linux/drivers/i2c/busses/i2c-pxa.c
David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

1039 lines
22 KiB
C

/*
* i2c_adap_pxa.c
*
* I2C adapter for the PXA I2C bus access.
*
* Copyright (C) 2002 Intrinsyc Software Inc.
* Copyright (C) 2004-2005 Deep Blue Solutions Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* History:
* Apr 2002: Initial version [CS]
* Jun 2002: Properly seperated algo/adap [FB]
* Jan 2003: Fixed several bugs concerning interrupt handling [Kai-Uwe Bloem]
* Jan 2003: added limited signal handling [Kai-Uwe Bloem]
* Sep 2004: Major rework to ensure efficient bus handling [RMK]
* Dec 2004: Added support for PXA27x and slave device probing [Liam Girdwood]
* Feb 2005: Rework slave mode handling [RMK]
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/i2c-id.h>
#include <linux/init.h>
#include <linux/time.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/i2c-pxa.h>
#include <linux/platform_device.h>
#include <asm/hardware.h>
#include <asm/irq.h>
#include <asm/arch/i2c.h>
#include <asm/arch/pxa-regs.h>
struct pxa_i2c {
spinlock_t lock;
wait_queue_head_t wait;
struct i2c_msg *msg;
unsigned int msg_num;
unsigned int msg_idx;
unsigned int msg_ptr;
unsigned int slave_addr;
struct i2c_adapter adap;
#ifdef CONFIG_I2C_PXA_SLAVE
struct i2c_slave_client *slave;
#endif
unsigned int irqlogidx;
u32 isrlog[32];
u32 icrlog[32];
};
/*
* I2C Slave mode address
*/
#define I2C_PXA_SLAVE_ADDR 0x1
#ifdef DEBUG
struct bits {
u32 mask;
const char *set;
const char *unset;
};
#define BIT(m, s, u) { .mask = m, .set = s, .unset = u }
static inline void
decode_bits(const char *prefix, const struct bits *bits, int num, u32 val)
{
printk("%s %08x: ", prefix, val);
while (num--) {
const char *str = val & bits->mask ? bits->set : bits->unset;
if (str)
printk("%s ", str);
bits++;
}
}
static const struct bits isr_bits[] = {
BIT(ISR_RWM, "RX", "TX"),
BIT(ISR_ACKNAK, "NAK", "ACK"),
BIT(ISR_UB, "Bsy", "Rdy"),
BIT(ISR_IBB, "BusBsy", "BusRdy"),
BIT(ISR_SSD, "SlaveStop", NULL),
BIT(ISR_ALD, "ALD", NULL),
BIT(ISR_ITE, "TxEmpty", NULL),
BIT(ISR_IRF, "RxFull", NULL),
BIT(ISR_GCAD, "GenCall", NULL),
BIT(ISR_SAD, "SlaveAddr", NULL),
BIT(ISR_BED, "BusErr", NULL),
};
static void decode_ISR(unsigned int val)
{
decode_bits(KERN_DEBUG "ISR", isr_bits, ARRAY_SIZE(isr_bits), val);
printk("\n");
}
static const struct bits icr_bits[] = {
BIT(ICR_START, "START", NULL),
BIT(ICR_STOP, "STOP", NULL),
BIT(ICR_ACKNAK, "ACKNAK", NULL),
BIT(ICR_TB, "TB", NULL),
BIT(ICR_MA, "MA", NULL),
BIT(ICR_SCLE, "SCLE", "scle"),
BIT(ICR_IUE, "IUE", "iue"),
BIT(ICR_GCD, "GCD", NULL),
BIT(ICR_ITEIE, "ITEIE", NULL),
