linux/fs/xfs/xfs_iomap.c
Linus Torvalds 808eb24e0e New in this version:
- Refactor the incore extent map manipulations to use a cursor instead of
   directly modifying extent data.
 - Refactor the incore extent map cursor to use an in-memory btree instead
   of a single high-order allocation.  This eliminates a major source of
   complaints about insufficient memory when opening a heavily fragmented
   file into a system whose memory is also heavily fragmented.
 - Fix a longstanding bug where deleting a file with a complex extended
   attribute btree incorrectly handled memory pointers, which could lead
   to memory corruption.
 - Improve metadata validation to eliminate crashing problems found while
   fuzzing xfs.
 - Move the error injection tag definitions into libxfs to be shared with
   userspace components.
 - Fix some log recovery bugs where we'd underflow log block position
   vector and incorrectly fail log recovery.
 - Drain the buffer lru after log recovery to force recovered buffers back
   through the verifiers after mount.  On a v4 filesystem the log never
   attaches verifiers during log replay (v5 does), so we could end up with
   buffers marked verified but without having ever been verified.
 - Fix various other bugs.
 - Introduce the first part of a new online fsck tool.  The new fsck tool
   will be able to iterate every piece of metadata in the filesystem to
   look for obvious errors and corruptions.  In the next release cycle
   the checking will be extended to cross-reference with the other fs
   metadata, so this feature should only be used by the developers in the
   mean time.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABCgAGBQJaBdbZAAoJEPh/dxk0SrTrKoUP/RroXfZX3PSn3Z0Qo99E6Ev9
 +Z3CoJSSfXPJtSPBh6mUgonzzpKMqoN3kj8ZezYRLaeSEo+36ZkBtdLOb/8PydOZ
 4agNvtGDhwt88+1vSAccbT6l4wB/Z16NfzGaVN4dioHF1LpC4rORqdEuoq5xXxzo
 JVjuwTbz8uPSCpTTukzll9XFghvvj+YXm20MgEOCJiR5uULlGW5gZ38mNCmS76Bk
 Nks5dNSmNzlGwIpwsVmthd0s0jwj8WeQPnUOv27naRm4J6GOvB5gE8vn15e07AHT
 EqeTTHy25lnJhmpazphvDwbN3B6UdWCHGoG8ll2B+45pZegS7SKt4G6b4ittHq9x
 +ErCHFElrNCO77QDQmQoXHy6+DJV/Rdnyb5K575rA91TAb0q2C7OP6vQt6oV0rDM
 obZ7M3MvW9jBVn9A07Hdsk4+J2/SYW0jf5Dv4O69U1KuvZYUES2B++PL+u7pdTpy
 JPg1+pWO+AgxRKQNviFFzRwQDPE3JSp854TCE/5D/59h2ZeSWg+g4ZH5jcLjKwKM
 +uHbJgqOdgk2/WPHiEFCOouom3RUxdE1Yg7S87sbaQC4iU5oWWQ8Kenl2AUyNQEN
 yaU/leq6rqX3Z2z+T70ujWSvh5xl07YHLW3LJszZMi4w+i8C7c0lIX9F8CNu26Cf
 yJApOvMWhhY3Mf7Gn1l5
 =vQrJ
 -----END PGP SIGNATURE-----

Merge tag 'xfs-4.15-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Darrick Wong:
 "xfs: great scads of new stuff for 4.15.

  This merge cycle, we're making some substantive changes to XFS. The
  in-core extent mappings have been refactored to use proper iterators
  and a btree to handle heavily fragmented files without needing
  high-order memory allocations; some important log recovery bug fixes;
  and the first part of the online fsck functionality.

  (The online fsck feature is disabled by default and more pieces of it
  will be coming in future release cycles.)

  This giant pile of patches has been run through a full xfstests run
  over the weekend and through a quick xfstests run against this
  morning's master, with no major failures reported.

  New in this version:

   - Refactor the incore extent map manipulations to use a cursor
     instead of directly modifying extent data.

   - Refactor the incore extent map cursor to use an in-memory btree
     instead of a single high-order allocation. This eliminates a major
     source of complaints about insufficient memory when opening a
     heavily fragmented file into a system whose memory is also heavily
     fragmented.

   - Fix a longstanding bug where deleting a file with a complex
     extended attribute btree incorrectly handled memory pointers, which
     could lead to memory corruption.

   - Improve metadata validation to eliminate crashing problems found
     while fuzzing xfs.

   - Move the error injection tag definitions into libxfs to be shared
     with userspace components.

   - Fix some log recovery bugs where we'd underflow log block position
     vector and incorrectly fail log recovery.

   - Drain the buffer lru after log recovery to force recovered buffers
     back through the verifiers after mount. On a v4 filesystem the log
     never attaches verifiers during log replay (v5 does), so we could
     end up with buffers marked verified but without having ever been
     verified.

   - Fix various other bugs.

