7bd55429fd
This patch reshuffles headers to define pr_fmt before <linux/xxx.h>. It can avoid pr_fmt redefine warnning from linux/xxx.h like below: CC [M] /home/ray/gpu/BUILD/x86_64/linux/drivers/gpu/drm/amd/amdgpu//../powerplay/amd_powerplay.o /home/ray/gpu/BUILD/x86_64/linux/drivers/gpu/drm/amd/amdgpu//../powerplay/amd_powerplay.c:24:0: warning: "pr_fmt" redefined #define pr_fmt(fmt) "[powerplay] " fmt ^ In file included from include/linux/kernel.h:13:0, from include/linux/list.h:8, from include/linux/agp_backend.h:33, Signed-off-by: Huang Rui <ray.huang@amd.com> Reviewed-by: Edward O'Callaghan <funfunctor@folklore1984.net> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
1700 lines
53 KiB
C
1700 lines
53 KiB
C
/*
|
|
* Copyright 2015 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
#include "pp_debug.h"
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "processpptables.h"
|
|
#include <atom-types.h>
|
|
#include <atombios.h>
|
|
#include "pptable.h"
|
|
#include "power_state.h"
|
|
#include "hwmgr.h"
|
|
#include "hardwaremanager.h"
|
|
|
|
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8 24
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V9 26
|
|
|
|
#define NUM_BITS_CLOCK_INFO_ARRAY_INDEX 6
|
|
|
|
static uint16_t get_vce_table_offset(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t vce_table_offset = 0;
|
|
|
|
if (le16_to_cpu(powerplay_table->usTableSize) >=
|
|
sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
|
|
const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
|
|
(const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
|
|
|
|
if (powerplay_table3->usExtendendedHeaderOffset > 0) {
|
|
const ATOM_PPLIB_EXTENDEDHEADER *extended_header =
|
|
(const ATOM_PPLIB_EXTENDEDHEADER *)
|
|
(((unsigned long)powerplay_table3) +
|
|
le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
|
|
if (le16_to_cpu(extended_header->usSize) >=
|
|
SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2)
|
|
vce_table_offset = le16_to_cpu(extended_header->usVCETableOffset);
|
|
}
|
|
}
|
|
|
|
return vce_table_offset;
|
|
}
|
|
|
|
static uint16_t get_vce_clock_info_array_offset(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t table_offset = get_vce_table_offset(hwmgr,
|
|
powerplay_table);
|
|
|
|
if (table_offset > 0)
|
|
return table_offset + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t get_vce_clock_info_array_size(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr,
|
|
powerplay_table);
|
|
uint16_t table_size = 0;
|
|
|
|
if (table_offset > 0) {
|
|
const VCEClockInfoArray *p = (const VCEClockInfoArray *)
|
|
(((unsigned long) powerplay_table) + table_offset);
|
|
table_size = sizeof(uint8_t) + p->ucNumEntries * sizeof(VCEClockInfo);
|
|
}
|
|
|
|
return table_size;
|
|
}
|
|
|
|
static uint16_t get_vce_clock_voltage_limit_table_offset(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr,
|
|
powerplay_table);
|
|
|
|
if (table_offset > 0)
|
|
return table_offset + get_vce_clock_info_array_size(hwmgr,
|
|
powerplay_table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t get_vce_clock_voltage_limit_table_size(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table);
|
|
uint16_t table_size = 0;
|
|
|
|
if (table_offset > 0) {
|
|
const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *ptable =
|
|
(const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)(((unsigned long) powerplay_table) + table_offset);
|
|
|
|
table_size = sizeof(uint8_t) + ptable->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record);
|
|
}
|
|
return table_size;
|
|
}
|
|
|
|
static uint16_t get_vce_state_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table);
|
|
|
|
if (table_offset > 0)
|
|
return table_offset + get_vce_clock_voltage_limit_table_size(hwmgr, powerplay_table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const ATOM_PPLIB_VCE_State_Table *get_vce_state_table(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t table_offset = get_vce_state_table_offset(hwmgr, powerplay_table);
|
|
|
|
if (table_offset > 0)
|
|
return (const ATOM_PPLIB_VCE_State_Table *)(((unsigned long) powerplay_table) + table_offset);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static uint16_t get_uvd_table_offset(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t uvd_table_offset = 0;
|
|
|
|
if (le16_to_cpu(powerplay_table->usTableSize) >=
|
|
sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
|
|
const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
|
|
(const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
|
|
if (powerplay_table3->usExtendendedHeaderOffset > 0) {
|
|
const ATOM_PPLIB_EXTENDEDHEADER *extended_header =
|
|
(const ATOM_PPLIB_EXTENDEDHEADER *)
|
|
(((unsigned long)powerplay_table3) +
|
|
le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
|
|
if (le16_to_cpu(extended_header->usSize) >=
|
|
SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3)
|
|
uvd_table_offset = le16_to_cpu(extended_header->usUVDTableOffset);
|
|
}
|
|
}
|
|
return uvd_table_offset;
|
|
}
|
|
|
|
static uint16_t get_uvd_clock_info_array_offset(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t table_offset = get_uvd_table_offset(hwmgr,
|
|
powerplay_table);
|
|
|
|
if (table_offset > 0)
|
|
return table_offset + 1;
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t get_uvd_clock_info_array_size(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr,
|
|
powerplay_table);
|
|
uint16_t table_size = 0;
|
|
|
|
if (table_offset > 0) {
|
|
const UVDClockInfoArray *p = (const UVDClockInfoArray *)
|
|
(((unsigned long) powerplay_table)
|
|
+ table_offset);
|
|
table_size = sizeof(UCHAR) +
|
|
p->ucNumEntries * sizeof(UVDClockInfo);
|
|
}
|
|
|
|
return table_size;
|
|
}
|
|
|
|
static uint16_t get_uvd_clock_voltage_limit_table_offset(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr,
|
|
powerplay_table);
|
|
|
|
if (table_offset > 0)
|
|
return table_offset +
|
|
get_uvd_clock_info_array_size(hwmgr, powerplay_table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t get_samu_table_offset(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t samu_table_offset = 0;
|
|
|
|
if (le16_to_cpu(powerplay_table->usTableSize) >=
|
|
sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
|
|
const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
|
|
(const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
|
|
if (powerplay_table3->usExtendendedHeaderOffset > 0) {
|
|
const ATOM_PPLIB_EXTENDEDHEADER *extended_header =
|
|
(const ATOM_PPLIB_EXTENDEDHEADER *)
|
|
(((unsigned long)powerplay_table3) +
|
|
le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
|
|
if (le16_to_cpu(extended_header->usSize) >=
|
|
SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4)
|
|
samu_table_offset = le16_to_cpu(extended_header->usSAMUTableOffset);
|
|
}
|
|
}
|
|
|
|
