linux/drivers/net/ethernet/ezchip/nps_enet.c
Thomas Gleixner 4fa9c49f4d treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 291
Based on 2 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms and conditions of the gnu general public license
  version 2 as published by the free software foundation this program
  is distributed in the hope it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details the full gnu general public license is included in
  this distribution in the file called copying

  this program is free software you can redistribute it and or modify
  it under the terms and conditions of the gnu general public license
  version 2 as published by the free software foundation this program
  is distributed in the hope [that] it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details the full gnu general public license is included in
  this distribution in the file called copying

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 57 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.515993066@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:36:38 +02:00

675 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright(c) 2015 EZchip Technologies.
*/
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include "nps_enet.h"
#define DRV_NAME "nps_mgt_enet"
static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
{
u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
return (!tx_ctrl_ct && priv->tx_skb);
}
static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
/* Empty Rx FIFO buffer by reading all words */
for (i = 0; i < len; i++)
nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
}
static void nps_enet_read_rx_fifo(struct net_device *ndev,
unsigned char *dst, u32 length)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
s32 i, last = length & (sizeof(u32) - 1);
u32 *reg = (u32 *)dst, len = length / sizeof(u32);
bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
/* In case dst is not aligned we need an intermediate buffer */
if (dst_is_aligned) {
ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
reg += len;
} else { /* !dst_is_aligned */
for (i = 0; i < len; i++, reg++) {
u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
put_unaligned_be32(buf, reg);
}
}
/* copy last bytes (if any) */
if (last) {
u32 buf;
ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
memcpy((u8 *)reg, &buf, last);
}
}
static u32 nps_enet_rx_handler(struct net_device *ndev)
{
u32 frame_len, err = 0;
u32 work_done = 0;
struct nps_enet_priv *priv = netdev_priv(ndev);
struct sk_buff *skb;
u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
/* Check if we got RX */
if (!rx_ctrl_cr)
return work_done;
/* If we got here there is a work for us */
work_done++;
/* Check Rx error */
if (rx_ctrl_er) {
ndev->stats.rx_errors++;
err = 1;
}
/* Check Rx CRC error */
if (rx_ctrl_crc) {
ndev->stats.rx_crc_errors++;
ndev->stats.rx_dropped++;
err = 1;
}
/* Check Frame length Min 64b */
if (unlikely(frame_len < ETH_ZLEN)) {
ndev->stats.rx_length_errors++;
ndev->stats.rx_dropped++;
err = 1;
}
if (err)
goto rx_irq_clean;
/* Skb allocation */
skb = netdev_alloc_skb_ip_align(ndev, frame_len);
if (unlikely(!skb)) {
ndev->stats.rx_errors++;
ndev->stats.rx_dropped++;
goto rx_irq_clean;
}
/* Copy frame from Rx fifo into the skb */
nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
skb_put(skb, frame_len);
skb->protocol = eth_type_trans(skb, ndev);
skb->ip_summed = CHECKSUM_UNNECESSARY;
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += frame_len;
netif_receive_skb(skb);
goto rx_irq_frame_done;
rx_irq_clean:
/* Clean Rx fifo */
nps_enet_clean_rx_fifo(ndev, frame_len);
rx_irq_frame_done:
/* Ack Rx ctrl register */
nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
return work_done;
}
static void nps_enet_tx_handler(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
/* Check if we got TX */
if (!nps_enet_is_tx_pending(priv))
return;
/* Ack Tx ctrl register */
nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
/* Check Tx transmit error */
if (unlikely(tx_ctrl_et)) {
ndev->stats.tx_errors++;
} else {
ndev->stats.tx_packets++;
ndev->stats.tx_bytes += tx_ctrl_nt;
}
dev_kfree_skb(priv->tx_skb);
priv->tx_skb = NULL;
if (netif_queue_stopped(ndev))
netif_wake_queue(ndev);
}
/**
* nps_enet_poll - NAPI poll handler.
* @napi: Pointer to napi_struct structure.
* @budget: How many frames to process on one call.
*
* returns: Number of processed frames
*/
static int nps_enet_poll(struct napi_struct *napi, int budget)
{
struct net_device *ndev = napi->dev;
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 work_done;
nps_enet_tx_handler(ndev);
work_done = nps_enet_rx_handler(ndev);
if ((work_done < budget) && napi_complete_done(napi, work_done)) {
u32 buf_int_enable_value = 0;
/* set tx_done and rx_rdy bits */
buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
buf_int_enable_value);
/* in case we will get a tx interrupt while interrupts
* are masked, we will lose it since the tx is edge interrupt.
* specifically, while executing the code section above,
* between nps_enet_tx_handler and the interrupts enable, all
* tx requests will be stuck until we will get an rx interrupt.