   - Introduce the first part of a new online fsck tool. The new fsck
     tool will be able to iterate every piece of metadata in the
     filesystem to look for obvious errors and corruptions. In the next
     release cycle the checking will be extended to cross-reference with
     the other fs metadata, so this feature should only be used by the
     developers in the mean time"

* tag 'xfs-4.15-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (131 commits)
  xfs: on failed mount, force-reclaim inodes after unmounting quota controls
  xfs: check the uniqueness of the AGFL entries
  xfs: remove u_int* type usage
  xfs: handle zero entries case in xfs_iext_rebalance_leaf
  xfs: add comments documenting the rebalance algorithm
  xfs: trivial indentation fixup for xfs_iext_remove_node
  xfs: remove a superflous assignment in xfs_iext_remove_node
  xfs: add some comments to xfs_iext_insert/xfs_iext_insert_node
  xfs: fix number of records handling in xfs_iext_split_leaf
  fs/xfs: Remove NULL check before kmem_cache_destroy
  xfs: only check da node header padding on v5 filesystems
  xfs: fix btree scrub deref check
  xfs: fix uninitialized return values in scrub code
  xfs: pass inode number to xfs_scrub_ino_set_{preen,warning}
  xfs: refactor the directory data block bestfree checks
  xfs: mark xlog_verify_dest_ptr STATIC
  xfs: mark xlog_recover_check_summary STATIC
  xfs: mark xfs_btree_check_lblock and xfs_btree_check_ptr static
  xfs: remove unreachable error injection code in xfs_qm_dqget
  xfs: remove unused debug counts for xfs_lock_inodes
  ...
2017-11-14 13:15:12 -08:00