return samu_table_offset;
|
|
}
|
|
|
|
static uint16_t get_samu_clock_voltage_limit_table_offset(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t table_offset = get_samu_table_offset(hwmgr,
|
|
powerplay_table);
|
|
|
|
if (table_offset > 0)
|
|
return table_offset + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t get_acp_table_offset(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t acp_table_offset = 0;
|
|
|
|
if (le16_to_cpu(powerplay_table->usTableSize) >=
|
|
sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
|
|
const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
|
|
(const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
|
|
if (powerplay_table3->usExtendendedHeaderOffset > 0) {
|
|
const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader =
|
|
(const ATOM_PPLIB_EXTENDEDHEADER *)
|
|
(((unsigned long)powerplay_table3) +
|
|
le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
|
|
if (le16_to_cpu(pExtendedHeader->usSize) >=
|
|
SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6)
|
|
acp_table_offset = le16_to_cpu(pExtendedHeader->usACPTableOffset);
|
|
}
|
|
}
|
|
|
|
return acp_table_offset;
|
|
}
|
|
|
|
static uint16_t get_acp_clock_voltage_limit_table_offset(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t tableOffset = get_acp_table_offset(hwmgr, powerplay_table);
|
|
|
|
if (tableOffset > 0)
|
|
return tableOffset + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t get_cacp_tdp_table_offset(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t cacTdpTableOffset = 0;
|
|
|
|
if (le16_to_cpu(powerplay_table->usTableSize) >=
|
|
sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
|
|
const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
|
|
(const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
|
|
if (powerplay_table3->usExtendendedHeaderOffset > 0) {
|
|
const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader =
|
|
(const ATOM_PPLIB_EXTENDEDHEADER *)
|
|
(((unsigned long)powerplay_table3) +
|
|
le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
|
|
if (le16_to_cpu(pExtendedHeader->usSize) >=
|
|
SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7)
|
|
cacTdpTableOffset = le16_to_cpu(pExtendedHeader->usPowerTuneTableOffset);
|
|
}
|
|
}
|
|
|
|
return cacTdpTableOffset;
|
|
}
|
|
|
|
static int get_cac_tdp_table(struct pp_hwmgr *hwmgr,
|
|
struct phm_cac_tdp_table **ptable,
|
|
const ATOM_PowerTune_Table *table,
|
|
uint16_t us_maximum_power_delivery_limit)
|
|
{
|
|
unsigned long table_size;
|
|
struct phm_cac_tdp_table *tdp_table;
|
|
|
|
table_size = sizeof(unsigned long) + sizeof(struct phm_cac_tdp_table);
|
|
|
|
tdp_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == tdp_table)
|
|
return -ENOMEM;
|
|
|
|
tdp_table->usTDP = le16_to_cpu(table->usTDP);
|
|
tdp_table->usConfigurableTDP = le16_to_cpu(table->usConfigurableTDP);
|
|
tdp_table->usTDC = le16_to_cpu(table->usTDC);
|
|
tdp_table->usBatteryPowerLimit = le16_to_cpu(table->usBatteryPowerLimit);
|
|
tdp_table->usSmallPowerLimit = le16_to_cpu(table->usSmallPowerLimit);
|
|
tdp_table->usLowCACLeakage = le16_to_cpu(table->usLowCACLeakage);
|
|
tdp_table->usHighCACLeakage = le16_to_cpu(table->usHighCACLeakage);
|
|
tdp_table->usMaximumPowerDeliveryLimit = us_maximum_power_delivery_limit;
|
|
|
|
*ptable = tdp_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t get_sclk_vdd_gfx_table_offset(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t sclk_vdd_gfx_table_offset = 0;
|
|
|
|
if (le16_to_cpu(powerplay_table->usTableSize) >=
|
|
sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
|
|
const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
|
|
(const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
|
|
if (powerplay_table3->usExtendendedHeaderOffset > 0) {
|
|
const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader =
|
|
(const ATOM_PPLIB_EXTENDEDHEADER *)
|
|
(((unsigned long)powerplay_table3) +
|
|
le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
|
|
if (le16_to_cpu(pExtendedHeader->usSize) >=
|
|
SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8)
|
|
sclk_vdd_gfx_table_offset =
|
|
le16_to_cpu(pExtendedHeader->usSclkVddgfxTableOffset);
|
|
}
|
|
}
|
|
|
|
return sclk_vdd_gfx_table_offset;
|
|
}
|
|
|
|
static uint16_t get_sclk_vdd_gfx_clock_voltage_dependency_table_offset(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
uint16_t tableOffset = get_sclk_vdd_gfx_table_offset(hwmgr, powerplay_table);
|
|
|
|
if (tableOffset > 0)
|
|
return tableOffset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr,
|
|
struct phm_clock_voltage_dependency_table **ptable,
|
|
const ATOM_PPLIB_Clock_Voltage_Dependency_Table *table)
|
|
{
|
|
|
|
unsigned long table_size, i;
|
|
struct phm_clock_voltage_dependency_table *dep_table;
|
|
|
|
table_size = sizeof(unsigned long) +
|
|
sizeof(struct phm_clock_voltage_dependency_table)
|
|
* table->ucNumEntries;
|
|
|
|
dep_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == dep_table)
|
|
return -ENOMEM;
|
|
|
|
dep_table->count = (unsigned long)table->ucNumEntries;
|
|
|
|
for (i = 0; i < dep_table->count; i++) {
|
|
dep_table->entries[i].clk =
|
|
((unsigned long)table->entries[i].ucClockHigh << 16) |
|
|
le16_to_cpu(table->entries[i].usClockLow);
|
|
dep_table->entries[i].v =
|
|
(unsigned long)le16_to_cpu(table->entries[i].usVoltage);
|
|
}
|
|
|
|
*ptable = dep_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_valid_clk(struct pp_hwmgr *hwmgr,
|
|
struct phm_clock_array **ptable,
|
|
const struct phm_clock_voltage_dependency_table *table)
|
|
{
|
|
unsigned long table_size, i;
|
|
struct phm_clock_array *clock_table;
|
|
|
|
table_size = sizeof(unsigned long) + sizeof(unsigned long) * table->count;
|
|
clock_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == clock_table)
|
|
return -ENOMEM;
|
|
|
|
clock_table->count = (unsigned long)table->count;
|
|
|
|
for (i = 0; i < clock_table->count; i++)
|
|
clock_table->values[i] = (unsigned long)table->entries[i].clk;
|
|
|
|
*ptable = clock_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_clock_voltage_limit(struct pp_hwmgr *hwmgr,
|
|
struct phm_clock_and_voltage_limits *limits,
|
|
const ATOM_PPLIB_Clock_Voltage_Limit_Table *table)
|
|
{
|
|
limits->sclk = ((unsigned long)table->entries[0].ucSclkHigh << 16) |
|
|
le16_to_cpu(table->entries[0].usSclkLow);
|
|
limits->mclk = ((unsigned long)table->entries[0].ucMclkHigh << 16) |
|
|
le16_to_cpu(table->entries[0].usMclkLow);
|
|
limits->vddc = (unsigned long)le16_to_cpu(table->entries[0].usVddc);
|
|
limits->vddci = (unsigned long)le16_to_cpu(table->entries[0].usVddci);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void set_hw_cap(struct pp_hwmgr *hwmgr, bool enable,
|
|
enum phm_platform_caps cap)
|
|
{
|
|
if (enable)
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
|
|
