevent this anyway. So on NUMA system, we set any
 | |
| 	 * node the kernel resides in as un-hotpluggable.
 | |
| 	 *
 | |
| 	 * Since on modern servers, one node could have double-digit
 | |
| 	 * gigabytes memory, we can assume the memory around the kernel
 | |
| 	 * image is also un-hotpluggable. So before SRAT is parsed, just
 | |
| 	 * allocate memory near the kernel image to try the best to keep
 | |
| 	 * the kernel away from hotpluggable memory.
 | |
| 	 */
 | |
| 	if (movable_node_is_enabled())
 | |
| 		memblock_set_bottom_up(true);
 | |
| #endif
 | |
| 
 | |
| 	x86_report_nx();
 | |
| 
 | |
| 	/* after early param, so could get panic from serial */
 | |
| 	memblock_x86_reserve_range_setup_data();
 | |
| 
 | |
| 	if (acpi_mps_check()) {
 | |
| #ifdef CONFIG_X86_LOCAL_APIC
 | |
| 		disable_apic = 1;
 | |
| #endif
 | |
| 		setup_clear_cpu_cap(X86_FEATURE_APIC);
 | |
| 	}
 | |
| 
 | |
| 	e820__reserve_setup_data();
 | |
| 	e820__finish_early_params();
 | |
| 
 | |
| 	if (efi_enabled(EFI_BOOT))
 | |
| 		efi_init();
 | |
| 
 | |
| 	dmi_setup();
 | |
| 
 | |
| 	/*
 | |
| 	 * VMware detection requires dmi to be available, so this
 | |
| 	 * needs to be done after dmi_setup(), for the boot CPU.
 | |
| 	 */
 | |
| 	init_hypervisor_platform();
 | |
| 
 | |
| 	tsc_early_init();
 | |
| 	x86_init.resources.probe_roms();
 | |
| 
 | |
| 	/* after parse_early_param, so could debug it */
 | |
| 	insert_resource(&iomem_resource, &code_resource);
 | |
| 	insert_resource(&iomem_resource, &rodata_resource);
 | |
| 	insert_resource(&iomem_resource, &data_resource);
 | |
| 	insert_resource(&iomem_resource, &bss_resource);
 | |
| 
 | |
| 	e820_add_kernel_range();
 | |
| 	trim_bios_range();
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (ppro_with_ram_bug()) {
 | |
| 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
 | |
| 				  E820_TYPE_RESERVED);
 | |
| 		e820__update_table(e820_table);
 | |
| 		printk(KERN_INFO "fixed physical RAM map:\n");
 | |
| 		e820__print_table("bad_ppro");
 | |
| 	}
 | |
| #else
 | |
| 	early_gart_iommu_check();
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * partially used pages are not usable - thus
 | |
| 	 * we are rounding upwards:
 | |
| 	 */
 | |
| 	max_pfn = e820__end_of_ram_pfn();
 | |
| 
 | |
| 	/* update e820 for memory not covered by WB MTRRs */
 | |
| 	mtrr_bp_init();
 | |
| 	if (mtrr_trim_uncached_memory(max_pfn))
 | |
| 		max_pfn = e820__end_of_ram_pfn();
 | |
| 
 | |
| 	max_possible_pfn = max_pfn;
 | |
| 
 | |
| 	/*
 | |
| 	 * This call is required when the CPU does not support PAT. If
 | |
| 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
 | |
| 	 * effect.
 | |
| 	 */
 | |
| 	init_cache_modes();
 | |
| 
 | |
| 	/*
 | |
| 	 * Define random base addresses for memory sections after max_pfn is
 | |
| 	 * defined and before each memory section base is used.
