forked from Minki/linux
1fc799e1b4
Local variable `i' is a byte-counter. Don't use it as an index into an array of le32's. Reported-by: "young dave" <hidave.darkstar@gmail.com> Cc: "Christoph Lameter" <clameter@sgi.com> Acked-by: Anton Altaparmakov <aia21@cantab.net> Cc: <stable@kernel.org> Cc: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
3112 lines
97 KiB
C
3112 lines
97 KiB
C
/**
|
|
* inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
|
|
*
|
|
* Copyright (c) 2001-2007 Anton Altaparmakov
|
|
*
|
|
* This program/include file is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program/include file is distributed in the hope that it will be
|
|
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program (in the main directory of the Linux-NTFS
|
|
* distribution in the file COPYING); if not, write to the Free Software
|
|
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "aops.h"
|
|
#include "attrib.h"
|
|
#include "bitmap.h"
|
|
#include "dir.h"
|
|
#include "debug.h"
|
|
#include "inode.h"
|
|
#include "attrib.h"
|
|
#include "lcnalloc.h"
|
|
#include "malloc.h"
|
|
#include "mft.h"
|
|
#include "time.h"
|
|
#include "ntfs.h"
|
|
|
|
/**
|
|
* ntfs_test_inode - compare two (possibly fake) inodes for equality
|
|
* @vi: vfs inode which to test
|
|
* @na: ntfs attribute which is being tested with
|
|
*
|
|
* Compare the ntfs attribute embedded in the ntfs specific part of the vfs
|
|
* inode @vi for equality with the ntfs attribute @na.
|
|
*
|
|
* If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
|
|
* @na->name and @na->name_len are then ignored.
|
|
*
|
|
* Return 1 if the attributes match and 0 if not.
|
|
*
|
|
* NOTE: This function runs with the inode_lock spin lock held so it is not
|
|
* allowed to sleep.
|
|
*/
|
|
int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
|
|
{
|
|
ntfs_inode *ni;
|
|
|
|
if (vi->i_ino != na->mft_no)
|
|
return 0;
|
|
ni = NTFS_I(vi);
|
|
/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
|
|
if (likely(!NInoAttr(ni))) {
|
|
/* If not looking for a normal inode this is a mismatch. */
|
|
if (unlikely(na->type != AT_UNUSED))
|
|
return 0;
|
|
} else {
|
|
/* A fake inode describing an attribute. */
|
|
if (ni->type != na->type)
|
|
return 0;
|
|
if (ni->name_len != na->name_len)
|
|
return 0;
|
|
if (na->name_len && memcmp(ni->name, na->name,
|
|
na->name_len * sizeof(ntfschar)))
|
|
return 0;
|
|
}
|
|
/* Match! */
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ntfs_init_locked_inode - initialize an inode
|
|
* @vi: vfs inode to initialize
|
|
* @na: ntfs attribute which to initialize @vi to
|
|
*
|
|
* Initialize the vfs inode @vi with the values from the ntfs attribute @na in
|
|
* order to enable ntfs_test_inode() to do its work.
|
|
*
|
|
* If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
|
|
* In that case, @na->name and @na->name_len should be set to NULL and 0,
|
|
* respectively. Although that is not strictly necessary as
|
|
* ntfs_read_locked_inode() will fill them in later.
|
|
*
|
|
* Return 0 on success and -errno on error.
|
|
*
|
|
* NOTE: This function runs with the inode_lock spin lock held so it is not
|
|
* allowed to sleep. (Hence the GFP_ATOMIC allocation.)
|
|
*/
|
|
static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
|
|
{
|
|
ntfs_inode *ni = NTFS_I(vi);
|
|
|
|
vi->i_ino = na->mft_no;
|
|
|
|
ni->type = na->type;
|
|
if (na->type == AT_INDEX_ALLOCATION)
|
|
NInoSetMstProtected(ni);
|
|
|
|
ni->name = na->name;
|
|
ni->name_len = na->name_len;
|
|
|
|
/* If initializing a normal inode, we are done. */
|
|
if (likely(na->type == AT_UNUSED)) {
|
|
BUG_ON(na->name);
|
|
BUG_ON(na->name_len);
|
|
return 0;
|
|
}
|
|
|
|
/* It is a fake inode. */
|
|
NInoSetAttr(ni);
|
|
|
|
/*
|
|
* We have I30 global constant as an optimization as it is the name
|
|
* in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
|
|
* allocation but that is ok. And most attributes are unnamed anyway,
|
|
* thus the fraction of named attributes with name != I30 is actually
|
|
* absolutely tiny.