* the two code lines below will solve this situation by
* re-adding ourselves to the poll list.
*/
if (nps_enet_is_tx_pending(priv)) {
nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
napi_reschedule(napi);
}
}
return work_done;
}
/**
* nps_enet_irq_handler - Global interrupt handler for ENET.
* @irq: irq number.
* @dev_instance: device instance.
*
* returns: IRQ_HANDLED for all cases.
*
* EZchip ENET has 2 interrupt causes, and depending on bits raised in
* CTRL registers we may tell what is a reason for interrupt to fire up.
* We got one for RX and the other for TX (completion).
*/
static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
{
struct net_device *ndev = dev_instance;
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
if (likely(napi_schedule_prep(&priv->napi))) {
nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
__napi_schedule(&priv->napi);
}
return IRQ_HANDLED;
}
static void nps_enet_set_hw_mac_address(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 ge_mac_cfg_1_value = 0;
u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
/* set MAC address in HW */
ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
| ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
| ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
ge_mac_cfg_1_value);
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
*ge_mac_cfg_2_value);
}
/**
* nps_enet_hw_reset - Reset the network device.
* @ndev: Pointer to the network device.
*
* This function reset the PCS and TX fifo.
* The programming model is to set the relevant reset bits
* wait for some time for this to propagate and then unset
* the reset bits. This way we ensure that reset procedure
* is done successfully by device.
*/
static void nps_enet_hw_reset(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
/* Pcs reset sequence*/
ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
usleep_range(10, 20);
ge_rst_value = 0;
nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
/* Tx fifo reset sequence */
phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
phase_fifo_ctl_value);
usleep_range(10, 20);
phase_fifo_ctl_value = 0;
nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
phase_fifo_ctl_value);
}
static void nps_enet_hw_enable_control(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
s32 max_frame_length;
/* Enable Rx and Tx statistics */
*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
| NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
/* Discard packets with different MAC address */
*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
| NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
/* Discard multicast packets */
*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
| NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
*ge_mac_cfg_2_value);
/* Discard Packets bigger than max frame length */
max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
*ge_mac_cfg_3_value =
(*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
| max_frame_length << CFG_3_MAX_LEN_SHIFT;
}
/* Enable interrupts */
buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
buf_int_enable_value);
/* Write device MAC address to HW */
nps_enet_set_hw_mac_address(ndev);
/* Rx and Tx HW features */
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
/* IFG configuration */
ge_mac_cfg_0_value |=
NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
ge_mac_cfg_0_value |=
NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
/* preamble configuration */
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
ge_mac_cfg_0_value |=
NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
/* enable flow control frames */
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
ge_mac_cfg_0_value |=
NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
*ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
| NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
/* Enable Rx and Tx */
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
*ge_mac_cfg_3_value);
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
ge_mac_cfg_0_value);
}
static void nps_enet_hw_disable_control(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
/* Disable interrupts */
nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
/* Disable Rx and Tx */
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
}
static void nps_enet_send_frame(struct net_device *ndev,
struct sk_buff *skb)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 tx_ctrl_value = 0;
short length = skb->len;
u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
u32 *src = (void *)skb->data;
bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
/* In case src is not aligned we need an intermediate buffer */
if (src_is_aligned)
iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
else /* !src_is_aligned */
for (i = 0; i < len; i++, src++)
nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
get_unaligned_be32(src));
/* Write the length of the Frame */
tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
/* Send Frame */
nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
}
/**
* nps_enet_set_mac_address - Set the MAC address for this device.
* @ndev: Pointer to net_device structure.
* @p: 6 byte Address to be written as MAC address.
*
* This function copies the HW address from the sockaddr structure to the
* net_device structure and updates the address in HW.
*
* returns: -EBUSY if the net device is busy or 0 if the address is set
* successfully.
*/
static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
{
struct sockaddr *addr = p;
s32 res;
if (netif_running(ndev))
return -EBUSY;
res = eth_mac_addr(ndev, p);
if (!res) {
ether_addr_copy(ndev->dev_addr, addr->sa_data);
nps_enet_set_hw_mac_address(ndev);
}
return res;
}
/**
* nps_enet_set_rx_mode - Change the receive filtering mode.
* @ndev: Pointer to the network device.
*
* This function enables/disables promiscuous mode
*/
static void nps_enet_set_rx_mode(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
if (ndev->flags & IFF_PROMISC) {
ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
| NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
| NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
} else {
ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
| NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
| NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
}
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
}
/**
* nps_enet_open - Open the network device.
* @ndev: Pointer to the network device.
*
* returns: 0, on success or non-zero error value on failure.
*
* This function sets the MAC address, requests and enables an IRQ
* for the ENET device and starts the Tx queue.