else
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
|
|
}
|
|
|
|
static int set_platform_caps(struct pp_hwmgr *hwmgr,
|
|
unsigned long powerplay_caps)
|
|
{
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_POWERPLAY),
|
|
PHM_PlatformCaps_PowerPlaySupport
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
|
|
PHM_PlatformCaps_BiosPowerSourceControl
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L0s),
|
|
PHM_PlatformCaps_EnableASPML0s
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L1),
|
|
PHM_PlatformCaps_EnableASPML1
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS),
|
|
PHM_PlatformCaps_EnableBackbias
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC),
|
|
PHM_PlatformCaps_AutomaticDCTransition
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY),
|
|
PHM_PlatformCaps_GeminiPrimary
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC),
|
|
PHM_PlatformCaps_StepVddc
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VOLTAGECONTROL),
|
|
PHM_PlatformCaps_EnableVoltageControl
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL),
|
|
PHM_PlatformCaps_EnableSideportControl
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1),
|
|
PHM_PlatformCaps_TurnOffPll_ASPML1
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HTLINKCONTROL),
|
|
PHM_PlatformCaps_EnableHTLinkControl
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_MVDDCONTROL),
|
|
PHM_PlatformCaps_EnableMVDDControl
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL),
|
|
PHM_PlatformCaps_ControlVDDCI
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT),
|
|
PHM_PlatformCaps_RegulatorHot
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GOTO_BOOT_ON_ALERT),
|
|
PHM_PlatformCaps_BootStateOnAlert
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DONT_WAIT_FOR_VBLANK_ON_ALERT),
|
|
PHM_PlatformCaps_DontWaitForVBlankOnAlert
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACO),
|
|
PHM_PlatformCaps_BACO
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_NEW_CAC_VOLTAGE),
|
|
PHM_PlatformCaps_NewCACVoltage
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REVERT_GPIO5_POLARITY),
|
|
PHM_PlatformCaps_RevertGPIO5Polarity
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_OUTPUT_THERMAL2GPIO17),
|
|
PHM_PlatformCaps_Thermal2GPIO17
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VRHOT_GPIO_CONFIGURABLE),
|
|
PHM_PlatformCaps_VRHotGPIOConfigurable
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TEMP_INVERSION),
|
|
PHM_PlatformCaps_TempInversion
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_EVV),
|
|
PHM_PlatformCaps_EVV
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
|
|
PHM_PlatformCaps_CombinePCCWithThermalSignal
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE),
|
|
PHM_PlatformCaps_LoadPostProductionFirmware
|
|
);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DISABLE_USING_ACTUAL_TEMPERATURE_FOR_POWER_CALC),
|
|
PHM_PlatformCaps_DisableUsingActualTemperatureForPowerCalc
|
|
);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static PP_StateClassificationFlags make_classification_flags(
|
|
struct pp_hwmgr *hwmgr,
|
|
USHORT classification,
|
|
USHORT classification2)
|
|
{
|
|
PP_StateClassificationFlags result = 0;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
|
|
result |= PP_StateClassificationFlag_Boot;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
|
|
result |= PP_StateClassificationFlag_Thermal;
|
|
|
|
if (classification &
|
|
ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
|
|
result |= PP_StateClassificationFlag_LimitedPowerSource;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
|
|
result |= PP_StateClassificationFlag_Rest;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
|
|
result |= PP_StateClassificationFlag_Forced;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
|
|
result |= PP_StateClassificationFlag_3DPerformance;
|
|
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE)
|
|
result |= PP_StateClassificationFlag_ACOverdriveTemplate;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
|
|
result |= PP_StateClassificationFlag_Uvd;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
|
|
result |= PP_StateClassificationFlag_UvdHD;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
|
|
result |= PP_StateClassificationFlag_UvdSD;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
|
|
result |= PP_StateClassificationFlag_HD2;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
|
|
result |= PP_StateClassificationFlag_ACPI;
|
|
|
|
if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
|
|
result |= PP_StateClassificationFlag_LimitedPowerSource_2;
|
|
|
|
|
|
if (classification2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
|
|
result |= PP_StateClassificationFlag_ULV;
|
|
|
|
if (classification2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
|
|
result |= PP_StateClassificationFlag_UvdMVC;
|
|
|
|
return result;
|
|
}
|
|
|
|
static int init_non_clock_fields(struct pp_hwmgr *hwmgr,
|
|
struct pp_power_state *ps,
|
|
uint8_t version,
|
|
const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info) {
|
|
unsigned long rrr_index;
|
|
unsigned long tmp;
|
|
|
|
ps->classification.ui_label = (le16_to_cpu(pnon_clock_info->usClassification) &
|
|
ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
|
|
ps->classification.flags = make_classification_flags(hwmgr,
|
|
le16_to_cpu(pnon_clock_info->usClassification),
|
|
le16_to_cpu(pnon_clock_info->usClassification2));
|
|
|
|
ps->classification.temporary_state = false;
|
|
ps->classification.to_be_deleted = false;
|
|
tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
|
|
ATOM_PPLIB_SINGLE_DISPLAY_ONLY;
|
|
|
|
ps->validation.singleDisplayOnly = (0 != tmp);
|
|
|
|
tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
|
|
ATOM_PPLIB_DISALLOW_ON_DC;
|
|
|
|
ps->validation.disallowOnDC = (0 != tmp);
|
|
|
|
ps->pcie.lanes = ((le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
|
|
ATOM_PPLIB_PCIE_LINK_WIDTH_MASK) >>
|
|
ATOM_PPLIB_PCIE_LINK_WIDTH_SHIFT) + 1;
|
|
|
|
ps->pcie.lanes = 0;
|
|
|
|
ps->display.disableFrameModulation = false;
|
|
|
|
rrr_index = (le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
|
|
ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK) >>
|
|
ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT;
|
|
|
|
if (rrr_index != ATOM_PPLIB_LIMITED_REFRESHRATE_UNLIMITED) {
|
|
static const uint8_t look_up[(ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK >> ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT) + 1] = \
|
|
{ 0, 50, 0 };
|
|
|
|
ps->display.refreshrateSource = PP_RefreshrateSource_Explicit;
|
|
ps->display.explicitRefreshrate = look_up[rrr_index];
|
|
ps->display.limitRefreshrate = true;
|
|
|
|
if (ps->display.explicitRefreshrate == 0)
|
|
ps->display.limitRefreshrate = false;
|
|
} else