|
|
*/
|
|
if (na->name_len && na->name != I30) {
|
|
unsigned int i;
|
|
|
|
BUG_ON(!na->name);
|
|
i = na->name_len * sizeof(ntfschar);
|
|
ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
|
|
if (!ni->name)
|
|
return -ENOMEM;
|
|
memcpy(ni->name, na->name, i);
|
|
ni->name[na->name_len] = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
typedef int (*set_t)(struct inode *, void *);
|
|
static int ntfs_read_locked_inode(struct inode *vi);
|
|
static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
|
|
static int ntfs_read_locked_index_inode(struct inode *base_vi,
|
|
struct inode *vi);
|
|
|
|
/**
|
|
* ntfs_iget - obtain a struct inode corresponding to a specific normal inode
|
|
* @sb: super block of mounted volume
|
|
* @mft_no: mft record number / inode number to obtain
|
|
*
|
|
* Obtain the struct inode corresponding to a specific normal inode (i.e. a
|
|
* file or directory).
|
|
*
|
|
* If the inode is in the cache, it is just returned with an increased
|
|
* reference count. Otherwise, a new struct inode is allocated and initialized,
|
|
* and finally ntfs_read_locked_inode() is called to read in the inode and
|
|
* fill in the remainder of the inode structure.
|
|
*
|
|
* Return the struct inode on success. Check the return value with IS_ERR() and
|
|
* if true, the function failed and the error code is obtained from PTR_ERR().
|
|
*/
|
|
struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
|
|
{
|
|
struct inode *vi;
|
|
int err;
|
|
ntfs_attr na;
|
|
|
|
na.mft_no = mft_no;
|
|
na.type = AT_UNUSED;
|
|
na.name = NULL;
|
|
na.name_len = 0;
|
|
|
|
vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
|
|
(set_t)ntfs_init_locked_inode, &na);
|
|
if (unlikely(!vi))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = 0;
|
|
|
|
/* If this is a freshly allocated inode, need to read it now. */
|
|
if (vi->i_state & I_NEW) {
|
|
err = ntfs_read_locked_inode(vi);
|
|
unlock_new_inode(vi);
|
|
}
|
|
/*
|
|
* There is no point in keeping bad inodes around if the failure was
|
|
* due to ENOMEM. We want to be able to retry again later.
|
|
*/
|
|
if (unlikely(err == -ENOMEM)) {
|
|
iput(vi);
|
|
vi = ERR_PTR(err);
|
|
}
|
|
return vi;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_iget - obtain a struct inode corresponding to an attribute
|
|
* @base_vi: vfs base inode containing the attribute
|
|
* @type: attribute type
|
|
* @name: Unicode name of the attribute (NULL if unnamed)
|
|
* @name_len: length of @name in Unicode characters (0 if unnamed)
|
|
*
|
|
* Obtain the (fake) struct inode corresponding to the attribute specified by
|
|
* @type, @name, and @name_len, which is present in the base mft record
|
|
* specified by the vfs inode @base_vi.
|
|
*
|
|
* If the attribute inode is in the cache, it is just returned with an
|
|
* increased reference count. Otherwise, a new struct inode is allocated and
|
|
* initialized, and finally ntfs_read_locked_attr_inode() is called to read the
|
|
* attribute and fill in the inode structure.
|
|
*
|
|
* Note, for index allocation attributes, you need to use ntfs_index_iget()
|
|
* instead of ntfs_attr_iget() as working with indices is a lot more complex.
|
|
*
|
|
* Return the struct inode of the attribute inode on success. Check the return
|
|
* value with IS_ERR() and if true, the function failed and the error code is
|
|
* obtained from PTR_ERR().
|
|
*/
|
|
struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
|
|
ntfschar *name, u32 name_len)
|
|
{
|
|
struct inode *vi;
|
|
int err;
|
|
ntfs_attr na;
|
|
|
|
/* Make sure no one calls ntfs_attr_iget() for indices. */
|
|
BUG_ON(type == AT_INDEX_ALLOCATION);
|
|
|
|
na.mft_no = base_vi->i_ino;
|
|
na.type = type;
|
|
na.name = name;
|
|
na.name_len = name_len;
|
|
|
|
vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
|
|
(set_t)ntfs_init_locked_inode, &na);
|
|
if (unlikely(!vi))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = 0;
|
|
|
|
/* If this is a freshly allocated inode, need to read it now. */
|
|
if (vi->i_state & I_NEW) {
|
|
err = ntfs_read_locked_attr_inode(base_vi, vi);
|
|
unlock_new_inode(vi);
|
|
}
|
|
/*
|
|
* There is no point in keeping bad attribute inodes around. This also
|
|
* simplifies things in that we never need to check for bad attribute
|
|
* inodes elsewhere.