1226 lines
33 KiB
C

/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* Copyright (c) 2016 Christoph Hellwig.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/iomap.h>
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_errortag.h"
#include "xfs_error.h"
#include "xfs_trans.h"
#include "xfs_trans_space.h"
#include "xfs_iomap.h"
#include "xfs_trace.h"
#include "xfs_icache.h"
#include "xfs_quota.h"
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
#include "xfs_reflink.h"
#define XFS_WRITEIO_ALIGN(mp,off) (((off) >> mp->m_writeio_log) \
<< mp->m_writeio_log)
void
xfs_bmbt_to_iomap(
struct xfs_inode *ip,
struct iomap *iomap,
struct xfs_bmbt_irec *imap)
{
struct xfs_mount *mp = ip->i_mount;
if (imap->br_startblock == HOLESTARTBLOCK) {
iomap->addr = IOMAP_NULL_ADDR;
iomap->type = IOMAP_HOLE;
} else if (imap->br_startblock == DELAYSTARTBLOCK) {
iomap->addr = IOMAP_NULL_ADDR;
iomap->type = IOMAP_DELALLOC;
} else {
iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
if (imap->br_state == XFS_EXT_UNWRITTEN)
iomap->type = IOMAP_UNWRITTEN;
else
iomap->type = IOMAP_MAPPED;
}
iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
iomap->bdev = xfs_find_bdev_for_inode(VFS_I(ip));
iomap->dax_dev = xfs_find_daxdev_for_inode(VFS_I(ip));
}
xfs_extlen_t
xfs_eof_alignment(
struct xfs_inode *ip,
xfs_extlen_t extsize)
{
struct xfs_mount *mp = ip->i_mount;
xfs_extlen_t align = 0;
if (!XFS_IS_REALTIME_INODE(ip)) {
/*
* Round up the allocation request to a stripe unit
* (m_dalign) boundary if the file size is >= stripe unit
* size, and we are allocating past the allocation eof.
*
* If mounted with the "-o swalloc" option the alignment is
* increased from the strip unit size to the stripe width.
*/
if (mp->m_swidth && (mp->m_flags & XFS_MOUNT_SWALLOC))
align = mp->m_swidth;
else if (mp->m_dalign)
align = mp->m_dalign;
if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
align = 0;
}
/*
* Always round up the allocation request to an extent boundary
* (when file on a real-time subvolume or has di_extsize hint).
*/
if (extsize) {
if (align)
align = roundup_64(align, extsize);
else
align = extsize;
}
return align;
}
STATIC int
xfs_iomap_eof_align_last_fsb(
struct xfs_inode *ip,
xfs_extlen_t extsize,
xfs_fileoff_t *last_fsb)
{
xfs_extlen_t align = xfs_eof_alignment(ip, extsize);
if (align) {
xfs_fileoff_t new_last_fsb = roundup_64(*last_fsb, align);
int eof, error;
error = xfs_bmap_eof(ip, new_last_fsb, XFS_DATA_FORK, &eof);
if (error)
return error;
if (eof)
*last_fsb = new_last_fsb;
}
return 0;
}
STATIC int
xfs_alert_fsblock_zero(
xfs_inode_t *ip,
xfs_bmbt_irec_t *imap)
{
xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
"Access to block zero in inode %llu "
"start_block: %llx start_off: %llx "
"blkcnt: %llx extent-state: %x",
(unsigned long long)ip->i_ino,
(unsigned long long)imap->br_startblock,
(unsigned long long)imap->br_startoff,
(unsigned long long)imap->br_blockcount,
imap->br_state);
return -EFSCORRUPTED;
}
int
xfs_iomap_write_direct(
xfs_inode_t *ip,
xfs_off_t offset,
size_t count,
xfs_bmbt_irec_t *imap,
int nmaps)
{
xfs_mount_t *mp = ip->i_mount;
xfs_fileoff_t offset_fsb;
xfs_fileoff_t last_fsb;
xfs_filblks_t count_fsb, resaligned;
xfs_fsblock_t firstfsb;
xfs_extlen_t extsz;
int nimaps;
int quota_flag;
int rt;
xfs_trans_t *tp;
struct xfs_defer_ops dfops;
uint qblocks, resblks, resrtextents;
int error;
int lockmode;
int bmapi_flags = XFS_BMAPI_PREALLOC;
uint tflags = 0;
rt = XFS_IS_REALTIME_INODE(ip);
extsz = xfs_get_extsz_hint(ip);
lockmode = XFS_ILOCK_SHARED; /* locked by caller */
ASSERT(xfs_isilocked(ip, lockmode));
offset_fsb = XFS_B_TO_FSBT(mp, offset);
last_fsb = XFS_B_TO_FSB(mp, ((xfs_ufsize_t)(offset + count)));
if ((offset + count) > XFS_ISIZE(ip)) {
/*
* Assert that the in-core extent list is present since this can
* call xfs_iread_extents() and we only have the ilock shared.
* This should be safe because the lock was held around a bmapi
* call in the caller and we only need it to access the in-core
* list.
*/
ASSERT(XFS_IFORK_PTR(ip, XFS_DATA_FORK)->if_flags &
XFS_IFEXTENTS);
error = xfs_iomap_eof_align_last_fsb(ip, extsz, &last_fsb);
if (error)
goto out_unlock;
} else {
if (nmaps && (imap->br_startblock == HOLESTARTBLOCK))
last_fsb = MIN(last_fsb, (xfs_fileoff_t)
imap->br_blockcount +
imap->br_startoff);
}
count_fsb = last_fsb - offset_fsb;
ASSERT(count_fsb > 0);
resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, extsz);
if (unlikely(rt)) {
resrtextents = qblocks = resaligned;
resrtextents /= mp->m_sb.sb_rextsize;
resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
quota_flag = XFS_QMOPT_RES_RTBLKS;
} else {
resrtextents = 0;
resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
quota_flag = XFS_QMOPT_RES_REGBLKS;
}
/*
* Drop the shared lock acquired by the caller, attach the dquot if
* necessary and move on to transaction setup.
*/
xfs_iunlock(ip, lockmode);
error = xfs_qm_dqattach(ip, 0);
if (error)
return error;
/*
* For DAX, we do not allocate unwritten extents, but instead we zero
* the block before we commit the transaction. Ideally we'd like to do