BIT(ICR_IRFIE, "IRFIE", NULL),
BIT(ICR_BEIE, "BEIE", NULL),
BIT(ICR_SSDIE, "SSDIE", NULL),
BIT(ICR_ALDIE, "ALDIE", NULL),
BIT(ICR_SADIE, "SADIE", NULL),
BIT(ICR_UR, "UR", "ur"),
};
static void decode_ICR(unsigned int val)
{
decode_bits(KERN_DEBUG "ICR", icr_bits, ARRAY_SIZE(icr_bits), val);
printk("\n");
}
static unsigned int i2c_debug = DEBUG;
static void i2c_pxa_show_state(struct pxa_i2c *i2c, int lno, const char *fname)
{
dev_dbg(&i2c->adap.dev, "state:%s:%d: ISR=%08x, ICR=%08x, IBMR=%02x\n", fname, lno, ISR, ICR, IBMR);
}
#define show_state(i2c) i2c_pxa_show_state(i2c, __LINE__, __FUNCTION__)
#else
#define i2c_debug 0
#define show_state(i2c) do { } while (0)
#define decode_ISR(val) do { } while (0)
#define decode_ICR(val) do { } while (0)
#endif
#define eedbg(lvl, x...) do { if ((lvl) < 1) { printk(KERN_DEBUG "" x); } } while(0)
static void i2c_pxa_master_complete(struct pxa_i2c *i2c, int ret);
static void i2c_pxa_scream_blue_murder(struct pxa_i2c *i2c, const char *why)
{
unsigned int i;
printk("i2c: error: %s\n", why);
printk("i2c: msg_num: %d msg_idx: %d msg_ptr: %d\n",
i2c->msg_num, i2c->msg_idx, i2c->msg_ptr);
printk("i2c: ICR: %08x ISR: %08x\n"
"i2c: log: ", ICR, ISR);
for (i = 0; i < i2c->irqlogidx; i++)
printk("[%08x:%08x] ", i2c->isrlog[i], i2c->icrlog[i]);
printk("\n");
}
static inline int i2c_pxa_is_slavemode(struct pxa_i2c *i2c)
{
return !(ICR & ICR_SCLE);
}
static void i2c_pxa_abort(struct pxa_i2c *i2c)
{
unsigned long timeout = jiffies + HZ/4;
if (i2c_pxa_is_slavemode(i2c)) {
dev_dbg(&i2c->adap.dev, "%s: called in slave mode\n", __func__);
return;
}
while (time_before(jiffies, timeout) && (IBMR & 0x1) == 0) {
unsigned long icr = ICR;
icr &= ~ICR_START;
icr |= ICR_ACKNAK | ICR_STOP | ICR_TB;
ICR = icr;
show_state(i2c);
msleep(1);
}
ICR &= ~(ICR_MA | ICR_START | ICR_STOP);
}
static int i2c_pxa_wait_bus_not_busy(struct pxa_i2c *i2c)
{
int timeout = DEF_TIMEOUT;
while (timeout-- && ISR & (ISR_IBB | ISR_UB)) {
if ((ISR & ISR_SAD) != 0)
timeout += 4;
msleep(2);
show_state(i2c);
}
if (timeout <= 0)
show_state(i2c);
return timeout <= 0 ? I2C_RETRY : 0;
}
static int i2c_pxa_wait_master(struct pxa_i2c *i2c)
{
unsigned long timeout = jiffies + HZ*4;
while (time_before(jiffies, timeout)) {
if (i2c_debug > 1)
dev_dbg(&i2c->adap.dev, "%s: %ld: ISR=%08x, ICR=%08x, IBMR=%02x\n",
__func__, (long)jiffies, ISR, ICR, IBMR);
if (ISR & ISR_SAD) {
if (i2c_debug > 0)
dev_dbg(&i2c->adap.dev, "%s: Slave detected\n", __func__);
goto out;
}
/* wait for unit and bus being not busy, and we also do a
* quick check of the i2c lines themselves to ensure they've
* gone high...