|
|
ps->display.limitRefreshrate = false;
|
|
|
|
tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
|
|
ATOM_PPLIB_ENABLE_VARIBRIGHT;
|
|
|
|
ps->display.enableVariBright = (0 != tmp);
|
|
|
|
tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
|
|
ATOM_PPLIB_SWSTATE_MEMORY_DLL_OFF;
|
|
|
|
ps->memory.dllOff = (0 != tmp);
|
|
|
|
ps->memory.m3arb = (le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
|
|
ATOM_PPLIB_M3ARB_MASK) >> ATOM_PPLIB_M3ARB_SHIFT;
|
|
|
|
ps->temperatures.min = PP_TEMPERATURE_UNITS_PER_CENTIGRADES *
|
|
pnon_clock_info->ucMinTemperature;
|
|
|
|
ps->temperatures.max = PP_TEMPERATURE_UNITS_PER_CENTIGRADES *
|
|
pnon_clock_info->ucMaxTemperature;
|
|
|
|
tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
|
|
ATOM_PPLIB_SOFTWARE_DISABLE_LOADBALANCING;
|
|
|
|
ps->software.disableLoadBalancing = tmp;
|
|
|
|
tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
|
|
ATOM_PPLIB_SOFTWARE_ENABLE_SLEEP_FOR_TIMESTAMPS;
|
|
|
|
ps->software.enableSleepForTimestamps = (0 != tmp);
|
|
|
|
ps->validation.supportedPowerLevels = pnon_clock_info->ucRequiredPower;
|
|
|
|
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < version) {
|
|
ps->uvd_clocks.VCLK = pnon_clock_info->ulVCLK;
|
|
ps->uvd_clocks.DCLK = pnon_clock_info->ulDCLK;
|
|
} else {
|
|
ps->uvd_clocks.VCLK = 0;
|
|
ps->uvd_clocks.DCLK = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ULONG size_of_entry_v2(ULONG num_dpm_levels)
|
|
{
|
|
return (sizeof(UCHAR) + sizeof(UCHAR) +
|
|
(num_dpm_levels * sizeof(UCHAR)));
|
|
}
|
|
|
|
static const ATOM_PPLIB_STATE_V2 *get_state_entry_v2(
|
|
const StateArray * pstate_arrays,
|
|
ULONG entry_index)
|
|
{
|
|
ULONG i;
|
|
const ATOM_PPLIB_STATE_V2 *pstate;
|
|
|
|
pstate = pstate_arrays->states;
|
|
if (entry_index <= pstate_arrays->ucNumEntries) {
|
|
for (i = 0; i < entry_index; i++)
|
|
pstate = (ATOM_PPLIB_STATE_V2 *)(
|
|
(unsigned long)pstate +
|
|
size_of_entry_v2(pstate->ucNumDPMLevels));
|
|
}
|
|
return pstate;
|
|
}
|
|
|
|
|
|
static const ATOM_PPLIB_POWERPLAYTABLE *get_powerplay_table(
|
|
struct pp_hwmgr *hwmgr)
|
|
{
|
|
const void *table_addr = hwmgr->soft_pp_table;
|
|
uint8_t frev, crev;
|
|
uint16_t size;
|
|
|
|
if (!table_addr) {
|
|
table_addr = cgs_atom_get_data_table(hwmgr->device,
|
|
GetIndexIntoMasterTable(DATA, PowerPlayInfo),
|
|
&size, &frev, &crev);
|
|
|
|
hwmgr->soft_pp_table = table_addr;
|
|
hwmgr->soft_pp_table_size = size;
|
|
}
|
|
|
|
return (const ATOM_PPLIB_POWERPLAYTABLE *)table_addr;
|
|
}
|
|
|
|
int pp_tables_get_response_times(struct pp_hwmgr *hwmgr,
|
|
uint32_t *vol_rep_time, uint32_t *bb_rep_time)
|
|
{
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_tab = get_powerplay_table(hwmgr);
|
|
|
|
PP_ASSERT_WITH_CODE(NULL != powerplay_tab,
|
|
"Missing PowerPlay Table!", return -EINVAL);
|
|
|
|
*vol_rep_time = (uint32_t)le16_to_cpu(powerplay_tab->usVoltageTime);
|
|
*bb_rep_time = (uint32_t)le16_to_cpu(powerplay_tab->usBackbiasTime);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pp_tables_get_num_of_entries(struct pp_hwmgr *hwmgr,
|
|
unsigned long *num_of_entries)
|
|
{
|
|
const StateArray *pstate_arrays;
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr);
|
|
|
|
if (powerplay_table == NULL)
|
|
return -1;
|
|
|
|
if (powerplay_table->sHeader.ucTableFormatRevision >= 6) {
|
|
pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usStateArrayOffset));
|
|
|
|
*num_of_entries = (unsigned long)(pstate_arrays->ucNumEntries);
|
|
} else
|
|
*num_of_entries = (unsigned long)(powerplay_table->ucNumStates);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pp_tables_get_entry(struct pp_hwmgr *hwmgr,
|
|
unsigned long entry_index,
|
|
struct pp_power_state *ps,
|
|
pp_tables_hw_clock_info_callback func)
|
|
{
|
|
int i;
|
|
const StateArray *pstate_arrays;
|
|
const ATOM_PPLIB_STATE_V2 *pstate_entry_v2;
|
|
const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info;
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr);
|
|
int result = 0;
|
|
int res = 0;
|
|
|
|
const ClockInfoArray *pclock_arrays;
|
|
|
|
const NonClockInfoArray *pnon_clock_arrays;
|
|
|
|
const ATOM_PPLIB_STATE *pstate_entry;
|
|
|
|
if (powerplay_table == NULL)
|
|
return -1;
|
|
|
|
ps->classification.bios_index = entry_index;
|
|
|
|
if (powerplay_table->sHeader.ucTableFormatRevision >= 6) {
|
|
pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usStateArrayOffset));
|
|
|
|
if (entry_index > pstate_arrays->ucNumEntries)
|
|
return -1;
|
|
|
|
pstate_entry_v2 = get_state_entry_v2(pstate_arrays, entry_index);
|
|
pclock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usClockInfoArrayOffset));
|
|
|
|
pnon_clock_arrays = (NonClockInfoArray *)(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset));
|
|
|
|
pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)(pnon_clock_arrays->nonClockInfo) +
|
|
(pstate_entry_v2->nonClockInfoIndex * pnon_clock_arrays->ucEntrySize));
|
|
|
|
result = init_non_clock_fields(hwmgr, ps, pnon_clock_arrays->ucEntrySize, pnon_clock_info);
|
|
|
|
for (i = 0; i < pstate_entry_v2->ucNumDPMLevels; i++) {
|
|
const void *pclock_info = (const void *)(
|
|
(unsigned long)(pclock_arrays->clockInfo) +
|
|
(pstate_entry_v2->clockInfoIndex[i] * pclock_arrays->ucEntrySize));
|
|
res = func(hwmgr, &ps->hardware, i, pclock_info);
|
|
if ((0 == result) && (0 != res))
|
|
result = res;
|
|
}
|
|
} else {
|
|
if (entry_index > powerplay_table->ucNumStates)
|
|
return -1;
|
|
|
|
pstate_entry = (ATOM_PPLIB_STATE *)((unsigned long)powerplay_table + powerplay_table->usStateArrayOffset +
|
|
entry_index * powerplay_table->ucStateEntrySize);
|
|
|
|
pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)powerplay_table +
|
|
le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset) +
|
|
pstate_entry->ucNonClockStateIndex *
|
|
powerplay_table->ucNonClockSize);
|
|
|
|
result = init_non_clock_fields(hwmgr, ps,
|
|
powerplay_table->ucNonClockSize,
|
|
pnon_clock_info);
|
|
|
|
for (i = 0; i < powerplay_table->ucStateEntrySize-1; i++) {
|
|
const void *pclock_info = (const void *)((unsigned long)powerplay_table +
|
|
le16_to_cpu(powerplay_table->usClockInfoArrayOffset) +
|
|
pstate_entry->ucClockStateIndices[i] *
|
|
powerplay_table->ucClockInfoSize);
|
|
|
|
int res = func(hwmgr, &ps->hardware, i, pclock_info);
|
|
|
|
if ((0 == result) && (0 != res))
|
|
result = res;
|
|
}
|
|
}
|
|
|
|
if ((0 == result) &&
|
|
(0 != (ps->classification.flags & PP_StateClassificationFlag_Boot)))
|
|
result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(ps->hardware));
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
static int init_powerplay_tables(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table
|
|
)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int init_thermal_controller(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int init_overdrive_limits_V1_4(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table,