* this outside the transaction context, but if we commit and then crash
* we may not have zeroed the blocks and this will be exposed on
* recovery of the allocation. Hence we must zero before commit.
*
* Further, if we are mapping unwritten extents here, we need to zero
* and convert them to written so that we don't need an unwritten extent
* callback for DAX. This also means that we need to be able to dip into
* the reserve block pool for bmbt block allocation if there is no space
* left but we need to do unwritten extent conversion.
*/
if (IS_DAX(VFS_I(ip))) {
bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
if (imap->br_state == XFS_EXT_UNWRITTEN) {
tflags |= XFS_TRANS_RESERVE;
resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
}
}
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, resrtextents,
tflags, &tp);
if (error)
return error;
lockmode = XFS_ILOCK_EXCL;
xfs_ilock(ip, lockmode);
error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 0, quota_flag);
if (error)
goto out_trans_cancel;
xfs_trans_ijoin(tp, ip, 0);
/*
* From this point onwards we overwrite the imap pointer that the
* caller gave to us.
*/
xfs_defer_init(&dfops, &firstfsb);
nimaps = 1;
error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
bmapi_flags, &firstfsb, resblks, imap,
&nimaps, &dfops);
if (error)
goto out_bmap_cancel;
/*
* Complete the transaction
*/
error = xfs_defer_finish(&tp, &dfops);
if (error)
goto out_bmap_cancel;
error = xfs_trans_commit(tp);
if (error)
goto out_unlock;
/*
* Copy any maps to caller's array and return any error.
*/
if (nimaps == 0) {
error = -ENOSPC;
goto out_unlock;
}
if (!(imap->br_startblock || XFS_IS_REALTIME_INODE(ip)))
error = xfs_alert_fsblock_zero(ip, imap);
out_unlock:
xfs_iunlock(ip, lockmode);
return error;
out_bmap_cancel:
xfs_defer_cancel(&dfops);
xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
out_trans_cancel:
xfs_trans_cancel(tp);
goto out_unlock;
}
STATIC bool
xfs_quota_need_throttle(
struct xfs_inode *ip,
int type,
xfs_fsblock_t alloc_blocks)
{
struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
if (!dq || !xfs_this_quota_on(ip->i_mount, type))
return false;
/* no hi watermark, no throttle */
if (!dq->q_prealloc_hi_wmark)
return false;
/* under the lo watermark, no throttle */
if (dq->q_res_bcount + alloc_blocks < dq->q_prealloc_lo_wmark)
return false;
return true;
}
STATIC void
xfs_quota_calc_throttle(
struct xfs_inode *ip,
int type,
xfs_fsblock_t *qblocks,
int *qshift,
int64_t *qfreesp)
{
int64_t freesp;
int shift = 0;
struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
/* no dq, or over hi wmark, squash the prealloc completely */
if (!dq || dq->q_res_bcount >= dq->q_prealloc_hi_wmark) {
*qblocks = 0;
*qfreesp = 0;
return;
}
freesp = dq->q_prealloc_hi_wmark - dq->q_res_bcount;
if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
shift = 2;
if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
shift += 2;
if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
shift += 2;
}
if (freesp < *qfreesp)
*qfreesp = freesp;
/* only overwrite the throttle values if we are more aggressive */
if ((freesp >> shift) < (*qblocks >> *qshift)) {
*qblocks = freesp;
*qshift = shift;
}
}
/*
* If we are doing a write at the end of the file and there are no allocations
* past this one, then extend the allocation out to the file system's write
* iosize.
*
* If we don't have a user specified preallocation size, dynamically increase
* the preallocation size as the size of the file grows. Cap the maximum size
* at a single extent or less if the filesystem is near full. The closer the
* filesystem is to full, the smaller the maximum prealocation.
*
* As an exception we don't do any preallocation at all if the file is smaller
* than the minimum preallocation and we are using the default dynamic
* preallocation scheme, as it is likely this is the only write to the file that
* is going to be done.
*
* We clean up any extra space left over when the file is closed in
* xfs_inactive().
*/
STATIC xfs_fsblock_t
xfs_iomap_prealloc_size(
struct xfs_inode *ip,
loff_t offset,
loff_t count,
struct xfs_iext_cursor *icur)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
struct xfs_bmbt_irec prev;
int shift = 0;
int64_t freesp;
xfs_fsblock_t qblocks;
int qshift = 0;
xfs_fsblock_t alloc_blocks = 0;
if (offset + count <= XFS_ISIZE(ip))
return 0;
if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) &&
(XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_writeio_blocks)))
return 0;
/*
* If an explicit allocsize is set, the file is small, or we
* are writing behind a hole, then use the minimum prealloc:
*/
if ((mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) ||
XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
!xfs_iext_peek_prev_extent(ifp, icur, &prev) ||
prev.br_startoff + prev.br_blockcount < offset_fsb)
return mp->m_writeio_blocks;
/*
* Determine the initial size of the preallocation. We are beyond the
* current EOF here, but we need to take into account whether this is
* a sparse write or an extending write when determining the