|
|
*/
|
|
if (unlikely(err)) {
|
|
iput(vi);
|
|
vi = ERR_PTR(err);
|
|
}
|
|
return vi;
|
|
}
|
|
|
|
/**
|
|
* ntfs_index_iget - obtain a struct inode corresponding to an index
|
|
* @base_vi: vfs base inode containing the index related attributes
|
|
* @name: Unicode name of the index
|
|
* @name_len: length of @name in Unicode characters
|
|
*
|
|
* Obtain the (fake) struct inode corresponding to the index specified by @name
|
|
* and @name_len, which is present in the base mft record specified by the vfs
|
|
* inode @base_vi.
|
|
*
|
|
* If the index inode is in the cache, it is just returned with an increased
|
|
* reference count. Otherwise, a new struct inode is allocated and
|
|
* initialized, and finally ntfs_read_locked_index_inode() is called to read
|
|
* the index related attributes and fill in the inode structure.
|
|
*
|
|
* Return the struct inode of the index inode on success. Check the return
|
|
* value with IS_ERR() and if true, the function failed and the error code is
|
|
* obtained from PTR_ERR().
|
|
*/
|
|
struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
|
|
u32 name_len)
|
|
{
|
|
struct inode *vi;
|
|
int err;
|
|
ntfs_attr na;
|
|
|
|
na.mft_no = base_vi->i_ino;
|
|
na.type = AT_INDEX_ALLOCATION;
|
|
na.name = name;
|
|
na.name_len = name_len;
|
|
|
|
vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
|
|
(set_t)ntfs_init_locked_inode, &na);
|
|
if (unlikely(!vi))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = 0;
|
|
|
|
/* If this is a freshly allocated inode, need to read it now. */
|
|
if (vi->i_state & I_NEW) {
|
|
err = ntfs_read_locked_index_inode(base_vi, vi);
|
|
unlock_new_inode(vi);
|
|
}
|
|
/*
|
|
* There is no point in keeping bad index inodes around. This also
|
|
* simplifies things in that we never need to check for bad index
|
|
* inodes elsewhere.
|
|
*/
|
|
if (unlikely(err)) {
|
|
iput(vi);
|
|
vi = ERR_PTR(err);
|
|
}
|
|
return vi;
|
|
}
|
|
|
|
struct inode *ntfs_alloc_big_inode(struct super_block *sb)
|
|
{
|
|
ntfs_inode *ni;
|
|
|
|
ntfs_debug("Entering.");
|
|
ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
|
|
if (likely(ni != NULL)) {
|
|
ni->state = 0;
|
|
return VFS_I(ni);
|
|
}
|
|
ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
|
|
return NULL;
|
|
}
|
|
|
|
void ntfs_destroy_big_inode(struct inode *inode)
|
|
{
|
|
ntfs_inode *ni = NTFS_I(inode);
|
|
|
|
ntfs_debug("Entering.");
|
|
BUG_ON(ni->page);
|
|
if (!atomic_dec_and_test(&ni->count))
|
|
BUG();
|
|
kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
|
|
}
|
|
|
|
static inline ntfs_inode *ntfs_alloc_extent_inode(void)
|
|
{
|
|
ntfs_inode *ni;
|
|
|
|
ntfs_debug("Entering.");
|
|
ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
|
|
if (likely(ni != NULL)) {
|
|
ni->state = 0;
|
|
return ni;
|
|
}
|
|
ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
|
|
return NULL;
|
|
}
|
|
|
|
static void ntfs_destroy_extent_inode(ntfs_inode *ni)
|
|
{
|
|
ntfs_debug("Entering.");
|
|
BUG_ON(ni->page);
|
|
if (!atomic_dec_and_test(&ni->count))
|
|
BUG();
|
|
kmem_cache_free(ntfs_inode_cache, ni);
|
|
}
|
|
|
|
/*
|
|
* The attribute runlist lock has separate locking rules from the
|
|
* normal runlist lock, so split the two lock-classes:
|
|
*/
|
|
static struct lock_class_key attr_list_rl_lock_class;
|
|
|
|
/**
|
|
* __ntfs_init_inode - initialize ntfs specific part of an inode
|
|
* @sb: super block of mounted volume
|
|
* @ni: freshly allocated ntfs inode which to initialize
|
|
*
|
|
* Initialize an ntfs inode to defaults.