*/
static s32 nps_enet_open(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
s32 err;
/* Reset private variables */
priv->tx_skb = NULL;
priv->ge_mac_cfg_2_value = 0;
priv->ge_mac_cfg_3_value = 0;
/* ge_mac_cfg_3 default values */
priv->ge_mac_cfg_3_value |=
NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
priv->ge_mac_cfg_3_value |=
NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
/* Disable HW device */
nps_enet_hw_disable_control(ndev);
/* irq Rx allocation */
err = request_irq(priv->irq, nps_enet_irq_handler,
0, "enet-rx-tx", ndev);
if (err)
return err;
napi_enable(&priv->napi);
/* Enable HW device */
nps_enet_hw_reset(ndev);
nps_enet_hw_enable_control(ndev);
netif_start_queue(ndev);
return 0;
}
/**
* nps_enet_stop - Close the network device.
* @ndev: Pointer to the network device.
*
* This function stops the Tx queue, disables interrupts for the ENET device.
*/
static s32 nps_enet_stop(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
napi_disable(&priv->napi);
netif_stop_queue(ndev);
nps_enet_hw_disable_control(ndev);
free_irq(priv->irq, ndev);
return 0;
}
/**
* nps_enet_start_xmit - Starts the data transmission.
* @skb: sk_buff pointer that contains data to be Transmitted.
* @ndev: Pointer to net_device structure.
*
* returns: NETDEV_TX_OK, on success
* NETDEV_TX_BUSY, if any of the descriptors are not free.
*
* This function is invoked from upper layers to initiate transmission.
*/
static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
/* This driver handles one frame at a time */
netif_stop_queue(ndev);
priv->tx_skb = skb;
/* make sure tx_skb is actually written to the memory
* before the HW is informed and the IRQ is fired.
*/
wmb();
nps_enet_send_frame(ndev, skb);
return NETDEV_TX_OK;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void nps_enet_poll_controller(struct net_device *ndev)
{
disable_irq(ndev->irq);
nps_enet_irq_handler(ndev->irq, ndev);
enable_irq(ndev->irq);
}
#endif
static const struct net_device_ops nps_netdev_ops = {
.ndo_open = nps_enet_open,
.ndo_stop = nps_enet_stop,
.ndo_start_xmit = nps_enet_start_xmit,
.ndo_set_mac_address = nps_enet_set_mac_address,
.ndo_set_rx_mode = nps_enet_set_rx_mode,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = nps_enet_poll_controller,
#endif
};
static s32 nps_enet_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct net_device *ndev;
struct nps_enet_priv *priv;
s32 err = 0;
const char *mac_addr;
struct resource *res_regs;
if (!dev->of_node)
return -ENODEV;
ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
if (!ndev)
return -ENOMEM;
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, dev);
priv = netdev_priv(ndev);
/* The EZ NET specific entries in the device structure. */
ndev->netdev_ops = &nps_netdev_ops;
ndev->watchdog_timeo = (400 * HZ / 1000);
/* FIXME :: no multicast support yet */
ndev->flags &= ~IFF_MULTICAST;
res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->regs_base = devm_ioremap_resource(dev, res_regs);
if (IS_ERR(priv->regs_base)) {
err = PTR_ERR(priv->regs_base);
goto out_netdev;
}
dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
/* set kernel MAC address to dev */
mac_addr = of_get_mac_address(dev->of_node);
if (!IS_ERR(mac_addr))
ether_addr_copy(ndev->dev_addr, mac_addr);
else
eth_hw_addr_random(ndev);
/* Get IRQ number */
priv->irq = platform_get_irq(pdev, 0);
if (!priv->irq) {
dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
err = -ENODEV;
goto out_netdev;
}
netif_napi_add(ndev, &priv->napi, nps_enet_poll,
NPS_ENET_NAPI_POLL_WEIGHT);
/* Register the driver. Should be the last thing in probe */
err = register_netdev(ndev);
if (err) {
dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
ndev->name, (s32)err);
goto out_netif_api;
}
dev_info(dev, "(rx/tx=%d)\n", priv->irq);
return 0;
out_netif_api:
netif_napi_del(&priv->napi);
out_netdev:
if (err)
free_netdev(ndev);
return err;
}
static s32 nps_enet_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct nps_enet_priv *priv = netdev_priv(ndev);
unregister_netdev(ndev);
free_netdev(ndev);
netif_napi_del(&priv->napi);
return 0;
}
static const struct of_device_id nps_enet_dt_ids[] = {
{ .compatible = "ezchip,nps-mgt-enet" },
{ /* Sentinel */ }
};
MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
static struct platform_driver nps_enet_driver = {
.probe = nps_enet_probe,
.remove = nps_enet_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = nps_enet_dt_ids,
},
};
module_platform_driver(nps_enet_driver);
MODULE_AUTHOR("EZchip Semiconductor");
MODULE_LICENSE("GPL v2");