*/
if ((ISR & (ISR_UB | ISR_IBB)) == 0 && IBMR == 3) {
if (i2c_debug > 0)
dev_dbg(&i2c->adap.dev, "%s: done\n", __func__);
return 1;
}
msleep(1);
}
if (i2c_debug > 0)
dev_dbg(&i2c->adap.dev, "%s: did not free\n", __func__);
out:
return 0;
}
static int i2c_pxa_set_master(struct pxa_i2c *i2c)
{
if (i2c_debug)
dev_dbg(&i2c->adap.dev, "setting to bus master\n");
if ((ISR & (ISR_UB | ISR_IBB)) != 0) {
dev_dbg(&i2c->adap.dev, "%s: unit is busy\n", __func__);
if (!i2c_pxa_wait_master(i2c)) {
dev_dbg(&i2c->adap.dev, "%s: error: unit busy\n", __func__);
return I2C_RETRY;
}
}
ICR |= ICR_SCLE;
return 0;
}
#ifdef CONFIG_I2C_PXA_SLAVE
static int i2c_pxa_wait_slave(struct pxa_i2c *i2c)
{
unsigned long timeout = jiffies + HZ*1;
/* wait for stop */
show_state(i2c);
while (time_before(jiffies, timeout)) {
if (i2c_debug > 1)
dev_dbg(&i2c->adap.dev, "%s: %ld: ISR=%08x, ICR=%08x, IBMR=%02x\n",
__func__, (long)jiffies, ISR, ICR, IBMR);
if ((ISR & (ISR_UB|ISR_IBB|ISR_SAD)) == ISR_SAD ||
(ICR & ICR_SCLE) == 0) {
if (i2c_debug > 1)
dev_dbg(&i2c->adap.dev, "%s: done\n", __func__);
return 1;
}
msleep(1);
}
if (i2c_debug > 0)
dev_dbg(&i2c->adap.dev, "%s: did not free\n", __func__);
return 0;
}
/*
* clear the hold on the bus, and take of anything else
* that has been configured
*/
static void i2c_pxa_set_slave(struct pxa_i2c *i2c, int errcode)
{
show_state(i2c);
if (errcode < 0) {
udelay(100); /* simple delay */
} else {
/* we need to wait for the stop condition to end */
/* if we where in stop, then clear... */
if (ICR & ICR_STOP) {
udelay(100);
ICR &= ~ICR_STOP;
}
if (!i2c_pxa_wait_slave(i2c)) {
dev_err(&i2c->adap.dev, "%s: wait timedout\n",
__func__);
return;
}
}
ICR &= ~(ICR_STOP|ICR_ACKNAK|ICR_MA);
ICR &= ~ICR_SCLE;
if (i2c_debug) {
dev_dbg(&i2c->adap.dev, "ICR now %08x, ISR %08x\n", ICR, ISR);
decode_ICR(ICR);
}
}
#else
#define i2c_pxa_set_slave(i2c, err) do { } while (0)
#endif
static void i2c_pxa_reset(struct pxa_i2c *i2c)
{
pr_debug("Resetting I2C Controller Unit\n");
/* abort any transfer currently under way */
i2c_pxa_abort(i2c);
/* reset according to 9.8 */
ICR = ICR_UR;
ISR = I2C_ISR_INIT;
ICR &= ~ICR_UR;
ISAR = i2c->slave_addr;
/* set control register values */
ICR = I2C_ICR_INIT;
#ifdef CONFIG_I2C_PXA_SLAVE
dev_info(&i2c->adap.dev, "Enabling slave mode\n");
ICR |= ICR_SADIE | ICR_ALDIE | ICR_SSDIE;
#endif
i2c_pxa_set_slave(i2c, 0);
/* enable unit */
ICR |= ICR_IUE;
udelay(100);
}
#ifdef CONFIG_I2C_PXA_SLAVE
/*
* I2C EEPROM emulation.
*/
static struct i2c_eeprom_emu eeprom = {
.size = I2C_EEPROM_EMU_SIZE,
.watch = LIST_HEAD_INIT(eeprom.watch),
};
struct i2c_eeprom_emu *i2c_pxa_get_eeprom(void)
{
return &eeprom;
}
int i2c_eeprom_emu_addwatcher(struct i2c_eeprom_emu *emu, void *data,
unsigned int addr, unsigned int size,
struct i2c_eeprom_emu_watcher *watcher)
{
struct i2c_eeprom_emu_watch *watch;
unsigned long flags;
if (addr + size > emu->size)
return -EINVAL;
watch = kmalloc(sizeof(struct i2c_eeprom_emu_watch), GFP_KERNEL);
if (watch) {
watch->start = addr;
watch->end = addr + size - 1;
watch->ops = watcher;
watch->data = data;
local_irq_save(flags);
list_add(&watch->node, &emu->watch);
local_irq_restore(flags);
}
return watch ? 0 : -ENOMEM;
}
void i2c_eeprom_emu_delwatcher(struct i2c_eeprom_emu *emu, void *data,