* preallocation size. Hence we need to look up the extent that ends
* at the current write offset and use the result to determine the
* preallocation size.
*
* If the extent is a hole, then preallocation is essentially disabled.
* Otherwise we take the size of the preceding data extent as the basis
* for the preallocation size. If the size of the extent is greater than
* half the maximum extent length, then use the current offset as the
* basis. This ensures that for large files the preallocation size
* always extends to MAXEXTLEN rather than falling short due to things
* like stripe unit/width alignment of real extents.
*/
if (prev.br_blockcount <= (MAXEXTLEN >> 1))
alloc_blocks = prev.br_blockcount << 1;
else
alloc_blocks = XFS_B_TO_FSB(mp, offset);
if (!alloc_blocks)
goto check_writeio;
qblocks = alloc_blocks;
/*
* MAXEXTLEN is not a power of two value but we round the prealloc down
* to the nearest power of two value after throttling. To prevent the
* round down from unconditionally reducing the maximum supported prealloc
* size, we round up first, apply appropriate throttling, round down and
* cap the value to MAXEXTLEN.
*/
alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(MAXEXTLEN),
alloc_blocks);
freesp = percpu_counter_read_positive(&mp->m_fdblocks);
if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
shift = 2;
if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
shift++;
if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
shift++;
if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
shift++;
if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
shift++;
}
/*
* Check each quota to cap the prealloc size, provide a shift value to
* throttle with and adjust amount of available space.
*/
if (xfs_quota_need_throttle(ip, XFS_DQ_USER, alloc_blocks))
xfs_quota_calc_throttle(ip, XFS_DQ_USER, &qblocks, &qshift,
&freesp);
if (xfs_quota_need_throttle(ip, XFS_DQ_GROUP, alloc_blocks))
xfs_quota_calc_throttle(ip, XFS_DQ_GROUP, &qblocks, &qshift,
&freesp);
if (xfs_quota_need_throttle(ip, XFS_DQ_PROJ, alloc_blocks))
xfs_quota_calc_throttle(ip, XFS_DQ_PROJ, &qblocks, &qshift,
&freesp);
/*
* The final prealloc size is set to the minimum of free space available
* in each of the quotas and the overall filesystem.
*
* The shift throttle value is set to the maximum value as determined by
* the global low free space values and per-quota low free space values.
*/
alloc_blocks = MIN(alloc_blocks, qblocks);
shift = MAX(shift, qshift);
if (shift)
alloc_blocks >>= shift;
/*
* rounddown_pow_of_two() returns an undefined result if we pass in
* alloc_blocks = 0.
*/
if (alloc_blocks)
alloc_blocks = rounddown_pow_of_two(alloc_blocks);
if (alloc_blocks > MAXEXTLEN)
alloc_blocks = MAXEXTLEN;
/*
* If we are still trying to allocate more space than is
* available, squash the prealloc hard. This can happen if we
* have a large file on a small filesystem and the above
* lowspace thresholds are smaller than MAXEXTLEN.
*/
while (alloc_blocks && alloc_blocks >= freesp)
alloc_blocks >>= 4;
check_writeio:
if (alloc_blocks < mp->m_writeio_blocks)
alloc_blocks = mp->m_writeio_blocks;
trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
mp->m_writeio_blocks);
return alloc_blocks;
}
static int
xfs_file_iomap_begin_delay(
struct inode *inode,
loff_t offset,
loff_t count,
struct iomap *iomap)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
xfs_fileoff_t maxbytes_fsb =
XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
xfs_fileoff_t end_fsb;
int error = 0, eof = 0;
struct xfs_bmbt_irec got;
struct xfs_iext_cursor icur;
xfs_fsblock_t prealloc_blocks = 0;
ASSERT(!XFS_IS_REALTIME_INODE(ip));
ASSERT(!xfs_get_extsz_hint(ip));
xfs_ilock(ip, XFS_ILOCK_EXCL);
if (unlikely(XFS_TEST_ERROR(
(XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_EXTENTS &&
XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_BTREE),
mp, XFS_ERRTAG_BMAPIFORMAT))) {
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
error = -EFSCORRUPTED;
goto out_unlock;
}
XFS_STATS_INC(mp, xs_blk_mapw);
if (!(ifp->if_flags & XFS_IFEXTENTS)) {
error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
if (error)
goto out_unlock;
}
eof = !xfs_iext_lookup_extent(ip, ifp, offset_fsb, &icur, &got);
if (!eof && got.br_startoff <= offset_fsb) {
if (xfs_is_reflink_inode(ip)) {
bool shared;
end_fsb = min(XFS_B_TO_FSB(mp, offset + count),
maxbytes_fsb);
xfs_trim_extent(&got, offset_fsb, end_fsb - offset_fsb);
error = xfs_reflink_reserve_cow(ip, &got, &shared);
if (error)
goto out_unlock;
}
trace_xfs_iomap_found(ip, offset, count, 0, &got);
goto done;
}
error = xfs_qm_dqattach_locked(ip, 0);
if (error)
goto out_unlock;
/*
* We cap the maximum length we map here to MAX_WRITEBACK_PAGES pages
* to keep the chunks of work done where somewhat symmetric with the
* work writeback does. This is a completely arbitrary number pulled
* out of thin air as a best guess for initial testing.
*
* Note that the values needs to be less than 32-bits wide until
* the lower level functions are updated.
*/
count = min_t(loff_t, count, 1024 * PAGE_SIZE);
