forked from Minki/linux
5cfb36ebf4
A platform_driver does not need to set an owner, it will be populated by the driver core. Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
516 lines
12 KiB
C
516 lines
12 KiB
C
/*
|
|
* drivers/mtd/nand/au1550nd.c
|
|
*
|
|
* Copyright (C) 2004 Embedded Edge, LLC
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/gpio.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/platform_device.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mach-au1x00/au1000.h>
|
|
#include <asm/mach-au1x00/au1550nd.h>
|
|
|
|
|
|
struct au1550nd_ctx {
|
|
struct mtd_info info;
|
|
struct nand_chip chip;
|
|
|
|
int cs;
|
|
void __iomem *base;
|
|
void (*write_byte)(struct mtd_info *, u_char);
|
|
};
|
|
|
|
/**
|
|
* au_read_byte - read one byte from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* read function for 8bit buswidth
|
|
*/
|
|
static u_char au_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
u_char ret = readb(this->IO_ADDR_R);
|
|
wmb(); /* drain writebuffer */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* au_write_byte - write one byte to the chip
|
|
* @mtd: MTD device structure
|
|
* @byte: pointer to data byte to write
|
|
*
|
|
* write function for 8it buswidth
|
|
*/
|
|
static void au_write_byte(struct mtd_info *mtd, u_char byte)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
writeb(byte, this->IO_ADDR_W);
|
|
wmb(); /* drain writebuffer */
|
|
}
|
|
|
|
/**
|
|
* au_read_byte16 - read one byte endianness aware from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* read function for 16bit buswidth with endianness conversion
|
|
*/
|
|
static u_char au_read_byte16(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
|
|
wmb(); /* drain writebuffer */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* au_write_byte16 - write one byte endianness aware to the chip
|
|
* @mtd: MTD device structure
|
|
* @byte: pointer to data byte to write
|
|
*
|
|
* write function for 16bit buswidth with endianness conversion
|
|
*/
|
|
static void au_write_byte16(struct mtd_info *mtd, u_char byte)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
|
|
wmb(); /* drain writebuffer */
|
|
}
|
|
|
|
/**
|
|
* au_read_word - read one word from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* read function for 16bit buswidth without endianness conversion
|
|
*/
|
|
static u16 au_read_word(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
u16 ret = readw(this->IO_ADDR_R);
|
|
wmb(); /* drain writebuffer */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* au_write_buf - write buffer to chip
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*
|
|
* write function for 8bit buswidth
|
|
*/
|
|
static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
writeb(buf[i], this->IO_ADDR_W);
|
|
wmb(); /* drain writebuffer */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* au_read_buf - read chip data into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*
|
|
* read function for 8bit buswidth
|
|
*/
|
|
static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
buf[i] = readb(this->IO_ADDR_R);
|
|
wmb(); /* drain writebuffer */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* au_write_buf16 - write buffer to chip
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*
|
|
* write function for 16bit buswidth
|
|
*/
|
|
static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
u16 *p = (u16 *) buf;
|
|
len >>= 1;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
writew(p[i], this->IO_ADDR_W);
|
|
wmb(); /* drain writebuffer */
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* au_read_buf16 - read chip data into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*
|
|
* read function for 16bit buswidth
|
|
*/
|
|
static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
u16 *p = (u16 *) buf;
|
|
len >>= 1;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
p[i] = readw(this->IO_ADDR_R);
|
|
wmb(); /* drain writebuffer */
|
|
}
|
|
}
|
|
|
|
/* Select the chip by setting nCE to low */
|
|
#define NAND_CTL_SETNCE 1
|
|
/* Deselect the chip by setting nCE to high */
|
|
#define NAND_CTL_CLRNCE 2
|
|
/* Select the command latch by setting CLE to high */
|
|
#define NAND_CTL_SETCLE 3
|
|
/* Deselect the command latch by setting CLE to low */
|
|
#define NAND_CTL_CLRCLE 4
|
|
/* Select the address latch by setting ALE to high */
|
|
#define NAND_CTL_SETALE 5
|
|
/* Deselect the address latch by setting ALE to low */
|
|
#define NAND_CTL_CLRALE 6
|
|
|
|
static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
|
|
{
|
|
struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
switch (cmd) {
|
|
|
|
case NAND_CTL_SETCLE:
|
|
this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
|
|
break;
|
|
|
|
case NAND_CTL_CLRCLE:
|
|
this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
|
|
break;
|
|
|
|
case NAND_CTL_SETALE:
|
|
this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
|
|
break;
|
|
|
|
case NAND_CTL_CLRALE:
|
|
this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
|
|
/* FIXME: Nobody knows why this is necessary,
|
|
* but it works only that way */
|
|
udelay(1);
|
|
break;
|
|
|
|
case NAND_CTL_SETNCE:
|
|
/* assert (force assert) chip enable */
|
|
alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
|
|
break;
|
|
|
|
case NAND_CTL_CLRNCE:
|
|
/* deassert chip enable */
|
|
alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
|
|
break;
|
|
}
|
|
|
|
this->IO_ADDR_R = this->IO_ADDR_W;
|
|
|
|
wmb(); /* Drain the writebuffer */
|
|
}
|
|
|
|
int au1550_device_ready(struct mtd_info *mtd)
|
|
{
|
|
return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
|
|
}
|
|
|
|
/**
|
|
* au1550_select_chip - control -CE line
|
|
* Forbid driving -CE manually permitting the NAND controller to do this.