struct i2c_eeprom_emu_watcher *watcher)
{
struct i2c_eeprom_emu_watch *watch, *n;
unsigned long flags;
list_for_each_entry_safe(watch, n, &emu->watch, node) {
if (watch->ops == watcher && watch->data == data) {
local_irq_save(flags);
list_del(&watch->node);
local_irq_restore(flags);
kfree(watch);
}
}
}
static void i2c_eeprom_emu_event(void *ptr, i2c_slave_event_t event)
{
struct i2c_eeprom_emu *emu = ptr;
eedbg(3, "i2c_eeprom_emu_event: %d\n", event);
switch (event) {
case I2C_SLAVE_EVENT_START_WRITE:
emu->seen_start = 1;
eedbg(2, "i2c_eeprom: write initiated\n");
break;
case I2C_SLAVE_EVENT_START_READ:
emu->seen_start = 0;
eedbg(2, "i2c_eeprom: read initiated\n");
break;
case I2C_SLAVE_EVENT_STOP:
emu->seen_start = 0;
eedbg(2, "i2c_eeprom: received stop\n");
break;
default:
eedbg(0, "i2c_eeprom: unhandled event\n");
break;
}
}
static int i2c_eeprom_emu_read(void *ptr)
{
struct i2c_eeprom_emu *emu = ptr;
int ret;
ret = emu->bytes[emu->ptr];
emu->ptr = (emu->ptr + 1) % emu->size;
return ret;
}
static void i2c_eeprom_emu_write(void *ptr, unsigned int val)
{
struct i2c_eeprom_emu *emu = ptr;
struct i2c_eeprom_emu_watch *watch;
if (emu->seen_start != 0) {
eedbg(2, "i2c_eeprom_emu_write: setting ptr %02x\n", val);
emu->ptr = val;
emu->seen_start = 0;
return;
}
emu->bytes[emu->ptr] = val;
eedbg(1, "i2c_eeprom_emu_write: ptr=0x%02x, val=0x%02x\n",
emu->ptr, val);
list_for_each_entry(watch, &emu->watch, node) {
if (!watch->ops || !watch->ops->write)
continue;
if (watch->start <= emu->ptr && watch->end >= emu->ptr)
watch->ops->write(watch->data, emu->ptr, val);
}
emu->ptr = (emu->ptr + 1) % emu->size;
}
struct i2c_slave_client eeprom_client = {
.data = &eeprom,
.event = i2c_eeprom_emu_event,
.read = i2c_eeprom_emu_read,
.write = i2c_eeprom_emu_write
};
/*
* PXA I2C Slave mode
*/
static void i2c_pxa_slave_txempty(struct pxa_i2c *i2c, u32 isr)
{
if (isr & ISR_BED) {
/* what should we do here? */
} else {
int ret = i2c->slave->read(i2c->slave->data);
IDBR = ret;
ICR |= ICR_TB; /* allow next byte */
}
}
static void i2c_pxa_slave_rxfull(struct pxa_i2c *i2c, u32 isr)
{
unsigned int byte = IDBR;
if (i2c->slave != NULL)
i2c->slave->write(i2c->slave->data, byte);
ICR |= ICR_TB;
}
static void i2c_pxa_slave_start(struct pxa_i2c *i2c, u32 isr)
{
int timeout;
if (i2c_debug > 0)
dev_dbg(&i2c->adap.dev, "SAD, mode is slave-%cx\n",
(isr & ISR_RWM) ? 'r' : 't');
if (i2c->slave != NULL)
i2c->slave->event(i2c->slave->data,
(isr & ISR_RWM) ? I2C_SLAVE_EVENT_START_READ : I2C_SLAVE_EVENT_START_WRITE);
/*
* slave could interrupt in the middle of us generating a
* start condition... if this happens, we'd better back off
* and stop holding the poor thing up
*/
ICR &= ~(ICR_START|ICR_STOP);
ICR |= ICR_TB;
timeout = 0x10000;
while (1) {
if ((IBMR & 2) == 2)
break;
timeout--;
if (timeout <= 0) {
dev_err(&i2c->adap.dev, "timeout waiting for SCL high\n");
break;
}
}
ICR &= ~ICR_SCLE;
}
static void i2c_pxa_slave_stop(struct pxa_i2c *i2c)
{
if (i2c_debug > 2)
dev_dbg(&i2c->adap.dev, "ISR: SSD (Slave Stop)\n");
if (i2c->slave != NULL)
i2c->slave->event(i2c->slave->data, I2C_SLAVE_EVENT_STOP);
if (i2c_debug > 2)
dev_dbg(&i2c->adap.dev, "ISR: SSD (Slave Stop) acked\n");
/*
* If we have a master-mode message waiting,
* kick it off now that the slave has completed.