 | |
| 	 */
 | |
| 	kernel_randomize_memory();
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	/* max_low_pfn get updated here */
 | |
| 	find_low_pfn_range();
 | |
| #else
 | |
| 	check_x2apic();
 | |
| 
 | |
| 	/* How many end-of-memory variables you have, grandma! */
 | |
| 	/* need this before calling reserve_initrd */
 | |
| 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
 | |
| 		max_low_pfn = e820__end_of_low_ram_pfn();
 | |
| 	else
 | |
| 		max_low_pfn = max_pfn;
 | |
| 
 | |
| 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Find and reserve possible boot-time SMP configuration:
 | |
| 	 */
 | |
| 	find_smp_config();
 | |
| 
 | |
| 	reserve_ibft_region();
 | |
| 
 | |
| 	early_alloc_pgt_buf();
 | |
| 
 | |
| 	/*
 | |
| 	 * Need to conclude brk, before e820__memblock_setup()
 | |
| 	 * it could use memblock_find_in_range, could overlap with
 | |
| 	 * brk area.
 | |
| 	 */
 | |
| 	reserve_brk();
 | |
| 
 | |
| 	cleanup_highmap();
 | |
| 
 | |
| 	memblock_set_current_limit(ISA_END_ADDRESS);
 | |
| 	e820__memblock_setup();
 | |
| 
 | |
| 	/*
 | |
| 	 * Needs to run after memblock setup because it needs the physical
 | |
| 	 * memory size.
 | |
| 	 */
 | |
| 	sev_setup_arch();
 | |
| 
 | |
| 	reserve_bios_regions();
 | |
| 
 | |
| 	efi_fake_memmap();
 | |
| 	efi_find_mirror();
 | |
| 	efi_esrt_init();
 | |
| 	efi_mokvar_table_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * The EFI specification says that boot service code won't be
 | |
| 	 * called after ExitBootServices(). This is, in fact, a lie.
 | |
| 	 */
 | |
| 	efi_reserve_boot_services();
 | |
| 
 | |
| 	/* preallocate 4k for mptable mpc */
 | |
| 	e820__memblock_alloc_reserved_mpc_new();
 | |
| 
 | |
| #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
 | |
| 	setup_bios_corruption_check();
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
 | |
| 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
 | |
| #endif
 | |
| 
 | |
| 	reserve_real_mode();
 | |
| 
 | |
| 	trim_platform_memory_ranges();
 | |
| 	trim_low_memory_range();
 | |
| 
 | |
| 	init_mem_mapping();
 | |
| 
 | |
| 	idt_setup_early_pf();
 | |
| 
 | |
| 	/*
 | |
| 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
 | |
| 	 * with the current CR4 value.  This may not be necessary, but
 | |
| 	 * auditing all the early-boot CR4 manipulation would be needed to
 | |
| 	 * rule it out.
 | |
| 	 *
 | |
| 	 * Mask off features that don't work outside long mode (just
 | |
| 	 * PCIDE for now).
 | |
| 	 */
 | |
| 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
 | |
| 
 | |
| 	memblock_set_current_limit(get_max_mapped());
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
 | |
| 	 */
 | |
| 
 | |
| #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
 | |
| 	if (init_ohci1394_dma_early)
 | |
| 		init_ohci1394_dma_on_all_controllers();
 | |
| #endif
 | |
| 	/* Allocate bigger log buffer */
 | |
| 	setup_log_buf(1);
 | |
| 
 | |
| 	if (efi_enabled(EFI_BOOT)) {
 | |
| 		switch (boot_params.secure_boot) {
 | |
| 		case efi_secureboot_mode_disabled:
 | |
| 			pr_info("Secure boot disabled\n");
 | |
| 			break;
 | |
| 		case efi_secureboot_mode_enabled:
 | |
| 			pr_info("Secure boot enabled\n");
 | |
| 			break;
 | |
| 		default:
 | |
| 			pr_info("Secure boot could not be determined\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	reserve_initrd();
 | |
| 
 | |
| 	acpi_table_upgrade();
 | |
| 
 | |
| 	vsmp_init();
 | |
| 
 | |
| 	io_delay_init();
 | |
| 
 | |
| 	early_platform_quirks();
 | |
| 
 | |
| 	/*
 | |
| 	 * Parse the ACPI tables for possible boot-time SMP configuration.