|
|
* Keeping -CE asserted during the whole sector reads interferes with the
|
|
* NOR flash and PCMCIA drivers as it causes contention on the static bus.
|
|
* We only have to hold -CE low for the NAND read commands since the flash
|
|
* chip needs it to be asserted during chip not ready time but the NAND
|
|
* controller keeps it released.
|
|
*
|
|
* @mtd: MTD device structure
|
|
* @chip: chipnumber to select, -1 for deselect
|
|
*/
|
|
static void au1550_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* au1550_command - Send command to NAND device
|
|
* @mtd: MTD device structure
|
|
* @command: the command to be sent
|
|
* @column: the column address for this command, -1 if none
|
|
* @page_addr: the page address for this command, -1 if none
|
|
*/
|
|
static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
|
|
{
|
|
struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
|
|
struct nand_chip *this = mtd->priv;
|
|
int ce_override = 0, i;
|
|
unsigned long flags = 0;
|
|
|
|
/* Begin command latch cycle */
|
|
au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
|
|
/*
|
|
* Write out the command to the device.
|
|
*/
|
|
if (command == NAND_CMD_SEQIN) {
|
|
int readcmd;
|
|
|
|
if (column >= mtd->writesize) {
|
|
/* OOB area */
|
|
column -= mtd->writesize;
|
|
readcmd = NAND_CMD_READOOB;
|
|
} else if (column < 256) {
|
|
/* First 256 bytes --> READ0 */
|
|
readcmd = NAND_CMD_READ0;
|
|
} else {
|
|
column -= 256;
|
|
readcmd = NAND_CMD_READ1;
|
|
}
|
|
ctx->write_byte(mtd, readcmd);
|
|
}
|
|
ctx->write_byte(mtd, command);
|
|
|
|
/* Set ALE and clear CLE to start address cycle */
|
|
au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
|
|
|
|
if (column != -1 || page_addr != -1) {
|
|
au1550_hwcontrol(mtd, NAND_CTL_SETALE);
|
|
|
|
/* Serially input address */
|
|
if (column != -1) {
|
|
/* Adjust columns for 16 bit buswidth */
|
|
if (this->options & NAND_BUSWIDTH_16 &&
|
|
!nand_opcode_8bits(command))
|
|
column >>= 1;
|
|
ctx->write_byte(mtd, column);
|
|
}
|
|
if (page_addr != -1) {
|
|
ctx->write_byte(mtd, (u8)(page_addr & 0xff));
|
|
|
|
if (command == NAND_CMD_READ0 ||
|
|
command == NAND_CMD_READ1 ||
|
|
command == NAND_CMD_READOOB) {
|
|
/*
|
|
* NAND controller will release -CE after
|
|
* the last address byte is written, so we'll
|
|
* have to forcibly assert it. No interrupts
|
|
* are allowed while we do this as we don't
|
|
* want the NOR flash or PCMCIA drivers to
|
|
* steal our precious bytes of data...
|
|
*/
|
|
ce_override = 1;
|
|
local_irq_save(flags);
|
|
au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
|
|
}
|
|
|
|
ctx->write_byte(mtd, (u8)(page_addr >> 8));
|
|
|
|
/* One more address cycle for devices > 32MiB */
|
|
if (this->chipsize > (32 << 20))
|
|
ctx->write_byte(mtd,
|
|
((page_addr >> 16) & 0x0f));
|
|
}
|
|
/* Latch in address */
|
|
au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
|
|
}
|
|
|
|
/*
|
|
* Program and erase have their own busy handlers.
|
|
* Status and sequential in need no delay.