|
|
const ATOM_FIRMWARE_INFO_V1_4 *fw_info)
|
|
{
|
|
hwmgr->platform_descriptor.overdriveLimit.engineClock =
|
|
le32_to_cpu(fw_info->ulASICMaxEngineClock);
|
|
|
|
hwmgr->platform_descriptor.overdriveLimit.memoryClock =
|
|
le32_to_cpu(fw_info->ulASICMaxMemoryClock);
|
|
|
|
hwmgr->platform_descriptor.maxOverdriveVDDC =
|
|
le32_to_cpu(fw_info->ul3DAccelerationEngineClock) & 0x7FF;
|
|
|
|
hwmgr->platform_descriptor.minOverdriveVDDC =
|
|
le16_to_cpu(fw_info->usBootUpVDDCVoltage);
|
|
|
|
hwmgr->platform_descriptor.maxOverdriveVDDC =
|
|
le16_to_cpu(fw_info->usBootUpVDDCVoltage);
|
|
|
|
hwmgr->platform_descriptor.overdriveVDDCStep = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int init_overdrive_limits_V2_1(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table,
|
|
const ATOM_FIRMWARE_INFO_V2_1 *fw_info)
|
|
{
|
|
const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3;
|
|
const ATOM_PPLIB_EXTENDEDHEADER *header;
|
|
|
|
if (le16_to_cpu(powerplay_table->usTableSize) <
|
|
sizeof(ATOM_PPLIB_POWERPLAYTABLE3))
|
|
return 0;
|
|
|
|
powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
|
|
|
|
if (0 == powerplay_table3->usExtendendedHeaderOffset)
|
|
return 0;
|
|
|
|
header = (ATOM_PPLIB_EXTENDEDHEADER *)(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
|
|
|
|
hwmgr->platform_descriptor.overdriveLimit.engineClock = le32_to_cpu(header->ulMaxEngineClock);
|
|
hwmgr->platform_descriptor.overdriveLimit.memoryClock = le32_to_cpu(header->ulMaxMemoryClock);
|
|
|
|
|
|
hwmgr->platform_descriptor.minOverdriveVDDC = 0;
|
|
hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
|
|
hwmgr->platform_descriptor.overdriveVDDCStep = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_overdrive_limits(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
int result;
|
|
uint8_t frev, crev;
|
|
uint16_t size;
|
|
|
|
const ATOM_COMMON_TABLE_HEADER *fw_info = NULL;
|
|
|
|
hwmgr->platform_descriptor.overdriveLimit.engineClock = 0;
|
|
hwmgr->platform_descriptor.overdriveLimit.memoryClock = 0;
|
|
hwmgr->platform_descriptor.minOverdriveVDDC = 0;
|
|
hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
|
|
|
|
/* We assume here that fw_info is unchanged if this call fails.*/
|
|
fw_info = cgs_atom_get_data_table(hwmgr->device,
|
|
GetIndexIntoMasterTable(DATA, FirmwareInfo),
|
|
&size, &frev, &crev);
|
|
|
|
if ((fw_info->ucTableFormatRevision == 1)
|
|
&& (fw_info->usStructureSize >= sizeof(ATOM_FIRMWARE_INFO_V1_4)))
|
|
result = init_overdrive_limits_V1_4(hwmgr,
|
|
powerplay_table,
|
|
(const ATOM_FIRMWARE_INFO_V1_4 *)fw_info);
|
|
|
|
else if ((fw_info->ucTableFormatRevision == 2)
|
|
&& (fw_info->usStructureSize >= sizeof(ATOM_FIRMWARE_INFO_V2_1)))
|
|
result = init_overdrive_limits_V2_1(hwmgr,
|
|
powerplay_table,
|
|
(const ATOM_FIRMWARE_INFO_V2_1 *)fw_info);
|
|
|
|
if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0
|
|
&& hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0
|
|
&& !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_OverdriveDisabledByPowerBudget))
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ACOverdriveSupport);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int get_uvd_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
|
|
struct phm_uvd_clock_voltage_dependency_table **ptable,
|
|
const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *table,
|
|
const UVDClockInfoArray *array)
|
|
{
|
|
unsigned long table_size, i;
|
|
struct phm_uvd_clock_voltage_dependency_table *uvd_table;
|
|
|
|
table_size = sizeof(unsigned long) +
|
|
sizeof(struct phm_uvd_clock_voltage_dependency_table) *
|
|
table->numEntries;
|
|
|
|
uvd_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == uvd_table)
|
|
return -ENOMEM;
|
|
|
|
uvd_table->count = table->numEntries;
|
|
|
|
for (i = 0; i < table->numEntries; i++) {
|
|
const UVDClockInfo *entry =
|
|
&array->entries[table->entries[i].ucUVDClockInfoIndex];
|
|
uvd_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
|
|
uvd_table->entries[i].vclk = ((unsigned long)entry->ucVClkHigh << 16)
|
|
| le16_to_cpu(entry->usVClkLow);
|
|
uvd_table->entries[i].dclk = ((unsigned long)entry->ucDClkHigh << 16)
|
|
| le16_to_cpu(entry->usDClkLow);
|
|
}
|
|
|
|
*ptable = uvd_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_vce_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
|
|
struct phm_vce_clock_voltage_dependency_table **ptable,
|
|
const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table,
|
|
const VCEClockInfoArray *array)
|
|
{
|
|
unsigned long table_size, i;
|
|
struct phm_vce_clock_voltage_dependency_table *vce_table = NULL;
|
|
|
|
table_size = sizeof(unsigned long) +
|
|
sizeof(struct phm_vce_clock_voltage_dependency_table)
|
|
* table->numEntries;
|
|
|
|
vce_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == vce_table)
|
|
return -ENOMEM;
|
|
|
|
vce_table->count = table->numEntries;
|
|
for (i = 0; i < table->numEntries; i++) {
|
|
const VCEClockInfo *entry = &array->entries[table->entries[i].ucVCEClockInfoIndex];
|
|
|
|
vce_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
|
|
vce_table->entries[i].evclk = ((unsigned long)entry->ucEVClkHigh << 16)
|
|
| le16_to_cpu(entry->usEVClkLow);
|
|
vce_table->entries[i].ecclk = ((unsigned long)entry->ucECClkHigh << 16)
|
|
| le16_to_cpu(entry->usECClkLow);
|
|
}
|
|
|
|
*ptable = vce_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_samu_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
|
|
struct phm_samu_clock_voltage_dependency_table **ptable,
|
|
const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *table)
|
|
{
|
|
unsigned long table_size, i;
|
|
struct phm_samu_clock_voltage_dependency_table *samu_table;
|
|
|
|
table_size = sizeof(unsigned long) +
|
|
sizeof(struct phm_samu_clock_voltage_dependency_table) *
|
|
table->numEntries;
|
|
|
|
samu_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == samu_table)
|
|
return -ENOMEM;
|
|
|
|
samu_table->count = table->numEntries;
|
|
|
|
for (i = 0; i < table->numEntries; i++) {
|
|
samu_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
|
|
samu_table->entries[i].samclk = ((unsigned long)table->entries[i].ucSAMClockHigh << 16)
|
|
| le16_to_cpu(table->entries[i].usSAMClockLow);
|
|
}
|
|
|
|
*ptable = samu_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_acp_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
|
|
struct phm_acp_clock_voltage_dependency_table **ptable,
|
|
const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *table)
|
|
{
|
|
unsigned table_size, i;
|
|
struct phm_acp_clock_voltage_dependency_table *acp_table;
|
|
|
|
table_size = sizeof(unsigned long) +
|
|
sizeof(struct phm_acp_clock_voltage_dependency_table) *
|
|
table->numEntries;
|
|
|
|