end_fsb = min(XFS_B_TO_FSB(mp, offset + count), maxbytes_fsb);
if (eof) {
prealloc_blocks = xfs_iomap_prealloc_size(ip, offset, count,
&icur);
if (prealloc_blocks) {
xfs_extlen_t align;
xfs_off_t end_offset;
xfs_fileoff_t p_end_fsb;
end_offset = XFS_WRITEIO_ALIGN(mp, offset + count - 1);
p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
prealloc_blocks;
align = xfs_eof_alignment(ip, 0);
if (align)
p_end_fsb = roundup_64(p_end_fsb, align);
p_end_fsb = min(p_end_fsb, maxbytes_fsb);
ASSERT(p_end_fsb > offset_fsb);
prealloc_blocks = p_end_fsb - end_fsb;
}
}
retry:
error = xfs_bmapi_reserve_delalloc(ip, XFS_DATA_FORK, offset_fsb,
end_fsb - offset_fsb, prealloc_blocks, &got, &icur,
eof);
switch (error) {
case 0:
break;
case -ENOSPC:
case -EDQUOT:
/* retry without any preallocation */
trace_xfs_delalloc_enospc(ip, offset, count);
if (prealloc_blocks) {
prealloc_blocks = 0;
goto retry;
}
/*FALLTHRU*/
default:
goto out_unlock;
}
/*
* Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
* them out if the write happens to fail.
*/
iomap->flags = IOMAP_F_NEW;
trace_xfs_iomap_alloc(ip, offset, count, 0, &got);
done:
if (isnullstartblock(got.br_startblock))
got.br_startblock = DELAYSTARTBLOCK;
if (!got.br_startblock) {
error = xfs_alert_fsblock_zero(ip, &got);
if (error)
goto out_unlock;
}
xfs_bmbt_to_iomap(ip, iomap, &got);
out_unlock:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
}
/*
* Pass in a delayed allocate extent, convert it to real extents;
* return to the caller the extent we create which maps on top of
* the originating callers request.
*
* Called without a lock on the inode.
*
* We no longer bother to look at the incoming map - all we have to
* guarantee is that whatever we allocate fills the required range.
*/
int
xfs_iomap_write_allocate(
xfs_inode_t *ip,
int whichfork,
xfs_off_t offset,
xfs_bmbt_irec_t *imap)
{
xfs_mount_t *mp = ip->i_mount;
xfs_fileoff_t offset_fsb, last_block;
xfs_fileoff_t end_fsb, map_start_fsb;
xfs_fsblock_t first_block;
struct xfs_defer_ops dfops;
xfs_filblks_t count_fsb;
xfs_trans_t *tp;
int nimaps;
int error = 0;
int flags = XFS_BMAPI_DELALLOC;
int nres;
if (whichfork == XFS_COW_FORK)
flags |= XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC;
/*
* Make sure that the dquots are there.
*/
error = xfs_qm_dqattach(ip, 0);
if (error)
return error;
offset_fsb = XFS_B_TO_FSBT(mp, offset);
count_fsb = imap->br_blockcount;
map_start_fsb = imap->br_startoff;
XFS_STATS_ADD(mp, xs_xstrat_bytes, XFS_FSB_TO_B(mp, count_fsb));
while (count_fsb != 0) {
/*
* Set up a transaction with which to allocate the
* backing store for the file. Do allocations in a
* loop until we get some space in the range we are
* interested in. The other space that might be allocated
* is in the delayed allocation extent on which we sit
* but before our buffer starts.
*/
nimaps = 0;
while (nimaps == 0) {
nres = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
/*
* We have already reserved space for the extent and any
* indirect blocks when creating the delalloc extent,
* there is no need to reserve space in this transaction
* again.
*/
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0,
0, XFS_TRANS_RESERVE, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
xfs_defer_init(&dfops, &first_block);
/*
* it is possible that the extents have changed since
* we did the read call as we dropped the ilock for a
* while. We have to be careful about truncates or hole
* punchs here - we are not allowed to allocate
* non-delalloc blocks here.
*
* The only protection against truncation is the pages
* for the range we are being asked to convert are
* locked and hence a truncate will block on them
* first.
*
* As a result, if we go beyond the range we really
* need and hit an delalloc extent boundary followed by
* a hole while we have excess blocks in the map, we
* will fill the hole incorrectly and overrun the
* transaction reservation.
*
* Using a single map prevents this as we are forced to
* check each map we look for overlap with the desired
* range and abort as soon as we find it. Also, given
* that we only return a single map, having one beyond
* what we can return is probably a bit silly.
*
* We also need to check that we don't go beyond EOF;
* this is a truncate optimisation as a truncate sets
* the new file size before block on the pages we
* currently have locked under writeback. Because they
* are about to be tossed, we don't need to write them
* back....
*/
nimaps = 1;
end_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
error = xfs_bmap_last_offset(ip, &last_block,
XFS_DATA_FORK);
if (error)
goto trans_cancel;
last_block = XFS_FILEOFF_MAX(last_block, end_fsb);
if ((map_start_fsb + count_fsb) > last_block) {
count_fsb = last_block - map_start_fsb;
if (count_fsb == 0) {
error = -EAGAIN;
goto trans_cancel;
}
}
/*
* From this point onwards we overwrite the imap
* pointer that the caller gave to us.
*/
error = xfs_bmapi_write(tp, ip, map_start_fsb,
count_fsb, flags, &first_block,
nres, imap, &nimaps,
&dfops);
if (error)
goto trans_cancel;
error = xfs_defer_finish(&tp, &dfops);
if (error)
goto trans_cancel;
