d790b7eda9
This moves dma_(un)map_sg to the get_userptr/put_userptr and alloc/put memops of videobuf2-dma-sg.c and adds dma_sync_sg_for_device/cpu to the prepare/finish memops. Now that vb2-dma-sg will sync the buffers for you in the prepare/finish memops we can drop that from the drivers that use dma-sg. For the solo6x10 driver that was a bit more involved because it needs to copy JPEG or MPEG headers to the buffer before returning it to userspace, and that cannot be done in the old place since the buffer there is still setup for DMA access, not for CPU access. However, the buf_finish op is the ideal place to do this. By the time buf_finish is called the buffer is available for CPU access, so copying to the buffer is fine. [mchehab@osg.samsung.com: Fix a compilation breakage: drivers/media/v4l2-core/videobuf2-dma-sg.c:150:19: error: 'struct vb2_dma_sg_buf' has no member named 'dma_sgt'] Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Acked-by: Pawel Osciak <pawel@osciak.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
264 lines
7.8 KiB
C
264 lines
7.8 KiB
C
/*
|
|
* Driver for the Conexant CX23885 PCIe bridge
|
|
*
|
|
* Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
*
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/init.h>
|
|
|
|
#include "cx23885.h"
|
|
|
|
static unsigned int vbibufs = 4;
|
|
module_param(vbibufs, int, 0644);
|
|
MODULE_PARM_DESC(vbibufs, "number of vbi buffers, range 2-32");
|
|
|
|
static unsigned int vbi_debug;
|
|
module_param(vbi_debug, int, 0644);
|
|
MODULE_PARM_DESC(vbi_debug, "enable debug messages [vbi]");
|
|
|
|
#define dprintk(level, fmt, arg...)\
|
|
do { if (vbi_debug >= level)\
|
|
printk(KERN_DEBUG "%s/0: " fmt, dev->name, ## arg);\
|
|
} while (0)
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
#define VBI_LINE_LENGTH 1440
|
|
#define VBI_NTSC_LINE_COUNT 12
|
|
#define VBI_PAL_LINE_COUNT 18
|
|
|
|
|
|
int cx23885_vbi_fmt(struct file *file, void *priv,
|
|
struct v4l2_format *f)
|
|
{
|
|
struct cx23885_dev *dev = video_drvdata(file);
|
|
|
|
f->fmt.vbi.sampling_rate = 27000000;
|
|
f->fmt.vbi.samples_per_line = VBI_LINE_LENGTH;
|
|
f->fmt.vbi.sample_format = V4L2_PIX_FMT_GREY;
|
|
f->fmt.vbi.offset = 0;
|
|
f->fmt.vbi.flags = 0;
|
|
if (dev->tvnorm & V4L2_STD_525_60) {
|
|
/* ntsc */
|
|
f->fmt.vbi.start[0] = V4L2_VBI_ITU_525_F1_START + 9;
|
|
f->fmt.vbi.start[1] = V4L2_VBI_ITU_525_F2_START + 9;
|
|
f->fmt.vbi.count[0] = VBI_NTSC_LINE_COUNT;
|
|
f->fmt.vbi.count[1] = VBI_NTSC_LINE_COUNT;
|
|
} else if (dev->tvnorm & V4L2_STD_625_50) {
|
|
/* pal */
|
|
f->fmt.vbi.start[0] = V4L2_VBI_ITU_625_F1_START + 5;
|
|
f->fmt.vbi.start[1] = V4L2_VBI_ITU_625_F2_START + 5;
|
|
f->fmt.vbi.count[0] = VBI_PAL_LINE_COUNT;
|
|
f->fmt.vbi.count[1] = VBI_PAL_LINE_COUNT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* We're given the Video Interrupt status register.
|
|
* The cx23885_video_irq() func has already validated
|
|
* the potential error bits, we just need to
|
|
* deal with vbi payload and return indication if
|
|
* we actually processed any payload.