|
|
*
|
|
* NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
|
|
* untouched. Make sure to initialize them elsewhere.
|
|
*
|
|
* Return zero on success and -ENOMEM on error.
|
|
*/
|
|
void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
|
|
{
|
|
ntfs_debug("Entering.");
|
|
rwlock_init(&ni->size_lock);
|
|
ni->initialized_size = ni->allocated_size = 0;
|
|
ni->seq_no = 0;
|
|
atomic_set(&ni->count, 1);
|
|
ni->vol = NTFS_SB(sb);
|
|
ntfs_init_runlist(&ni->runlist);
|
|
mutex_init(&ni->mrec_lock);
|
|
ni->page = NULL;
|
|
ni->page_ofs = 0;
|
|
ni->attr_list_size = 0;
|
|
ni->attr_list = NULL;
|
|
ntfs_init_runlist(&ni->attr_list_rl);
|
|
lockdep_set_class(&ni->attr_list_rl.lock,
|
|
&attr_list_rl_lock_class);
|
|
ni->itype.index.block_size = 0;
|
|
ni->itype.index.vcn_size = 0;
|
|
ni->itype.index.collation_rule = 0;
|
|
ni->itype.index.block_size_bits = 0;
|
|
ni->itype.index.vcn_size_bits = 0;
|
|
mutex_init(&ni->extent_lock);
|
|
ni->nr_extents = 0;
|
|
ni->ext.base_ntfs_ino = NULL;
|
|
}
|
|
|
|
/*
|
|
* Extent inodes get MFT-mapped in a nested way, while the base inode
|
|
* is still mapped. Teach this nesting to the lock validator by creating
|
|
* a separate class for nested inode's mrec_lock's:
|
|
*/
|
|
static struct lock_class_key extent_inode_mrec_lock_key;
|
|
|
|
inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
|
|
unsigned long mft_no)
|
|
{
|
|
ntfs_inode *ni = ntfs_alloc_extent_inode();
|
|
|
|
ntfs_debug("Entering.");
|
|
if (likely(ni != NULL)) {
|
|
__ntfs_init_inode(sb, ni);
|
|
lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
|
|
ni->mft_no = mft_no;
|
|
ni->type = AT_UNUSED;
|
|
ni->name = NULL;
|
|
ni->name_len = 0;
|
|
}
|
|
return ni;
|
|
}
|
|
|
|
/**
|
|
* ntfs_is_extended_system_file - check if a file is in the $Extend directory
|
|
* @ctx: initialized attribute search context
|
|
*
|
|
* Search all file name attributes in the inode described by the attribute
|
|
* search context @ctx and check if any of the names are in the $Extend system
|
|
* directory.
|
|
*
|
|
* Return values:
|
|
* 1: file is in $Extend directory
|
|
* 0: file is not in $Extend directory
|
|
* -errno: failed to determine if the file is in the $Extend directory
|
|
*/
|
|
static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
|
|
{
|
|
int nr_links, err;
|
|
|
|
/* Restart search. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
|
|
/* Get number of hard links. */
|
|
nr_links = le16_to_cpu(ctx->mrec->link_count);
|
|
|
|
/* Loop through all hard links. */
|
|
while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
|
|
ctx))) {
|
|
FILE_NAME_ATTR *file_name_attr;
|
|
ATTR_RECORD *attr = ctx->attr;
|
|
u8 *p, *p2;
|
|
|
|
nr_links--;
|
|
/*
|
|
* Maximum sanity checking as we are called on an inode that
|
|
* we suspect might be corrupt.