error = xfs_trans_commit(tp);
if (error)
goto error0;
xfs_iunlock(ip, XFS_ILOCK_EXCL);
}
/*
* See if we were able to allocate an extent that
* covers at least part of the callers request
*/
if (!(imap->br_startblock || XFS_IS_REALTIME_INODE(ip)))
return xfs_alert_fsblock_zero(ip, imap);
if ((offset_fsb >= imap->br_startoff) &&
(offset_fsb < (imap->br_startoff +
imap->br_blockcount))) {
XFS_STATS_INC(mp, xs_xstrat_quick);
return 0;
}
/*
* So far we have not mapped the requested part of the
* file, just surrounding data, try again.
*/
count_fsb -= imap->br_blockcount;
map_start_fsb = imap->br_startoff + imap->br_blockcount;
}
trans_cancel:
xfs_defer_cancel(&dfops);
xfs_trans_cancel(tp);
error0:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
}
int
xfs_iomap_write_unwritten(
xfs_inode_t *ip,
xfs_off_t offset,
xfs_off_t count,
bool update_isize)
{
xfs_mount_t *mp = ip->i_mount;
xfs_fileoff_t offset_fsb;
xfs_filblks_t count_fsb;
xfs_filblks_t numblks_fsb;
xfs_fsblock_t firstfsb;
int nimaps;
xfs_trans_t *tp;
xfs_bmbt_irec_t imap;
struct xfs_defer_ops dfops;
struct inode *inode = VFS_I(ip);
xfs_fsize_t i_size;
uint resblks;
int error;
trace_xfs_unwritten_convert(ip, offset, count);
offset_fsb = XFS_B_TO_FSBT(mp, offset);
count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
/*
* Reserve enough blocks in this transaction for two complete extent
* btree splits. We may be converting the middle part of an unwritten
* extent and in this case we will insert two new extents in the btree
* each of which could cause a full split.
*
* This reservation amount will be used in the first call to
* xfs_bmbt_split() to select an AG with enough space to satisfy the
* rest of the operation.
*/
resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
do {
/*
* Set up a transaction to convert the range of extents
* from unwritten to real. Do allocations in a loop until
* we have covered the range passed in.
*
* Note that we can't risk to recursing back into the filesystem
* here as we might be asked to write out the same inode that we
* complete here and might deadlock on the iolock.
*/
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
/*
* Modify the unwritten extent state of the buffer.
*/
xfs_defer_init(&dfops, &firstfsb);
nimaps = 1;
error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
XFS_BMAPI_CONVERT, &firstfsb, resblks,
&imap, &nimaps, &dfops);
if (error)
goto error_on_bmapi_transaction;
/*
* Log the updated inode size as we go. We have to be careful
* to only log it up to the actual write offset if it is
* halfway into a block.
*/
i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
if (i_size > offset + count)
i_size = offset + count;
if (update_isize && i_size > i_size_read(inode))
i_size_write(inode, i_size);
i_size = xfs_new_eof(ip, i_size);
if (i_size) {
ip->i_d.di_size = i_size;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
}
error = xfs_defer_finish(&tp, &dfops);
if (error)
goto error_on_bmapi_transaction;
error = xfs_trans_commit(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
return error;
if (!(imap.br_startblock || XFS_IS_REALTIME_INODE(ip)))
return xfs_alert_fsblock_zero(ip, &imap);
if ((numblks_fsb = imap.br_blockcount) == 0) {
/*
* The numblks_fsb value should always get
* smaller, otherwise the loop is stuck.
*/
ASSERT(imap.br_blockcount);
break;
}
offset_fsb += numblks_fsb;
count_fsb -= numblks_fsb;
} while (count_fsb > 0);
return 0;
error_on_bmapi_transaction:
xfs_defer_cancel(&dfops);
xfs_trans_cancel(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
}
static inline bool imap_needs_alloc(struct inode *inode,
struct xfs_bmbt_irec *imap, int nimaps)
{
return !nimaps ||
imap->br_startblock == HOLESTARTBLOCK ||
imap->br_startblock == DELAYSTARTBLOCK ||
(IS_DAX(inode) && imap->br_state == XFS_EXT_UNWRITTEN);
}
static inline bool need_excl_ilock(struct xfs_inode *ip, unsigned flags)
{
/*
* COW writes will allocate delalloc space, so we need to make sure
* to take the lock exclusively here.
*/
if (xfs_is_reflink_inode(ip) && (flags & (IOMAP_WRITE | IOMAP_ZERO)))
return true;
if ((flags & IOMAP_DIRECT) && (flags & IOMAP_WRITE))
return true;
return false;
}
static int
xfs_file_iomap_begin(
struct inode *inode,
loff_t offset,
loff_t length,
unsigned flags,
struct iomap *iomap)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
struct xfs_bmbt_irec imap;
xfs_fileoff_t offset_fsb, end_fsb;
int nimaps = 1, error = 0;
bool shared = false, trimmed = false;
unsigned lockmode;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
if (((flags & (IOMAP_WRITE | IOMAP_DIRECT)) == IOMAP_WRITE) &&
!IS_DAX(inode) && !xfs_get_extsz_hint(ip)) {
/* Reserve delalloc blocks for regular writeback. */
return xfs_file_iomap_begin_delay(inode, offset, length, iomap);
}
if (need_excl_ilock(ip, flags)) {
lockmode = XFS_ILOCK_EXCL;
xfs_ilock(ip, XFS_ILOCK_EXCL);
} else {
lockmode = xfs_ilock_data_map_shared(ip);
}
if ((flags & IOMAP_NOWAIT) && !(ip->i_df.if_flags & XFS_IFEXTENTS)) {
error = -EAGAIN;
goto out_unlock;
}
ASSERT(offset <= mp->m_super->s_maxbytes);