*/
if (i2c->msg)
i2c_pxa_master_complete(i2c, I2C_RETRY);
}
#else
static void i2c_pxa_slave_txempty(struct pxa_i2c *i2c, u32 isr)
{
if (isr & ISR_BED) {
/* what should we do here? */
} else {
IDBR = 0;
ICR |= ICR_TB;
}
}
static void i2c_pxa_slave_rxfull(struct pxa_i2c *i2c, u32 isr)
{
ICR |= ICR_TB | ICR_ACKNAK;
}
static void i2c_pxa_slave_start(struct pxa_i2c *i2c, u32 isr)
{
int timeout;
/*
* slave could interrupt in the middle of us generating a
* start condition... if this happens, we'd better back off
* and stop holding the poor thing up
*/
ICR &= ~(ICR_START|ICR_STOP);
ICR |= ICR_TB | ICR_ACKNAK;
timeout = 0x10000;
while (1) {
if ((IBMR & 2) == 2)
break;
timeout--;
if (timeout <= 0) {
dev_err(&i2c->adap.dev, "timeout waiting for SCL high\n");
break;
}
}
ICR &= ~ICR_SCLE;
}
static void i2c_pxa_slave_stop(struct pxa_i2c *i2c)
{
if (i2c->msg)
i2c_pxa_master_complete(i2c, I2C_RETRY);
}
#endif
/*
* PXA I2C Master mode
*/
static inline unsigned int i2c_pxa_addr_byte(struct i2c_msg *msg)
{
unsigned int addr = (msg->addr & 0x7f) << 1;
if (msg->flags & I2C_M_RD)
addr |= 1;
return addr;
}
static inline void i2c_pxa_start_message(struct pxa_i2c *i2c)
{
u32 icr;
/*
* Step 1: target slave address into IDBR
*/
IDBR = i2c_pxa_addr_byte(i2c->msg);
/*
* Step 2: initiate the write.
*/
icr = ICR & ~(ICR_STOP | ICR_ALDIE);
ICR = icr | ICR_START | ICR_TB;
}
/*
* We are protected by the adapter bus mutex.
*/
static int i2c_pxa_do_xfer(struct pxa_i2c *i2c, struct i2c_msg *msg, int num)
{
long timeout;
int ret;
/*
* Wait for the bus to become free.
*/
ret = i2c_pxa_wait_bus_not_busy(i2c);
if (ret) {
dev_err(&i2c->adap.dev, "i2c_pxa: timeout waiting for bus free\n");
goto out;
}
/*
* Set master mode.
*/
ret = i2c_pxa_set_master(i2c);
if (ret) {
dev_err(&i2c->adap.dev, "i2c_pxa_set_master: error %d\n", ret);
goto out;
}
spin_lock_irq(&i2c->lock);
i2c->msg = msg;
i2c->msg_num = num;
i2c->msg_idx = 0;
i2c->msg_ptr = 0;
i2c->irqlogidx = 0;
i2c_pxa_start_message(i2c);
spin_unlock_irq(&i2c->lock);
/*
* The rest of the processing occurs in the interrupt handler.
*/
timeout = wait_event_timeout(i2c->wait, i2c->msg_num == 0, HZ * 5);
/*
* We place the return code in i2c->msg_idx.
*/
ret = i2c->msg_idx;
if (timeout == 0)
i2c_pxa_scream_blue_murder(i2c, "timeout");
out:
return ret;
}
/*
* i2c_pxa_master_complete - complete the message and wake up.
*/
static void i2c_pxa_master_complete(struct pxa_i2c *i2c, int ret)
{
i2c->msg_ptr = 0;
i2c->msg = NULL;
i2c->msg_idx ++;
i2c->msg_num = 0;
if (ret)
i2c->msg_idx = ret;
wake_up(&i2c->wait);
}
static void i2c_pxa_irq_txempty(struct pxa_i2c *i2c, u32 isr)
{
u32 icr = ICR & ~(ICR_START|ICR_STOP|ICR_ACKNAK|ICR_TB);
again:
/*
* If ISR_ALD is set, we lost arbitration.
*/
if (isr & ISR_ALD) {
/*
* Do we need to do anything here? The PXA docs
* are vague about what happens.
*/
i2c_pxa_scream_blue_murder(i2c, "ALD set");
/*
* We ignore this error. We seem to see spurious ALDs
* for seemingly no reason. If we handle them as I think
* they should, we end up causing an I2C error, which
* is painful for some systems.