|
|
*/
|
|
p = (u8*)attr + le32_to_cpu(attr->length);
|
|
if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
|
|
le32_to_cpu(ctx->mrec->bytes_in_use)) {
|
|
err_corrupt_attr:
|
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
|
|
"attribute. You should run chkdsk.");
|
|
return -EIO;
|
|
}
|
|
if (attr->non_resident) {
|
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
|
|
"name. You should run chkdsk.");
|
|
return -EIO;
|
|
}
|
|
if (attr->flags) {
|
|
ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
|
|
"invalid flags. You should run "
|
|
"chkdsk.");
|
|
return -EIO;
|
|
}
|
|
if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
|
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
|
|
"name. You should run chkdsk.");
|
|
return -EIO;
|
|
}
|
|
file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
|
|
le16_to_cpu(attr->data.resident.value_offset));
|
|
p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
|
|
if (p2 < (u8*)attr || p2 > p)
|
|
goto err_corrupt_attr;
|
|
/* This attribute is ok, but is it in the $Extend directory? */
|
|
if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
|
|
return 1; /* YES, it's an extended system file. */
|
|
}
|
|
if (unlikely(err != -ENOENT))
|
|
return err;
|
|
if (unlikely(nr_links)) {
|
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
|
|
"doesn't match number of name attributes. You "
|
|
"should run chkdsk.");
|
|
return -EIO;
|
|
}
|
|
return 0; /* NO, it is not an extended system file. */
|
|
}
|
|
|
|
/**
|
|
* ntfs_read_locked_inode - read an inode from its device
|
|
* @vi: inode to read
|
|
*
|
|
* ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
|
|
* described by @vi into memory from the device.
|
|
*
|
|
* The only fields in @vi that we need to/can look at when the function is
|
|
* called are i_sb, pointing to the mounted device's super block, and i_ino,
|
|
* the number of the inode to load.
|
|
*
|
|
* ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
|
|
* for reading and sets up the necessary @vi fields as well as initializing
|
|
* the ntfs inode.
|
|
*
|
|
* Q: What locks are held when the function is called?
|
|
* A: i_state has I_LOCK set, hence the inode is locked, also
|
|
* i_count is set to 1, so it is not going to go away
|
|
* i_flags is set to 0 and we have no business touching it. Only an ioctl()
|
|
* is allowed to write to them. We should of course be honouring them but
|
|
* we need to do that using the IS_* macros defined in include/linux/fs.h.
|
|
* In any case ntfs_read_locked_inode() has nothing to do with i_flags.
|
|
*
|
|
* Return 0 on success and -errno on error. In the error case, the inode will
|
|
* have had make_bad_inode() executed on it.
|
|
*/
|
|
static int ntfs_read_locked_inode(struct inode *vi)
|
|
{
|
|
ntfs_volume *vol = NTFS_SB(vi->i_sb);
|
|
ntfs_inode *ni;
|
|
struct inode *bvi;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
STANDARD_INFORMATION *si;
|
|
ntfs_attr_search_ctx *ctx;
|
|
int err = 0;
|
|
|
|
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
|
|
|
|
/* Setup the generic vfs inode parts now. */
|
|
|
|
/*
|
|
* This is for checking whether an inode has changed w.r.t. a file so
|
|
* that the file can be updated if necessary (compare with f_version).
|
|
*/
|
|
vi->i_version = 1;
|
|
|
|
vi->i_uid = vol->uid;
|
|
vi->i_gid = vol->gid;
|
|
vi->i_mode = 0;
|
|
|
|
/*
|
|
* Initialize the ntfs specific part of @vi special casing
|
|
* FILE_MFT which we need to do at mount time.
|
|
*/
|
|
if (vi->i_ino != FILE_MFT)
|
|
ntfs_init_big_inode(vi);
|
|
ni = NTFS_I(vi);
|
|
|
|
m = map_mft_record(ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
goto err_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(ni, m);
|
|
if (!ctx) {
|
|
err = -ENOMEM;
|
|
goto unm_err_out;
|
|
}
|
|
|
|
if (!(m->flags & MFT_RECORD_IN_USE)) {
|
|
ntfs_error(vi->i_sb, "Inode is not in use!");
|
|
goto unm_err_out;
|
|
}
|
|
if (m->base_mft_record) {
|
|
ntfs_error(vi->i_sb, "Inode is an extent inode!");
|
|
goto unm_err_out;
|
|
}
|
|
|
|
/* Transfer information from mft record into vfs and ntfs inodes. */
|
|
vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
|
|
|
|
/*
|
|
* FIXME: Keep in mind that link_count is two for files which have both
|
|
* a long file name and a short file name as separate entries, so if
|
|
* we are hiding short file names this will be too high. Either we need
|
|
* to account for the short file names by subtracting them or we need
|
|
* to make sure we delete files even though i_nlink is not zero which
|
|
* might be tricky due to vfs interactions. Need to think about this
|
|
* some more when implementing the unlink command.
|
|
*/
|
|
vi->i_nlink = le16_to_cpu(m->link_count);
|
|
/*
|
|
* FIXME: Reparse points can have the directory bit set even though
|
|
* they would be S_IFLNK. Need to deal with this further below when we
|
|
* implement reparse points / symbolic links but it will do for now.