acp_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == acp_table)
|
|
return -ENOMEM;
|
|
|
|
acp_table->count = (unsigned long)table->numEntries;
|
|
|
|
for (i = 0; i < table->numEntries; i++) {
|
|
acp_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
|
|
acp_table->entries[i].acpclk = ((unsigned long)table->entries[i].ucACPClockHigh << 16)
|
|
| le16_to_cpu(table->entries[i].usACPClockLow);
|
|
}
|
|
|
|
*ptable = acp_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_clock_voltage_dependency(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
ATOM_PPLIB_Clock_Voltage_Dependency_Table *table;
|
|
ATOM_PPLIB_Clock_Voltage_Limit_Table *limit_table;
|
|
int result = 0;
|
|
|
|
uint16_t vce_clock_info_array_offset;
|
|
uint16_t uvd_clock_info_array_offset;
|
|
uint16_t table_offset;
|
|
|
|
hwmgr->dyn_state.vddc_dependency_on_sclk = NULL;
|
|
hwmgr->dyn_state.vddci_dependency_on_mclk = NULL;
|
|
hwmgr->dyn_state.vddc_dependency_on_mclk = NULL;
|
|
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
|
|
hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL;
|
|
hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL;
|
|
hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL;
|
|
hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL;
|
|
hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL;
|
|
hwmgr->dyn_state.ppm_parameter_table = NULL;
|
|
hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL;
|
|
|
|
vce_clock_info_array_offset = get_vce_clock_info_array_offset(
|
|
hwmgr, powerplay_table);
|
|
table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr,
|
|
powerplay_table);
|
|
if (vce_clock_info_array_offset > 0 && table_offset > 0) {
|
|
const VCEClockInfoArray *array = (const VCEClockInfoArray *)
|
|
(((unsigned long) powerplay_table) +
|
|
vce_clock_info_array_offset);
|
|
const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table =
|
|
(const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)
|
|
(((unsigned long) powerplay_table) + table_offset);
|
|
result = get_vce_clock_voltage_limit_table(hwmgr,
|
|
&hwmgr->dyn_state.vce_clock_voltage_dependency_table,
|
|
table, array);
|
|
}
|
|
|
|
uvd_clock_info_array_offset = get_uvd_clock_info_array_offset(hwmgr, powerplay_table);
|
|
table_offset = get_uvd_clock_voltage_limit_table_offset(hwmgr, powerplay_table);
|
|
|
|
if (uvd_clock_info_array_offset > 0 && table_offset > 0) {
|
|
const UVDClockInfoArray *array = (const UVDClockInfoArray *)
|
|
(((unsigned long) powerplay_table) +
|
|
uvd_clock_info_array_offset);
|
|
const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *ptable =
|
|
(const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *)
|
|
(((unsigned long) powerplay_table) + table_offset);
|
|
result = get_uvd_clock_voltage_limit_table(hwmgr,
|
|
&hwmgr->dyn_state.uvd_clock_voltage_dependency_table, ptable, array);
|
|
}
|
|
|
|
table_offset = get_samu_clock_voltage_limit_table_offset(hwmgr,
|
|
powerplay_table);
|
|
|
|
if (table_offset > 0) {
|
|
const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *ptable =
|
|
(const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *)
|
|
(((unsigned long) powerplay_table) + table_offset);
|
|
result = get_samu_clock_voltage_limit_table(hwmgr,
|
|
&hwmgr->dyn_state.samu_clock_voltage_dependency_table, ptable);
|
|
}
|
|
|
|
table_offset = get_acp_clock_voltage_limit_table_offset(hwmgr,
|
|
powerplay_table);
|
|
|
|
if (table_offset > 0) {
|
|
const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *ptable =
|
|
(const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *)
|
|
(((unsigned long) powerplay_table) + table_offset);
|
|
result = get_acp_clock_voltage_limit_table(hwmgr,
|
|
&hwmgr->dyn_state.acp_clock_voltage_dependency_table, ptable);
|
|
}
|
|
|
|
table_offset = get_cacp_tdp_table_offset(hwmgr, powerplay_table);
|
|
if (table_offset > 0) {
|
|
UCHAR rev_id = *(UCHAR *)(((unsigned long)powerplay_table) + table_offset);
|
|
|
|
if (rev_id > 0) {
|
|
const ATOM_PPLIB_POWERTUNE_Table_V1 *tune_table =
|
|
(const ATOM_PPLIB_POWERTUNE_Table_V1 *)
|
|
(((unsigned long) powerplay_table) + table_offset);
|
|
result = get_cac_tdp_table(hwmgr, &hwmgr->dyn_state.cac_dtp_table,
|
|
&tune_table->power_tune_table,
|
|
le16_to_cpu(tune_table->usMaximumPowerDeliveryLimit));
|
|
hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
|
|
le16_to_cpu(tune_table->usTjMax);
|
|
} else {
|
|
const ATOM_PPLIB_POWERTUNE_Table *tune_table =
|
|
(const ATOM_PPLIB_POWERTUNE_Table *)
|
|
(((unsigned long) powerplay_table) + table_offset);
|
|
result = get_cac_tdp_table(hwmgr,
|
|
&hwmgr->dyn_state.cac_dtp_table,
|
|
&tune_table->power_tune_table, 255);
|
|
}
|
|
}
|
|
|
|
if (le16_to_cpu(powerplay_table->usTableSize) >=
|
|
sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) {
|
|
const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 =
|
|
(const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table;
|
|
if (0 != powerplay_table4->usVddcDependencyOnSCLKOffset) {
|
|
table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
|
|
(((unsigned long) powerplay_table4) +
|
|
powerplay_table4->usVddcDependencyOnSCLKOffset);
|
|
result = get_clock_voltage_dependency_table(hwmgr,
|
|
&hwmgr->dyn_state.vddc_dependency_on_sclk, table);
|
|
}
|
|
|
|
if (result == 0 && (0 != powerplay_table4->usVddciDependencyOnMCLKOffset)) {
|
|
table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
|
|
(((unsigned long) powerplay_table4) +
|
|
powerplay_table4->usVddciDependencyOnMCLKOffset);
|
|
result = get_clock_voltage_dependency_table(hwmgr,
|
|
&hwmgr->dyn_state.vddci_dependency_on_mclk, table);
|
|
}
|
|
|
|
if (result == 0 && (0 != powerplay_table4->usVddcDependencyOnMCLKOffset)) {
|
|
table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
|
|
(((unsigned long) powerplay_table4) +
|
|
powerplay_table4->usVddcDependencyOnMCLKOffset);
|
|
result = get_clock_voltage_dependency_table(hwmgr,
|
|
&hwmgr->dyn_state.vddc_dependency_on_mclk, table);
|
|
}
|
|
|
|
if (result == 0 && (0 != powerplay_table4->usMaxClockVoltageOnDCOffset)) {
|
|
limit_table = (ATOM_PPLIB_Clock_Voltage_Limit_Table *)
|
|
(((unsigned long) powerplay_table4) +
|
|
powerplay_table4->usMaxClockVoltageOnDCOffset);
|
|
result = get_clock_voltage_limit(hwmgr,
|
|
&hwmgr->dyn_state.max_clock_voltage_on_dc, limit_table);
|
|
}
|
|
|
|
if (result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_mclk) &&
|
|
(0 != hwmgr->dyn_state.vddc_dependency_on_mclk->count))
|
|
result = get_valid_clk(hwmgr, &hwmgr->dyn_state.valid_mclk_values,
|
|
hwmgr->dyn_state.vddc_dependency_on_mclk);
|
|
|
|
if(result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_sclk) &&
|
|
(0 != hwmgr->dyn_state.vddc_dependency_on_sclk->count))
|
|
result = get_valid_clk(hwmgr,
|
|
&hwmgr->dyn_state.valid_sclk_values,
|
|
hwmgr->dyn_state.vddc_dependency_on_sclk);
|
|
|
|