 | |
| 	 */
 | |
| 	acpi_boot_table_init();
 | |
| 
 | |
| 	early_acpi_boot_init();
 | |
| 
 | |
| 	initmem_init();
 | |
| 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_GBPAGES))
 | |
| 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve memory for crash kernel after SRAT is parsed so that it
 | |
| 	 * won't consume hotpluggable memory.
 | |
| 	 */
 | |
| 	reserve_crashkernel();
 | |
| 
 | |
| 	memblock_find_dma_reserve();
 | |
| 
 | |
| 	if (!early_xdbc_setup_hardware())
 | |
| 		early_xdbc_register_console();
 | |
| 
 | |
| 	x86_init.paging.pagetable_init();
 | |
| 
 | |
| 	kasan_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * Sync back kernel address range.
 | |
| 	 *
 | |
| 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
 | |
| 	 * this call?
 | |
| 	 */
 | |
| 	sync_initial_page_table();
 | |
| 
 | |
| 	tboot_probe();
 | |
| 
 | |
| 	map_vsyscall();
 | |
| 
 | |
| 	generic_apic_probe();
 | |
| 
 | |
| 	early_quirks();
 | |
| 
 | |
| 	/*
 | |
| 	 * Read APIC and some other early information from ACPI tables.
 | |
| 	 */
 | |
| 	acpi_boot_init();
 | |
| 	x86_dtb_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * get boot-time SMP configuration:
 | |
| 	 */
 | |
| 	get_smp_config();
 | |
| 
 | |
| 	/*
 | |
| 	 * Systems w/o ACPI and mptables might not have it mapped the local
 | |
| 	 * APIC yet, but prefill_possible_map() might need to access it.
 | |
| 	 */
 | |
| 	init_apic_mappings();
 | |
| 
 | |
| 	prefill_possible_map();
 | |
| 
 | |
| 	init_cpu_to_node();
 | |
| 	init_gi_nodes();
 | |
| 
 | |
| 	io_apic_init_mappings();
 | |
| 
 | |
| 	x86_init.hyper.guest_late_init();
 | |
| 
 | |
| 	e820__reserve_resources();
 | |
| 	e820__register_nosave_regions(max_pfn);
 | |
| 
 | |
| 	x86_init.resources.reserve_resources();
 | |
| 
 | |
| 	e820__setup_pci_gap();
 | |
| 
 | |
| #ifdef CONFIG_VT
 | |
| #if defined(CONFIG_VGA_CONSOLE)
 | |
| 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
 | |
| 		conswitchp = &vga_con;
 | |
| #endif
 | |
| #endif
 | |
| 	x86_init.oem.banner();
 | |
| 
 | |
| 	x86_init.timers.wallclock_init();
 | |
| 
 | |
| 	mcheck_init();
 | |
| 
 | |
| 	register_refined_jiffies(CLOCK_TICK_RATE);
 | |
| 
 | |
| #ifdef CONFIG_EFI
 | |
| 	if (efi_enabled(EFI_BOOT))
 | |
| 		efi_apply_memmap_quirks();
 | |
| #endif
 | |
| 
 | |
| 	unwind_init();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 
 | |
| static struct resource video_ram_resource = {
 | |
| 	.name	= "Video RAM area",
 | |
| 	.start	= 0xa0000,
 | |
| 	.end	= 0xbffff,
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 | |
| };
 | |
| 
 | |
| void __init i386_reserve_resources(void)
 | |
| {
 | |
| 	request_resource(&iomem_resource, &video_ram_resource);
 | |
| 	reserve_standard_io_resources();
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_X86_32 */
 | |
| 
 | |
| static struct notifier_block kernel_offset_notifier = {
 | |
| 	.notifier_call = dump_kernel_offset
 | |
| };
 | |
| 
 | |
| static int __init register_kernel_offset_dumper(void)
 | |
| {
 | |
| 	atomic_notifier_chain_register(&panic_notifier_list,
 | |
| 					&kernel_offset_notifier);
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(register_kernel_offset_dumper);
 |