*/
return; /* ignore */
}
if (isr & ISR_BED) {
int ret = BUS_ERROR;
/*
* I2C bus error - either the device NAK'd us, or
* something more serious happened. If we were NAK'd
* on the initial address phase, we can retry.
*/
if (isr & ISR_ACKNAK) {
if (i2c->msg_ptr == 0 && i2c->msg_idx == 0)
ret = I2C_RETRY;
else
ret = XFER_NAKED;
}
i2c_pxa_master_complete(i2c, ret);
} else if (isr & ISR_RWM) {
/*
* Read mode. We have just sent the address byte, and
* now we must initiate the transfer.
*/
if (i2c->msg_ptr == i2c->msg->len - 1 &&
i2c->msg_idx == i2c->msg_num - 1)
icr |= ICR_STOP | ICR_ACKNAK;
icr |= ICR_ALDIE | ICR_TB;
} else if (i2c->msg_ptr < i2c->msg->len) {
/*
* Write mode. Write the next data byte.
*/
IDBR = i2c->msg->buf[i2c->msg_ptr++];
icr |= ICR_ALDIE | ICR_TB;
/*
* If this is the last byte of the last message, send
* a STOP.
*/
if (i2c->msg_ptr == i2c->msg->len &&
i2c->msg_idx == i2c->msg_num - 1)
icr |= ICR_STOP;
} else if (i2c->msg_idx < i2c->msg_num - 1) {
/*
* Next segment of the message.
*/
i2c->msg_ptr = 0;
i2c->msg_idx ++;
i2c->msg++;
/*
* If we aren't doing a repeated start and address,
* go back and try to send the next byte. Note that
* we do not support switching the R/W direction here.
*/
if (i2c->msg->flags & I2C_M_NOSTART)
goto again;
/*
* Write the next address.
*/
IDBR = i2c_pxa_addr_byte(i2c->msg);
/*
* And trigger a repeated start, and send the byte.
*/
icr &= ~ICR_ALDIE;
icr |= ICR_START | ICR_TB;
} else {
if (i2c->msg->len == 0) {
/*
* Device probes have a message length of zero
* and need the bus to be reset before it can
* be used again.
*/
i2c_pxa_reset(i2c);
}
i2c_pxa_master_complete(i2c, 0);
}
i2c->icrlog[i2c->irqlogidx-1] = icr;
ICR = icr;
show_state(i2c);
}
static void i2c_pxa_irq_rxfull(struct pxa_i2c *i2c, u32 isr)
{
u32 icr = ICR & ~(ICR_START|ICR_STOP|ICR_ACKNAK|ICR_TB);
/*
* Read the byte.
*/
i2c->msg->buf[i2c->msg_ptr++] = IDBR;
if (i2c->msg_ptr < i2c->msg->len) {
/*
* If this is the last byte of the last
* message, send a STOP.
*/
if (i2c->msg_ptr == i2c->msg->len - 1)
icr |= ICR_STOP | ICR_ACKNAK;
icr |= ICR_ALDIE | ICR_TB;
} else {
i2c_pxa_master_complete(i2c, 0);
}
i2c->icrlog[i2c->irqlogidx-1] = icr;
ICR = icr;
}
static irqreturn_t i2c_pxa_handler(int this_irq, void *dev_id)
{
struct pxa_i2c *i2c = dev_id;
u32 isr = ISR;
if (i2c_debug > 2 && 0) {
dev_dbg(&i2c->adap.dev, "%s: ISR=%08x, ICR=%08x, IBMR=%02x\n",
__func__, isr, ICR, IBMR);
decode_ISR(isr);
}
if (i2c->irqlogidx < ARRAY_SIZE(i2c->isrlog))
i2c->isrlog[i2c->irqlogidx++] = isr;
show_state(i2c);
/*
* Always clear all pending IRQs.