if (result == 0 && (0 != powerplay_table4->usMvddDependencyOnMCLKOffset)) {
|
|
table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
|
|
(((unsigned long) powerplay_table4) +
|
|
powerplay_table4->usMvddDependencyOnMCLKOffset);
|
|
result = get_clock_voltage_dependency_table(hwmgr,
|
|
&hwmgr->dyn_state.mvdd_dependency_on_mclk, table);
|
|
}
|
|
}
|
|
|
|
table_offset = get_sclk_vdd_gfx_clock_voltage_dependency_table_offset(hwmgr,
|
|
powerplay_table);
|
|
|
|
if (table_offset > 0) {
|
|
table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
|
|
(((unsigned long) powerplay_table) + table_offset);
|
|
result = get_clock_voltage_dependency_table(hwmgr,
|
|
&hwmgr->dyn_state.vdd_gfx_dependency_on_sclk, table);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int get_cac_leakage_table(struct pp_hwmgr *hwmgr,
|
|
struct phm_cac_leakage_table **ptable,
|
|
const ATOM_PPLIB_CAC_Leakage_Table *table)
|
|
{
|
|
struct phm_cac_leakage_table *cac_leakage_table;
|
|
unsigned long table_size, i;
|
|
|
|
if (hwmgr == NULL || table == NULL || ptable == NULL)
|
|
return -EINVAL;
|
|
|
|
table_size = sizeof(ULONG) +
|
|
(sizeof(struct phm_cac_leakage_table) * table->ucNumEntries);
|
|
|
|
cac_leakage_table = kzalloc(table_size, GFP_KERNEL);
|
|
|
|
if (cac_leakage_table == NULL)
|
|
return -ENOMEM;
|
|
|
|
cac_leakage_table->count = (ULONG)table->ucNumEntries;
|
|
|
|
for (i = 0; i < cac_leakage_table->count; i++) {
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_EVV)) {
|
|
cac_leakage_table->entries[i].Vddc1 = le16_to_cpu(table->entries[i].usVddc1);
|
|
cac_leakage_table->entries[i].Vddc2 = le16_to_cpu(table->entries[i].usVddc2);
|
|
cac_leakage_table->entries[i].Vddc3 = le16_to_cpu(table->entries[i].usVddc3);
|
|
} else {
|
|
cac_leakage_table->entries[i].Vddc = le16_to_cpu(table->entries[i].usVddc);
|
|
cac_leakage_table->entries[i].Leakage = le32_to_cpu(table->entries[i].ulLeakageValue);
|
|
}
|
|
}
|
|
|
|
*ptable = cac_leakage_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_platform_power_management_table(struct pp_hwmgr *hwmgr,
|
|
ATOM_PPLIB_PPM_Table *atom_ppm_table)
|
|
{
|
|
struct phm_ppm_table *ptr = kzalloc(sizeof(struct phm_ppm_table), GFP_KERNEL);
|
|
|
|
if (NULL == ptr)
|
|
return -ENOMEM;
|
|
|
|
ptr->ppm_design = atom_ppm_table->ucPpmDesign;
|
|
ptr->cpu_core_number = le16_to_cpu(atom_ppm_table->usCpuCoreNumber);
|
|
ptr->platform_tdp = le32_to_cpu(atom_ppm_table->ulPlatformTDP);
|
|
ptr->small_ac_platform_tdp = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDP);
|
|
ptr->platform_tdc = le32_to_cpu(atom_ppm_table->ulPlatformTDC);
|
|
ptr->small_ac_platform_tdc = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDC);
|
|
ptr->apu_tdp = le32_to_cpu(atom_ppm_table->ulApuTDP);
|
|
ptr->dgpu_tdp = le32_to_cpu(atom_ppm_table->ulDGpuTDP);
|
|
ptr->dgpu_ulv_power = le32_to_cpu(atom_ppm_table->ulDGpuUlvPower);
|
|
ptr->tj_max = le32_to_cpu(atom_ppm_table->ulTjmax);
|
|
hwmgr->dyn_state.ppm_parameter_table = ptr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_dpm2_parameters(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
int result = 0;
|
|
|
|
if (le16_to_cpu(powerplay_table->usTableSize) >=
|
|
sizeof(ATOM_PPLIB_POWERPLAYTABLE5)) {
|
|
const ATOM_PPLIB_POWERPLAYTABLE5 *ptable5 =
|
|
(const ATOM_PPLIB_POWERPLAYTABLE5 *)powerplay_table;
|
|
const ATOM_PPLIB_POWERPLAYTABLE4 *ptable4 =
|
|
(const ATOM_PPLIB_POWERPLAYTABLE4 *)
|
|
(&ptable5->basicTable4);
|
|
const ATOM_PPLIB_POWERPLAYTABLE3 *ptable3 =
|
|
(const ATOM_PPLIB_POWERPLAYTABLE3 *)
|
|
(&ptable4->basicTable3);
|
|
const ATOM_PPLIB_EXTENDEDHEADER *extended_header;
|
|
uint16_t table_offset;
|
|
ATOM_PPLIB_PPM_Table *atom_ppm_table;
|
|
|
|
hwmgr->platform_descriptor.TDPLimit = le32_to_cpu(ptable5->ulTDPLimit);
|
|
hwmgr->platform_descriptor.nearTDPLimit = le32_to_cpu(ptable5->ulNearTDPLimit);
|
|
|
|
hwmgr->platform_descriptor.TDPODLimit = le16_to_cpu(ptable5->usTDPODLimit);
|
|
hwmgr->platform_descriptor.TDPAdjustment = 0;
|
|
|
|
hwmgr->platform_descriptor.VidAdjustment = 0;
|
|
hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
|
|
hwmgr->platform_descriptor.VidMinLimit = 0;
|
|
hwmgr->platform_descriptor.VidMaxLimit = 1500000;
|
|
hwmgr->platform_descriptor.VidStep = 6250;
|
|
|
|
hwmgr->platform_descriptor.nearTDPLimitAdjusted = le32_to_cpu(ptable5->ulNearTDPLimit);
|
|
|
|
if (hwmgr->platform_descriptor.TDPODLimit != 0)
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_PowerControl);
|
|
|
|
hwmgr->platform_descriptor.SQRampingThreshold = le32_to_cpu(ptable5->ulSQRampingThreshold);
|
|
|
|
hwmgr->platform_descriptor.CACLeakage = le32_to_cpu(ptable5->ulCACLeakage);
|
|
|
|
hwmgr->dyn_state.cac_leakage_table = NULL;
|
|
|
|
if (0 != ptable5->usCACLeakageTableOffset) {
|
|
const ATOM_PPLIB_CAC_Leakage_Table *pCAC_leakage_table =
|
|
(ATOM_PPLIB_CAC_Leakage_Table *)(((unsigned long)ptable5) +
|
|
le16_to_cpu(ptable5->usCACLeakageTableOffset));
|
|
result = get_cac_leakage_table(hwmgr,
|
|
&hwmgr->dyn_state.cac_leakage_table, pCAC_leakage_table);
|
|
}
|
|
|
|
hwmgr->platform_descriptor.LoadLineSlope = le16_to_cpu(ptable5->usLoadLineSlope);
|
|
|
|
hwmgr->dyn_state.ppm_parameter_table = NULL;
|
|
|
|
if (0 != ptable3->usExtendendedHeaderOffset) {
|
|
extended_header = (const ATOM_PPLIB_EXTENDEDHEADER *)
|
|
(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(ptable3->usExtendendedHeaderOffset));
|
|
if ((extended_header->usPPMTableOffset > 0) &&
|
|
le16_to_cpu(extended_header->usSize) >=
|
|
SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) {
|
|
table_offset = le16_to_cpu(extended_header->usPPMTableOffset);
|
|
atom_ppm_table = (ATOM_PPLIB_PPM_Table *)
|
|
(((unsigned long)powerplay_table) + table_offset);
|
|
if (0 == get_platform_power_management_table(hwmgr, atom_ppm_table))
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_EnablePlatformPowerManagement);
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int init_phase_shedding_table(struct pp_hwmgr *hwmgr,
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
if (le16_to_cpu(powerplay_table->usTableSize) >=
|
|
sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) {
|
|
const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 =
|
|
(const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table;
|
|
|
|
if (0 != powerplay_table4->usVddcPhaseShedLimitsTableOffset) {
|
|
const ATOM_PPLIB_PhaseSheddingLimits_Table *ptable =
|
|
(ATOM_PPLIB_PhaseSheddingLimits_Table *)
|
|
(((unsigned long)powerplay_table4) +
|
|
le16_to_cpu(powerplay_table4->usVddcPhaseShedLimitsTableOffset));
|
|
struct phm_phase_shedding_limits_table *table;
|
|
unsigned long size, i;
|
|
|
|
|
|
size = sizeof(unsigned long) +
|
|
(sizeof(struct phm_phase_shedding_limits_table) *
|
|
ptable->ucNumEntries);
|
|
|
|
table = kzalloc(size, GFP_KERNEL);
|
|
|
|
if (table == NULL)
|
|
return -ENOMEM;
