forked from Minki/linux
9a0b5817ad
Implement SMP alternatives, i.e. switching at runtime between different code versions for UP and SMP. The code can patch both SMP->UP and UP->SMP. The UP->SMP case is useful for CPU hotplug. With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and when the number of CPUs goes down to 1, and switches to SMP when the number of CPUs goes up to 2. Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is patched once at boot time (if needed) and the tables are released afterwards. The changes in detail: * The current alternatives bits are moved to a separate file, the SMP alternatives code is added there. * The patch adds some new elf sections to the kernel: .smp_altinstructions like .altinstructions, also contains a list of alt_instr structs. .smp_altinstr_replacement like .altinstr_replacement, but also has some space to save original instruction before replaving it. .smp_locks list of pointers to lock prefixes which can be nop'ed out on UP. The first two are used to replace more complex instruction sequences such as spinlocks and semaphores. It would be possible to deal with the lock prefixes with that as well, but by handling them as special case the table sizes become much smaller. * The sections are page-aligned and padded up to page size, so they can be free if they are not needed. * Splitted the code to release init pages to a separate function and use it to release the elf sections if they are unused. Signed-off-by: Gerd Hoffmann <kraxel@suse.de> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
196 lines
4.3 KiB
C
196 lines
4.3 KiB
C
#ifndef __ASM_SPINLOCK_H
|
|
#define __ASM_SPINLOCK_H
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/rwlock.h>
|
|
#include <asm/page.h>
|
|
#include <linux/config.h>
|
|
#include <linux/compiler.h>
|
|
|
|
/*
|
|
* Your basic SMP spinlocks, allowing only a single CPU anywhere
|
|
*
|
|
* Simple spin lock operations. There are two variants, one clears IRQ's
|
|
* on the local processor, one does not.
|
|
*
|
|
* We make no fairness assumptions. They have a cost.
|
|
*
|
|
* (the type definitions are in asm/spinlock_types.h)
|
|
*/
|
|
|
|
#define __raw_spin_is_locked(x) \
|
|
(*(volatile signed char *)(&(x)->slock) <= 0)
|
|
|
|
#define __raw_spin_lock_string \
|
|
"\n1:\t" \
|
|
"lock ; decb %0\n\t" \
|
|
"jns 3f\n" \
|
|
"2:\t" \
|
|
"rep;nop\n\t" \
|
|
"cmpb $0,%0\n\t" \
|
|
"jle 2b\n\t" \
|
|
"jmp 1b\n" \
|
|
"3:\n\t"
|
|
|
|
#define __raw_spin_lock_string_flags \
|
|
"\n1:\t" \
|
|
"lock ; decb %0\n\t" \
|
|
"jns 4f\n\t" \
|
|
"2:\t" \
|
|
"testl $0x200, %1\n\t" \
|
|
"jz 3f\n\t" \
|
|
"sti\n\t" \
|
|
"3:\t" \
|
|
"rep;nop\n\t" \
|
|
"cmpb $0, %0\n\t" \
|
|
"jle 3b\n\t" \
|
|
"cli\n\t" \
|
|
"jmp 1b\n" \
|
|
"4:\n\t"
|
|
|
|
#define __raw_spin_lock_string_up \
|
|
"\n\tdecb %0"
|
|
|
|
static inline void __raw_spin_lock(raw_spinlock_t *lock)
|
|
{
|
|
alternative_smp(
|
|
__raw_spin_lock_string,
|
|
__raw_spin_lock_string_up,
|
|
"=m" (lock->slock) : : "memory");
|
|
}
|
|
|
|
static inline void __raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long flags)
|
|
{
|
|
alternative_smp(
|
|
__raw_spin_lock_string_flags,
|
|
__raw_spin_lock_string_up,
|
|
"=m" (lock->slock) : "r" (flags) : "memory");
|
|
}
|
|
|
|
static inline int __raw_spin_trylock(raw_spinlock_t *lock)
|
|
{
|
|
char oldval;
|
|
__asm__ __volatile__(
|
|
"xchgb %b0,%1"
|
|
:"=q" (oldval), "=m" (lock->slock)
|
|
:"0" (0) : "memory");
|
|
return oldval > 0;
|
|
}
|
|
|
|
/*
|
|
* __raw_spin_unlock based on writing $1 to the low byte.
|
|
* This method works. Despite all the confusion.