*/
ISR = isr & (ISR_SSD|ISR_ALD|ISR_ITE|ISR_IRF|ISR_SAD|ISR_BED);
if (isr & ISR_SAD)
i2c_pxa_slave_start(i2c, isr);
if (isr & ISR_SSD)
i2c_pxa_slave_stop(i2c);
if (i2c_pxa_is_slavemode(i2c)) {
if (isr & ISR_ITE)
i2c_pxa_slave_txempty(i2c, isr);
if (isr & ISR_IRF)
i2c_pxa_slave_rxfull(i2c, isr);
} else if (i2c->msg) {
if (isr & ISR_ITE)
i2c_pxa_irq_txempty(i2c, isr);
if (isr & ISR_IRF)
i2c_pxa_irq_rxfull(i2c, isr);
} else {
i2c_pxa_scream_blue_murder(i2c, "spurious irq");
}
return IRQ_HANDLED;
}
static int i2c_pxa_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
struct pxa_i2c *i2c = adap->algo_data;
int ret, i;
/* If the I2C controller is disabled we need to reset it (probably due
to a suspend/resume destroying state). We do this here as we can then
avoid worrying about resuming the controller before its users. */
if (!(ICR & ICR_IUE))
i2c_pxa_reset(i2c);
for (i = adap->retries; i >= 0; i--) {
ret = i2c_pxa_do_xfer(i2c, msgs, num);
if (ret != I2C_RETRY)
goto out;
if (i2c_debug)
dev_dbg(&adap->dev, "Retrying transmission\n");
udelay(100);
}
i2c_pxa_scream_blue_murder(i2c, "exhausted retries");
ret = -EREMOTEIO;
out:
i2c_pxa_set_slave(i2c, ret);
return ret;
}
static u32 i2c_pxa_functionality(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm i2c_pxa_algorithm = {
.master_xfer = i2c_pxa_xfer,
.functionality = i2c_pxa_functionality,
};
static struct pxa_i2c i2c_pxa = {
.lock = SPIN_LOCK_UNLOCKED,
.wait = __WAIT_QUEUE_HEAD_INITIALIZER(i2c_pxa.wait),
.adap = {
.owner = THIS_MODULE,
.algo = &i2c_pxa_algorithm,
.name = "pxa2xx-i2c",
.retries = 5,
},
};
static int i2c_pxa_probe(struct platform_device *dev)
{
struct pxa_i2c *i2c = &i2c_pxa;
#ifdef CONFIG_I2C_PXA_SLAVE
struct i2c_pxa_platform_data *plat = dev->dev.platform_data;
#endif
int ret;
#ifdef CONFIG_PXA27x
pxa_gpio_mode(GPIO117_I2CSCL_MD);
pxa_gpio_mode(GPIO118_I2CSDA_MD);
udelay(100);
#endif
i2c->slave_addr = I2C_PXA_SLAVE_ADDR;
#ifdef CONFIG_I2C_PXA_SLAVE
i2c->slave = &eeprom_client;
if (plat) {
i2c->slave_addr = plat->slave_addr;
if (plat->slave)
i2c->slave = plat->slave;
}
#endif
pxa_set_cken(CKEN14_I2C, 1);
ret = request_irq(IRQ_I2C, i2c_pxa_handler, IRQF_DISABLED,
"pxa2xx-i2c", i2c);
if (ret)
goto out;
i2c_pxa_reset(i2c);
i2c->adap.algo_data = i2c;
i2c->adap.dev.parent = &dev->dev;
ret = i2c_add_adapter(&i2c->adap);
if (ret < 0) {
printk(KERN_INFO "I2C: Failed to add bus\n");
goto err_irq;
}
platform_set_drvdata(dev, i2c);
#ifdef CONFIG_I2C_PXA_SLAVE
printk(KERN_INFO "I2C: %s: PXA I2C adapter, slave address %d\n",
i2c->adap.dev.bus_id, i2c->slave_addr);
#else
printk(KERN_INFO "I2C: %s: PXA I2C adapter\n",
i2c->adap.dev.bus_id);
#endif
return 0;
err_irq:
free_irq(IRQ_I2C, i2c);
out:
return ret;
}
static int i2c_pxa_remove(struct platform_device *dev)
{
struct pxa_i2c *i2c = platform_get_drvdata(dev);
platform_set_drvdata(dev, NULL);
i2c_del_adapter(&i2c->adap);
free_irq(IRQ_I2C, i2c);
pxa_set_cken(CKEN14_I2C, 0);
return 0;
}
static struct platform_driver i2c_pxa_driver = {
.probe = i2c_pxa_probe,
.remove = i2c_pxa_remove,
.driver = {
.name = "pxa2xx-i2c",
},
};
static int __init i2c_adap_pxa_init(void)
{
return platform_driver_register(&i2c_pxa_driver);
}
static void i2c_adap_pxa_exit(void)
{
return platform_driver_unregister(&i2c_pxa_driver);
}
MODULE_LICENSE("GPL");
module_init(i2c_adap_pxa_init);
module_exit(i2c_adap_pxa_exit);