if ((xfs_fsize_t)offset + length > mp->m_super->s_maxbytes)
length = mp->m_super->s_maxbytes - offset;
offset_fsb = XFS_B_TO_FSBT(mp, offset);
end_fsb = XFS_B_TO_FSB(mp, offset + length);
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
&nimaps, 0);
if (error)
goto out_unlock;
if (flags & IOMAP_REPORT) {
/* Trim the mapping to the nearest shared extent boundary. */
error = xfs_reflink_trim_around_shared(ip, &imap, &shared,
&trimmed);
if (error)
goto out_unlock;
}
if ((flags & (IOMAP_WRITE | IOMAP_ZERO)) && xfs_is_reflink_inode(ip)) {
if (flags & IOMAP_DIRECT) {
/*
* A reflinked inode will result in CoW alloc.
* FIXME: It could still overwrite on unshared extents
* and not need allocation.
*/
if (flags & IOMAP_NOWAIT) {
error = -EAGAIN;
goto out_unlock;
}
/* may drop and re-acquire the ilock */
error = xfs_reflink_allocate_cow(ip, &imap, &shared,
&lockmode);
if (error)
goto out_unlock;
} else {
error = xfs_reflink_reserve_cow(ip, &imap, &shared);
if (error)
goto out_unlock;
}
end_fsb = imap.br_startoff + imap.br_blockcount;
length = XFS_FSB_TO_B(mp, end_fsb) - offset;
}
if ((flags & IOMAP_WRITE) && imap_needs_alloc(inode, &imap, nimaps)) {
/*
* If nowait is set bail since we are going to make
* allocations.
*/
if (flags & IOMAP_NOWAIT) {
error = -EAGAIN;
goto out_unlock;
}
/*
* We cap the maximum length we map here to MAX_WRITEBACK_PAGES
* pages to keep the chunks of work done where somewhat symmetric
* with the work writeback does. This is a completely arbitrary
* number pulled out of thin air as a best guess for initial
* testing.
*
* Note that the values needs to be less than 32-bits wide until
* the lower level functions are updated.
*/
length = min_t(loff_t, length, 1024 * PAGE_SIZE);
/*
* xfs_iomap_write_direct() expects the shared lock. It
* is unlocked on return.
*/
if (lockmode == XFS_ILOCK_EXCL)
xfs_ilock_demote(ip, lockmode);
error = xfs_iomap_write_direct(ip, offset, length, &imap,
nimaps);
if (error)
return error;
iomap->flags = IOMAP_F_NEW;
trace_xfs_iomap_alloc(ip, offset, length, 0, &imap);
} else {
ASSERT(nimaps);
xfs_iunlock(ip, lockmode);
trace_xfs_iomap_found(ip, offset, length, 0, &imap);
}
xfs_bmbt_to_iomap(ip, iomap, &imap);
if (shared)
iomap->flags |= IOMAP_F_SHARED;
return 0;
out_unlock:
xfs_iunlock(ip, lockmode);
return error;
}
static int
xfs_file_iomap_end_delalloc(
struct xfs_inode *ip,
loff_t offset,
loff_t length,
ssize_t written,
struct iomap *iomap)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t start_fsb;
xfs_fileoff_t end_fsb;
int error = 0;
/*
* Behave as if the write failed if drop writes is enabled. Set the NEW
* flag to force delalloc cleanup.
*/
if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_DROP_WRITES)) {
iomap->flags |= IOMAP_F_NEW;
written = 0;
}
/*
* start_fsb refers to the first unused block after a short write. If
* nothing was written, round offset down to point at the first block in
* the range.
*/
if (unlikely(!written))
start_fsb = XFS_B_TO_FSBT(mp, offset);
else
start_fsb = XFS_B_TO_FSB(mp, offset + written);
end_fsb = XFS_B_TO_FSB(mp, offset + length);
/*
* Trim delalloc blocks if they were allocated by this write and we
* didn't manage to write the whole range.
*
* We don't need to care about racing delalloc as we hold i_mutex
* across the reserve/allocate/unreserve calls. If there are delalloc
* blocks in the range, they are ours.
*/
if ((iomap->flags & IOMAP_F_NEW) && start_fsb < end_fsb) {
truncate_pagecache_range(VFS_I(ip), XFS_FSB_TO_B(mp, start_fsb),
XFS_FSB_TO_B(mp, end_fsb) - 1);
xfs_ilock(ip, XFS_ILOCK_EXCL);
error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
end_fsb - start_fsb);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error && !XFS_FORCED_SHUTDOWN(mp)) {
xfs_alert(mp, "%s: unable to clean up ino %lld",
__func__, ip->i_ino);
return error;
}
}
return 0;
}
static int
xfs_file_iomap_end(
struct inode *inode,
loff_t offset,
loff_t length,
ssize_t written,
unsigned flags,
struct iomap *iomap)
{
if ((flags & IOMAP_WRITE) && iomap->type == IOMAP_DELALLOC)
return xfs_file_iomap_end_delalloc(XFS_I(inode), offset,
length, written, iomap);
return 0;
}
const struct iomap_ops xfs_iomap_ops = {
.iomap_begin = xfs_file_iomap_begin,
.iomap_end = xfs_file_iomap_end,
};
static int
xfs_xattr_iomap_begin(
struct inode *inode,
loff_t offset,
loff_t length,
unsigned flags,
struct iomap *iomap)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
struct xfs_bmbt_irec imap;
int nimaps = 1, error = 0;
unsigned lockmode;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
lockmode = xfs_ilock_attr_map_shared(ip);
/* if there are no attribute fork or extents, return ENOENT */
if (!XFS_IFORK_Q(ip) || !ip->i_d.di_anextents) {
error = -ENOENT;
goto out_unlock;
}
ASSERT(ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL);
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
&nimaps, XFS_BMAPI_ENTIRE | XFS_BMAPI_ATTRFORK);
out_unlock:
xfs_iunlock(ip, lockmode);
if (!error) {
ASSERT(nimaps);
xfs_bmbt_to_iomap(ip, iomap, &imap);
}
return error;
}
const struct iomap_ops xfs_xattr_iomap_ops = {
.iomap_begin = xfs_xattr_iomap_begin,
};