|
|
*/
|
|
int cx23885_vbi_irq(struct cx23885_dev *dev, u32 status)
|
|
{
|
|
u32 count;
|
|
int handled = 0;
|
|
|
|
if (status & VID_BC_MSK_VBI_RISCI1) {
|
|
dprintk(1, "%s() VID_BC_MSK_VBI_RISCI1\n", __func__);
|
|
spin_lock(&dev->slock);
|
|
count = cx_read(VID_A_GPCNT);
|
|
cx23885_video_wakeup(dev, &dev->vbiq, count);
|
|
spin_unlock(&dev->slock);
|
|
handled++;
|
|
}
|
|
|
|
return handled;
|
|
}
|
|
|
|
static int cx23885_start_vbi_dma(struct cx23885_dev *dev,
|
|
struct cx23885_dmaqueue *q,
|
|
struct cx23885_buffer *buf)
|
|
{
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
/* setup fifo + format */
|
|
cx23885_sram_channel_setup(dev, &dev->sram_channels[SRAM_CH02],
|
|
VBI_LINE_LENGTH, buf->risc.dma);
|
|
|
|
/* reset counter */
|
|
cx_write(VID_A_GPCNT_CTL, 3);
|
|
cx_write(VID_A_VBI_CTRL, 3);
|
|
cx_write(VBI_A_GPCNT_CTL, 3);
|
|
q->count = 0;
|
|
|
|
/* enable irq */
|
|
cx23885_irq_add_enable(dev, 0x01);
|
|
cx_set(VID_A_INT_MSK, 0x000022);
|
|
|
|
/* start dma */
|
|
cx_set(DEV_CNTRL2, (1<<5));
|
|
cx_set(VID_A_DMA_CTL, 0x22); /* FIFO and RISC enable */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
static int queue_setup(struct vb2_queue *q, const struct v4l2_format *fmt,
|
|
unsigned int *num_buffers, unsigned int *num_planes,
|
|
unsigned int sizes[], void *alloc_ctxs[])
|
|
{
|
|
struct cx23885_dev *dev = q->drv_priv;
|
|
unsigned lines = VBI_PAL_LINE_COUNT;
|
|
|
|
if (dev->tvnorm & V4L2_STD_525_60)
|
|
lines = VBI_NTSC_LINE_COUNT;
|
|
*num_planes = 1;
|
|
sizes[0] = lines * VBI_LINE_LENGTH * 2;
|
|
alloc_ctxs[0] = dev->alloc_ctx;
|
|
return 0;
|
|
}
|
|
|
|
static int buffer_prepare(struct vb2_buffer *vb)
|
|
{
|
|
struct cx23885_dev *dev = vb->vb2_queue->drv_priv;
|
|
struct cx23885_buffer *buf = container_of(vb,
|
|
struct cx23885_buffer, vb);
|
|
struct sg_table *sgt = vb2_dma_sg_plane_desc(vb, 0);
|
|
unsigned lines = VBI_PAL_LINE_COUNT;
|
|
|
|
if (dev->tvnorm & V4L2_STD_525_60)
|
|
lines = VBI_NTSC_LINE_COUNT;
|
|
|
|
if (vb2_plane_size(vb, 0) < lines * VBI_LINE_LENGTH * 2)
|
|
return -EINVAL;
|
|
vb2_set_plane_payload(vb, 0, lines * VBI_LINE_LENGTH * 2);
|
|
|
|
cx23885_risc_vbibuffer(dev->pci, &buf->risc,
|
|
sgt->sgl,
|
|
0, VBI_LINE_LENGTH * lines,
|
|
VBI_LINE_LENGTH, 0,
|
|
lines);
|
|
return 0;
|
|
}
|
|
|
|
static void buffer_finish(struct vb2_buffer *vb)
|
|
{
|
|
struct cx23885_buffer *buf = container_of(vb,
|
|
struct cx23885_buffer, vb);
|
|
|
|
cx23885_free_buffer(vb->vb2_queue->drv_priv, buf);
|
|
}
|
|
|
|
/*
|
|
* The risc program for each buffer works as follows: it starts with a simple
|
|
* 'JUMP to addr + 12', which is effectively a NOP. Then the code to DMA the
|
|
* buffer follows and at the end we have a JUMP back to the start + 12 (skipping
|
|
* the initial JUMP).
|
|
*
|
|
* This is the risc program of the first buffer to be queued if the active list
|
|
* is empty and it just keeps DMAing this buffer without generating any
|
|
* interrupts.
|
|
*
|
|
* If a new buffer is added then the initial JUMP in the code for that buffer
|
|
* will generate an interrupt which signals that the previous buffer has been
|
|
* DMAed successfully and that it can be returned to userspace.