|
|
* Also if not a directory, it could be something else, rather than
|
|
* a regular file. But again, will do for now.
|
|
*/
|
|
/* Everyone gets all permissions. */
|
|
vi->i_mode |= S_IRWXUGO;
|
|
/* If read-only, noone gets write permissions. */
|
|
if (IS_RDONLY(vi))
|
|
vi->i_mode &= ~S_IWUGO;
|
|
if (m->flags & MFT_RECORD_IS_DIRECTORY) {
|
|
vi->i_mode |= S_IFDIR;
|
|
/*
|
|
* Apply the directory permissions mask set in the mount
|
|
* options.
|
|
*/
|
|
vi->i_mode &= ~vol->dmask;
|
|
/* Things break without this kludge! */
|
|
if (vi->i_nlink > 1)
|
|
vi->i_nlink = 1;
|
|
} else {
|
|
vi->i_mode |= S_IFREG;
|
|
/* Apply the file permissions mask set in the mount options. */
|
|
vi->i_mode &= ~vol->fmask;
|
|
}
|
|
/*
|
|
* Find the standard information attribute in the mft record. At this
|
|
* stage we haven't setup the attribute list stuff yet, so this could
|
|
* in fact fail if the standard information is in an extent record, but
|
|
* I don't think this actually ever happens.
|
|
*/
|
|
err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
|
|
ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT) {
|
|
/*
|
|
* TODO: We should be performing a hot fix here (if the
|
|
* recover mount option is set) by creating a new
|
|
* attribute.
|
|
*/
|
|
ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
|
|
"is missing.");
|
|
}
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
/* Get the standard information attribute value. */
|
|
si = (STANDARD_INFORMATION*)((u8*)a +
|
|
le16_to_cpu(a->data.resident.value_offset));
|
|
|
|
/* Transfer information from the standard information into vi. */
|
|
/*
|
|
* Note: The i_?times do not quite map perfectly onto the NTFS times,
|
|
* but they are close enough, and in the end it doesn't really matter
|
|
* that much...
|
|
*/
|
|
/*
|
|
* mtime is the last change of the data within the file. Not changed
|
|
* when only metadata is changed, e.g. a rename doesn't affect mtime.
|
|
*/
|
|
vi->i_mtime = ntfs2utc(si->last_data_change_time);
|
|
/*
|
|
* ctime is the last change of the metadata of the file. This obviously
|
|
* always changes, when mtime is changed. ctime can be changed on its
|
|
* own, mtime is then not changed, e.g. when a file is renamed.
|
|
*/
|
|
vi->i_ctime = ntfs2utc(si->last_mft_change_time);
|
|
/*
|
|
* Last access to the data within the file. Not changed during a rename
|
|
* for example but changed whenever the file is written to.
|
|
*/
|
|
vi->i_atime = ntfs2utc(si->last_access_time);
|
|
|
|
/* Find the attribute list attribute if present. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
|
|
if (err) {
|
|
if (unlikely(err != -ENOENT)) {
|
|
ntfs_error(vi->i_sb, "Failed to lookup attribute list "
|
|
"attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
} else /* if (!err) */ {
|
|
if (vi->i_ino == FILE_MFT)
|
|
goto skip_attr_list_load;
|
|
ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
|
|
NInoSetAttrList(ni);
|
|
a = ctx->attr;
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
ntfs_error(vi->i_sb, "Attribute list attribute is "
|
|
"compressed.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED ||
|
|
a->flags & ATTR_IS_SPARSE) {
|
|
if (a->non_resident) {
|
|
ntfs_error(vi->i_sb, "Non-resident attribute "
|
|
"list attribute is encrypted/"
|
|
"sparse.");
|
|
goto unm_err_out;
|
|
}
|
|
ntfs_warning(vi->i_sb, "Resident attribute list "
|
|
"attribute in inode 0x%lx is marked "
|
|
"encrypted/sparse which is not true. "
|
|
"However, Windows allows this and "
|
|
"chkdsk does not detect or correct it "
|
|
"so we will just ignore the invalid "
|
|
"flags and pretend they are not set.",
|
|
vi->i_ino);
|
|
}
|
|
/* Now allocate memory for the attribute list. */
|
|
ni->attr_list_size = (u32)ntfs_attr_size(a);
|
|
ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
|
|
if (!ni->attr_list) {
|
|
ntfs_error(vi->i_sb, "Not enough memory to allocate "
|
|
"buffer for attribute list.");
|
|
err = -ENOMEM;
|
|
goto unm_err_out;
|
|
}
|
|
if (a->non_resident) {
|
|
NInoSetAttrListNonResident(ni);
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(vi->i_sb, "Attribute list has non "
|
|
"zero lowest_vcn.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* Setup the runlist. No need for locking as we have
|
|
* exclusive access to the inode at this time.