|
|
* (except on PPro SMP or if we are using OOSTORE, so we use xchgb there)
|
|
* (PPro errata 66, 92)
|
|
*/
|
|
|
|
#if !defined(CONFIG_X86_OOSTORE) && !defined(CONFIG_X86_PPRO_FENCE)
|
|
|
|
#define __raw_spin_unlock_string \
|
|
"movb $1,%0" \
|
|
:"=m" (lock->slock) : : "memory"
|
|
|
|
|
|
static inline void __raw_spin_unlock(raw_spinlock_t *lock)
|
|
{
|
|
__asm__ __volatile__(
|
|
__raw_spin_unlock_string
|
|
);
|
|
}
|
|
|
|
#else
|
|
|
|
#define __raw_spin_unlock_string \
|
|
"xchgb %b0, %1" \
|
|
:"=q" (oldval), "=m" (lock->slock) \
|
|
:"0" (oldval) : "memory"
|
|
|
|
static inline void __raw_spin_unlock(raw_spinlock_t *lock)
|
|
{
|
|
char oldval = 1;
|
|
|
|
__asm__ __volatile__(
|
|
__raw_spin_unlock_string
|
|
);
|
|
}
|
|
|
|
#endif
|
|
|
|
#define __raw_spin_unlock_wait(lock) \
|
|
do { while (__raw_spin_is_locked(lock)) cpu_relax(); } while (0)
|
|
|
|
/*
|
|
* Read-write spinlocks, allowing multiple readers
|
|
* but only one writer.
|
|
*
|
|
* NOTE! it is quite common to have readers in interrupts
|
|
* but no interrupt writers. For those circumstances we
|
|
* can "mix" irq-safe locks - any writer needs to get a
|
|
* irq-safe write-lock, but readers can get non-irqsafe
|
|
* read-locks.
|
|
*
|
|
* On x86, we implement read-write locks as a 32-bit counter
|
|
* with the high bit (sign) being the "contended" bit.
|
|
*
|
|
* The inline assembly is non-obvious. Think about it.
|
|
*
|
|
* Changed to use the same technique as rw semaphores. See
|
|
* semaphore.h for details. -ben
|
|
*
|
|
* the helpers are in arch/i386/kernel/semaphore.c
|
|
*/
|
|
|
|
/**
|
|
* read_can_lock - would read_trylock() succeed?
|
|
* @lock: the rwlock in question.
|
|
*/
|
|
#define __raw_read_can_lock(x) ((int)(x)->lock > 0)
|
|
|
|
/**
|
|
* write_can_lock - would write_trylock() succeed?
|
|
* @lock: the rwlock in question.
|
|
*/
|
|
#define __raw_write_can_lock(x) ((x)->lock == RW_LOCK_BIAS)
|
|
|
|
static inline void __raw_read_lock(raw_rwlock_t *rw)
|
|
{
|
|
__build_read_lock(rw, "__read_lock_failed");
|
|
}
|
|
|
|
static inline void __raw_write_lock(raw_rwlock_t *rw)
|
|
{
|
|
__build_write_lock(rw, "__write_lock_failed");
|
|
}
|
|
|
|
static inline int __raw_read_trylock(raw_rwlock_t *lock)
|
|
{
|
|
atomic_t *count = (atomic_t *)lock;
|
|
atomic_dec(count);
|
|
if (atomic_read(count) >= 0)
|
|
return 1;
|
|
atomic_inc(count);
|
|
return 0;
|
|
}
|
|
|
|
static inline int __raw_write_trylock(raw_rwlock_t *lock)
|
|
{
|
|
atomic_t *count = (atomic_t *)lock;
|
|
if (atomic_sub_and_test(RW_LOCK_BIAS, count))
|
|
return 1;
|
|
atomic_add(RW_LOCK_BIAS, count);
|
|
return 0;
|
|
}
|
|
|
|
static inline void __raw_read_unlock(raw_rwlock_t *rw)
|
|
{
|
|
asm volatile(LOCK_PREFIX "incl %0" :"=m" (rw->lock) : : "memory");
|
|
}
|
|
|
|
static inline void __raw_write_unlock(raw_rwlock_t *rw)
|
|
{
|
|
asm volatile(LOCK_PREFIX "addl $" RW_LOCK_BIAS_STR ", %0"
|
|
: "=m" (rw->lock) : : "memory");
|
|
}
|
|
|
|
#endif /* __ASM_SPINLOCK_H */
|