|
|
*/
|
|
switch (command) {
|
|
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_STATUS:
|
|
return;
|
|
|
|
case NAND_CMD_RESET:
|
|
break;
|
|
|
|
case NAND_CMD_READ0:
|
|
case NAND_CMD_READ1:
|
|
case NAND_CMD_READOOB:
|
|
/* Check if we're really driving -CE low (just in case) */
|
|
if (unlikely(!ce_override))
|
|
break;
|
|
|
|
/* Apply a short delay always to ensure that we do wait tWB. */
|
|
ndelay(100);
|
|
/* Wait for a chip to become ready... */
|
|
for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
|
|
udelay(1);
|
|
|
|
/* Release -CE and re-enable interrupts. */
|
|
au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
/* Apply this short delay always to ensure that we do wait tWB. */
|
|
ndelay(100);
|
|
|
|
while(!this->dev_ready(mtd));
|
|
}
|
|
|
|
static int find_nand_cs(unsigned long nand_base)
|
|
{
|
|
void __iomem *base =
|
|
(void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
|
|
unsigned long addr, staddr, start, mask, end;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
addr = 0x1000 + (i * 0x10); /* CSx */
|
|
staddr = __raw_readl(base + addr + 0x08); /* STADDRx */
|
|
/* figure out the decoded range of this CS */
|
|
start = (staddr << 4) & 0xfffc0000;
|
|
mask = (staddr << 18) & 0xfffc0000;
|
|
end = (start | (start - 1)) & ~(start ^ mask);
|
|
if ((nand_base >= start) && (nand_base < end))
|
|
return i;
|
|
}
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int au1550nd_probe(struct platform_device *pdev)
|
|
{
|
|
struct au1550nd_platdata *pd;
|
|
struct au1550nd_ctx *ctx;
|
|
struct nand_chip *this;
|
|
struct resource *r;
|
|
int ret, cs;
|
|
|
|
pd = dev_get_platdata(&pdev->dev);
|
|
if (!pd) {
|
|
dev_err(&pdev->dev, "missing platform data\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!r) {
|
|
dev_err(&pdev->dev, "no NAND memory resource\n");
|
|
ret = -ENODEV;
|
|
goto out1;
|
|
}
|
|
if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
|
|
dev_err(&pdev->dev, "cannot claim NAND memory area\n");
|
|
ret = -ENOMEM;
|
|
goto out1;
|
|
}
|
|
|
|
ctx->base = ioremap_nocache(r->start, 0x1000);
|
|
if (!ctx->base) {
|
|
dev_err(&pdev->dev, "cannot remap NAND memory area\n");
|
|
ret = -ENODEV;
|
|
goto out2;
|
|
}
|
|
|
|
this = &ctx->chip;
|
|
ctx->info.priv = this;
|
|
ctx->info.owner = THIS_MODULE;
|
|
|
|
/* figure out which CS# r->start belongs to */
|
|
cs = find_nand_cs(r->start);
|
|
if (cs < 0) {
|
|
dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
|
|
ret = -ENODEV;
|
|
goto out3;
|
|
}
|
|
ctx->cs = cs;
|
|
|
|
this->dev_ready = au1550_device_ready;
|
|
this->select_chip = au1550_select_chip;
|
|
this->cmdfunc = au1550_command;
|
|
|
|
/* 30 us command delay time */
|
|
this->chip_delay = 30;
|
|
this->ecc.mode = NAND_ECC_SOFT;
|
|
|
|
if (pd->devwidth)
|
|
this->options |= NAND_BUSWIDTH_16;
|
|
|
|
this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
|
|
ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
|
|
this->read_word = au_read_word;
|
|
this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
|
|
this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
|
|
|
|
ret = nand_scan(&ctx->info, 1);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
|
|
goto out3;
|
|
}
|
|
|
|
mtd_device_register(&ctx->info, pd->parts, pd->num_parts);
|
|
|
|
platform_set_drvdata(pdev, ctx);
|
|
|
|
return 0;
|
|
|
|
out3:
|
|
iounmap(ctx->base);
|
|
out2:
|
|
release_mem_region(r->start, resource_size(r));
|
|
out1:
|
|
kfree(ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int au1550nd_remove(struct platform_device *pdev)
|
|
{
|
|
struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
|
|
struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
|
|
nand_release(&ctx->info);
|
|
iounmap(ctx->base);
|
|
release_mem_region(r->start, 0x1000);
|
|
kfree(ctx);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver au1550nd_driver = {
|
|
.driver = {
|
|
.name = "au1550-nand",
|
|
},
|
|
.probe = au1550nd_probe,
|
|
.remove = au1550nd_remove,
|
|
};
|
|
|
|
module_platform_driver(au1550nd_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Embedded Edge, LLC");
|
|
MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
|