|
|
*
|
|
* It also sets the final jump of the previous buffer to the start of the new
|
|
* buffer, thus chaining the new buffer into the DMA chain. This is a single
|
|
* atomic u32 write, so there is no race condition.
|
|
*
|
|
* The end-result of all this that you only get an interrupt when a buffer
|
|
* is ready, so the control flow is very easy.
|
|
*/
|
|
static void buffer_queue(struct vb2_buffer *vb)
|
|
{
|
|
struct cx23885_dev *dev = vb->vb2_queue->drv_priv;
|
|
struct cx23885_buffer *buf = container_of(vb, struct cx23885_buffer, vb);
|
|
struct cx23885_buffer *prev;
|
|
struct cx23885_dmaqueue *q = &dev->vbiq;
|
|
unsigned long flags;
|
|
|
|
buf->risc.cpu[1] = cpu_to_le32(buf->risc.dma + 12);
|
|
buf->risc.jmp[0] = cpu_to_le32(RISC_JUMP | RISC_CNT_INC);
|
|
buf->risc.jmp[1] = cpu_to_le32(buf->risc.dma + 12);
|
|
buf->risc.jmp[2] = cpu_to_le32(0); /* bits 63-32 */
|
|
|
|
if (list_empty(&q->active)) {
|
|
spin_lock_irqsave(&dev->slock, flags);
|
|
list_add_tail(&buf->queue, &q->active);
|
|
spin_unlock_irqrestore(&dev->slock, flags);
|
|
dprintk(2, "[%p/%d] vbi_queue - first active\n",
|
|
buf, buf->vb.v4l2_buf.index);
|
|
|
|
} else {
|
|
buf->risc.cpu[0] |= cpu_to_le32(RISC_IRQ1);
|
|
prev = list_entry(q->active.prev, struct cx23885_buffer,
|
|
queue);
|
|
spin_lock_irqsave(&dev->slock, flags);
|
|
list_add_tail(&buf->queue, &q->active);
|
|
spin_unlock_irqrestore(&dev->slock, flags);
|
|
prev->risc.jmp[1] = cpu_to_le32(buf->risc.dma);
|
|
dprintk(2, "[%p/%d] buffer_queue - append to active\n",
|
|
buf, buf->vb.v4l2_buf.index);
|
|
}
|
|
}
|
|
|
|
static int cx23885_start_streaming(struct vb2_queue *q, unsigned int count)
|
|
{
|
|
struct cx23885_dev *dev = q->drv_priv;
|
|
struct cx23885_dmaqueue *dmaq = &dev->vbiq;
|
|
struct cx23885_buffer *buf = list_entry(dmaq->active.next,
|
|
struct cx23885_buffer, queue);
|
|
|
|
cx23885_start_vbi_dma(dev, dmaq, buf);
|
|
return 0;
|
|
}
|
|
|
|
static void cx23885_stop_streaming(struct vb2_queue *q)
|
|
{
|
|
struct cx23885_dev *dev = q->drv_priv;
|
|
struct cx23885_dmaqueue *dmaq = &dev->vbiq;
|
|
unsigned long flags;
|
|
|
|
cx_clear(VID_A_DMA_CTL, 0x22); /* FIFO and RISC enable */
|
|
spin_lock_irqsave(&dev->slock, flags);
|
|
while (!list_empty(&dmaq->active)) {
|
|
struct cx23885_buffer *buf = list_entry(dmaq->active.next,
|
|
struct cx23885_buffer, queue);
|
|
|
|
list_del(&buf->queue);
|
|
vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR);
|
|
}
|
|
spin_unlock_irqrestore(&dev->slock, flags);
|
|
}
|
|
|
|
|
|
struct vb2_ops cx23885_vbi_qops = {
|
|
.queue_setup = queue_setup,
|
|
.buf_prepare = buffer_prepare,
|
|
.buf_finish = buffer_finish,
|
|
.buf_queue = buffer_queue,
|
|
.wait_prepare = vb2_ops_wait_prepare,
|
|
.wait_finish = vb2_ops_wait_finish,
|
|
.start_streaming = cx23885_start_streaming,
|
|
.stop_streaming = cx23885_stop_streaming,
|
|
};
|