|
|
|
|
table->count = (unsigned long)ptable->ucNumEntries;
|
|
|
|
for (i = 0; i < table->count; i++) {
|
|
table->entries[i].Voltage = (unsigned long)le16_to_cpu(ptable->entries[i].usVoltage);
|
|
table->entries[i].Sclk = ((unsigned long)ptable->entries[i].ucSclkHigh << 16)
|
|
| le16_to_cpu(ptable->entries[i].usSclkLow);
|
|
table->entries[i].Mclk = ((unsigned long)ptable->entries[i].ucMclkHigh << 16)
|
|
| le16_to_cpu(ptable->entries[i].usMclkLow);
|
|
}
|
|
hwmgr->dyn_state.vddc_phase_shed_limits_table = table;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_number_of_vce_state_table_entries(
|
|
struct pp_hwmgr *hwmgr)
|
|
{
|
|
const ATOM_PPLIB_POWERPLAYTABLE *table =
|
|
get_powerplay_table(hwmgr);
|
|
const ATOM_PPLIB_VCE_State_Table *vce_table =
|
|
get_vce_state_table(hwmgr, table);
|
|
|
|
if (vce_table)
|
|
return vce_table->numEntries;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_vce_state_table_entry(struct pp_hwmgr *hwmgr,
|
|
unsigned long i,
|
|
struct amd_vce_state *vce_state,
|
|
void **clock_info,
|
|
unsigned long *flag)
|
|
{
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr);
|
|
|
|
const ATOM_PPLIB_VCE_State_Table *vce_state_table = get_vce_state_table(hwmgr, powerplay_table);
|
|
|
|
unsigned short vce_clock_info_array_offset = get_vce_clock_info_array_offset(hwmgr, powerplay_table);
|
|
|
|
const VCEClockInfoArray *vce_clock_info_array = (const VCEClockInfoArray *)(((unsigned long) powerplay_table) + vce_clock_info_array_offset);
|
|
|
|
const ClockInfoArray *clock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) + powerplay_table->usClockInfoArrayOffset);
|
|
|
|
const ATOM_PPLIB_VCE_State_Record *record = &vce_state_table->entries[i];
|
|
|
|
const VCEClockInfo *vce_clock_info = &vce_clock_info_array->entries[record->ucVCEClockInfoIndex];
|
|
|
|
unsigned long clockInfoIndex = record->ucClockInfoIndex & 0x3F;
|
|
|
|
*flag = (record->ucClockInfoIndex >> NUM_BITS_CLOCK_INFO_ARRAY_INDEX);
|
|
|
|
vce_state->evclk = ((uint32_t)vce_clock_info->ucEVClkHigh << 16) | vce_clock_info->usEVClkLow;
|
|
vce_state->ecclk = ((uint32_t)vce_clock_info->ucECClkHigh << 16) | vce_clock_info->usECClkLow;
|
|
|
|
*clock_info = (void *)((unsigned long)(clock_arrays->clockInfo) + (clockInfoIndex * clock_arrays->ucEntrySize));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int pp_tables_initialize(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result;
|
|
const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table;
|
|
|
|
hwmgr->need_pp_table_upload = true;
|
|
|
|
powerplay_table = get_powerplay_table(hwmgr);
|
|
|
|
result = init_powerplay_tables(hwmgr, powerplay_table);
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"init_powerplay_tables failed", return result);
|
|
|
|
result = set_platform_caps(hwmgr,
|
|
le32_to_cpu(powerplay_table->ulPlatformCaps));
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"set_platform_caps failed", return result);
|
|
|
|
result = init_thermal_controller(hwmgr, powerplay_table);
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"init_thermal_controller failed", return result);
|
|
|
|
result = init_overdrive_limits(hwmgr, powerplay_table);
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"init_overdrive_limits failed", return result);
|
|
|
|
result = init_clock_voltage_dependency(hwmgr,
|
|
powerplay_table);
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"init_clock_voltage_dependency failed", return result);
|
|
|
|
result = init_dpm2_parameters(hwmgr, powerplay_table);
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"init_dpm2_parameters failed", return result);
|
|
|
|
result = init_phase_shedding_table(hwmgr, powerplay_table);
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"init_phase_shedding_table failed", return result);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int pp_tables_uninitialize(struct pp_hwmgr *hwmgr)
|
|
{
|
|
if (NULL != hwmgr->dyn_state.vddc_dependency_on_sclk) {
|
|
kfree(hwmgr->dyn_state.vddc_dependency_on_sclk);
|
|
hwmgr->dyn_state.vddc_dependency_on_sclk = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
|
|
kfree(hwmgr->dyn_state.vddci_dependency_on_mclk);
|
|
hwmgr->dyn_state.vddci_dependency_on_mclk = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.vddc_dependency_on_mclk) {
|
|
kfree(hwmgr->dyn_state.vddc_dependency_on_mclk);
|
|
hwmgr->dyn_state.vddc_dependency_on_mclk = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
|
|
kfree(hwmgr->dyn_state.mvdd_dependency_on_mclk);
|
|
hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.valid_mclk_values) {
|
|
kfree(hwmgr->dyn_state.valid_mclk_values);
|
|
hwmgr->dyn_state.valid_mclk_values = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.valid_sclk_values) {
|
|
kfree(hwmgr->dyn_state.valid_sclk_values);
|
|
hwmgr->dyn_state.valid_sclk_values = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.cac_leakage_table) {
|
|
kfree(hwmgr->dyn_state.cac_leakage_table);
|
|
hwmgr->dyn_state.cac_leakage_table = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.vddc_phase_shed_limits_table) {
|
|
kfree(hwmgr->dyn_state.vddc_phase_shed_limits_table);
|
|
hwmgr->dyn_state.vddc_phase_shed_limits_table = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.vce_clock_voltage_dependency_table) {
|
|
kfree(hwmgr->dyn_state.vce_clock_voltage_dependency_table);
|
|
hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.uvd_clock_voltage_dependency_table) {
|
|
kfree(hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
|
|
hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.samu_clock_voltage_dependency_table) {
|
|
kfree(hwmgr->dyn_state.samu_clock_voltage_dependency_table);
|
|
hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.acp_clock_voltage_dependency_table) {
|
|
kfree(hwmgr->dyn_state.acp_clock_voltage_dependency_table);
|
|
hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.cac_dtp_table) {
|
|
kfree(hwmgr->dyn_state.cac_dtp_table);
|
|
hwmgr->dyn_state.cac_dtp_table = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.ppm_parameter_table) {
|
|
kfree(hwmgr->dyn_state.ppm_parameter_table);
|
|
hwmgr->dyn_state.ppm_parameter_table = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.vdd_gfx_dependency_on_sclk) {
|
|
kfree(hwmgr->dyn_state.vdd_gfx_dependency_on_sclk);
|
|
hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->dyn_state.vq_budgeting_table) {
|
|
kfree(hwmgr->dyn_state.vq_budgeting_table);
|
|
hwmgr->dyn_state.vq_budgeting_table = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct pp_table_func pptable_funcs = {
|
|
.pptable_init = pp_tables_initialize,
|
|
.pptable_fini = pp_tables_uninitialize,
|
|
.pptable_get_number_of_vce_state_table_entries =
|
|
get_number_of_vce_state_table_entries,
|
|
.pptable_get_vce_state_table_entry =
|
|
get_vce_state_table_entry,
|
|
};
|
|
|