|
|
*/
|
|
ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
|
|
a, NULL);
|
|
if (IS_ERR(ni->attr_list_rl.rl)) {
|
|
err = PTR_ERR(ni->attr_list_rl.rl);
|
|
ni->attr_list_rl.rl = NULL;
|
|
ntfs_error(vi->i_sb, "Mapping pairs "
|
|
"decompression failed.");
|
|
goto unm_err_out;
|
|
}
|
|
/* Now load the attribute list. */
|
|
if ((err = load_attribute_list(vol, &ni->attr_list_rl,
|
|
ni->attr_list, ni->attr_list_size,
|
|
sle64_to_cpu(a->data.non_resident.
|
|
initialized_size)))) {
|
|
ntfs_error(vi->i_sb, "Failed to load "
|
|
"attribute list attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
} else /* if (!a->non_resident) */ {
|
|
if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
|
|
+ le32_to_cpu(
|
|
a->data.resident.value_length) >
|
|
(u8*)ctx->mrec + vol->mft_record_size) {
|
|
ntfs_error(vi->i_sb, "Corrupt attribute list "
|
|
"in inode.");
|
|
goto unm_err_out;
|
|
}
|
|
/* Now copy the attribute list. */
|
|
memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
|
|
a->data.resident.value_offset),
|
|
le32_to_cpu(
|
|
a->data.resident.value_length));
|
|
}
|
|
}
|
|
skip_attr_list_load:
|
|
/*
|
|
* If an attribute list is present we now have the attribute list value
|
|
* in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
|
|
*/
|
|
if (S_ISDIR(vi->i_mode)) {
|
|
loff_t bvi_size;
|
|
ntfs_inode *bni;
|
|
INDEX_ROOT *ir;
|
|
u8 *ir_end, *index_end;
|
|
|
|
/* It is a directory, find index root attribute. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
|
|
0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT) {
|
|
// FIXME: File is corrupt! Hot-fix with empty
|
|
// index root attribute if recovery option is
|
|
// set.
|
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
|
|
"is missing.");
|
|
}
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
/* Set up the state. */
|
|
if (unlikely(a->non_resident)) {
|
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
|
|
"resident.");
|
|
goto unm_err_out;
|
|
}
|
|
/* Ensure the attribute name is placed before the value. */
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(a->data.resident.value_offset)))) {
|
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
|
|
"placed after the attribute value.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* Compressed/encrypted index root just means that the newly
|
|
* created files in that directory should be created compressed/
|
|
* encrypted. However index root cannot be both compressed and
|
|
* encrypted.
|
|
*/
|
|
if (a->flags & ATTR_COMPRESSION_MASK)
|
|
NInoSetCompressed(ni);
|
|
if (a->flags & ATTR_IS_ENCRYPTED) {
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
ntfs_error(vi->i_sb, "Found encrypted and "
|
|
"compressed attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
NInoSetEncrypted(ni);
|
|
}
|
|
if (a->flags & ATTR_IS_SPARSE)
|
|
NInoSetSparse(ni);
|
|
ir = (INDEX_ROOT*)((u8*)a +
|
|
le16_to_cpu(a->data.resident.value_offset));
|
|
ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
|
|
if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
|
|
"corrupt.");
|
|
goto unm_err_out;
|
|
}
|
|
index_end = (u8*)&ir->index +
|
|
le32_to_cpu(ir->index.index_length);
|
|
if (index_end > ir_end) {
|
|
ntfs_error(vi->i_sb, "Directory index is corrupt.");
|
|
goto unm_err_out;
|
|
}
|
|
if (ir->type != AT_FILE_NAME) {
|
|
ntfs_error(vi->i_sb, "Indexed attribute is not "
|
|
"$FILE_NAME.");
|
|
goto unm_err_out;
|
|
}
|
|
if (ir->collation_rule != COLLATION_FILE_NAME) {
|
|
ntfs_error(vi->i_sb, "Index collation rule is not "
|
|
"COLLATION_FILE_NAME.");
|
|
goto unm_err_out;
|
|
}
|
|
ni->itype.index.collation_rule = ir->collation_rule;
|
|
ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
|
|
if (ni->itype.index.block_size &
|
|
(ni->itype.index.block_size - 1)) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) is not a "
|
|
"power of two.",
|
|
ni->itype.index.block_size);
|
|
goto unm_err_out;
|
|
}
|
|
if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) > "
|
|
"PAGE_CACHE_SIZE (%ld) is not "
|
|
"supported. Sorry.",
|
|
ni->itype.index.block_size,
|
|
PAGE_CACHE_SIZE);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) < "
|
|
"NTFS_BLOCK_SIZE (%i) is not "
|
|
"supported. Sorry.",
|
|
ni->itype.index.block_size,
|
|
NTFS_BLOCK_SIZE);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
ni->itype.index.block_size_bits =
|
|
ffs(ni->itype.index.block_size) - 1;
|
|
/* Determine the size of a vcn in the directory index. */
|
|
if (vol->cluster_size <= ni->itype.index.block_size) {
|
|
ni->itype.index.vcn_size = vol->cluster_size;
|
|
ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
|
|
} else {
|
|
ni->itype.index.vcn_size = vol->sector_size;
|
|
ni->itype.index.vcn_size_bits = vol->sector_size_bits;
|
|
}
|
|
|
|
/* Setup the index allocation attribute, even if not present. */
|
|
NInoSetMstProtected(ni);
|
|
ni->type = AT_INDEX_ALLOCATION;
|
|
ni->name = I30;
|
|
ni->name_len = 4;
|
|
|
|
if (!(ir->index.flags & LARGE_INDEX)) {
|
|
/* No index allocation. */
|
|
vi->i_size = ni->initialized_size =
|
|
ni->allocated_size = 0;
|
|
/* We are done with the mft record, so we release it. */
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(ni);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
goto skip_large_dir_stuff;
|
|
} /* LARGE_INDEX: Index allocation present. Setup state. */
|
|
NInoSetIndexAllocPresent(ni);
|
|
/* Find index allocation attribute. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT)
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
|
|
"attribute is not present but "
|
|
"$INDEX_ROOT indicated it is.");
|
|
else
|
|
ntfs_error(vi->i_sb, "Failed to lookup "
|
|
"$INDEX_ALLOCATION "
|
|
"attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
if (!a->non_resident) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
|
|
"is resident.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* Ensure the attribute name is placed before the mapping pairs
|
|
* array.
|
|
*/
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(
|
|
a->data.non_resident.mapping_pairs_offset)))) {
|
|
ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
|
|
"is placed after the mapping pairs "
|
|
"array.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
|
|
"is encrypted.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_SPARSE) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
|
|
"is sparse.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
|
|
"is compressed.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(vi->i_sb, "First extent of "
|
|
"$INDEX_ALLOCATION attribute has non "
|
|
"zero lowest_vcn.");
|
|
goto unm_err_out;
|
|
}
|
|
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
|
|
ni->initialized_size = sle64_to_cpu(
|
|
a->data.non_resident.initialized_size);
|
|
ni->allocated_size = sle64_to_cpu(
|
|
a->data.non_resident.allocated_size);
|
|
/*
|
|
* We are done with the mft record, so we release it. Otherwise
|
|
* we would deadlock in ntfs_attr_iget().
|
|
*/
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(ni);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
/* Get the index bitmap attribute inode. */
|
|
bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
|
|
if (IS_ERR(bvi)) {
|
|
ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
|
|
err = PTR_ERR(bvi);
|
|
goto unm_err_out;
|
|
}
|
|
bni = NTFS_I(bvi);
|
|
if (NInoCompressed(bni) || NInoEncrypted(bni) ||
|
|
NInoSparse(bni)) {
|
|
ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
|
|
"and/or encrypted and/or sparse.");
|
|
goto iput_unm_err_out;
|
|
}
|
|
/* Consistency check bitmap size vs. index allocation size. */
|
|
bvi_size = i_size_read(bvi);
|
|
if ((bvi_size << 3) < (vi->i_size >>
|
|
ni->itype.index.block_size_bits)) {
|
|
ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
|
|
"for index allocation (0x%llx).",
|
|
bvi_size << 3, vi->i_size);
|
|
goto iput_unm_err_out;
|
|
}
|
|
/* No longer need the bitmap attribute inode. */
|
|
iput(bvi);
|
|
skip_large_dir_stuff:
|
|
/* Setup the operations for this inode. */
|
|
vi->i_op = &ntfs_dir_inode_ops;
|
|
vi->i_fop = &ntfs_dir_ops;
|
|
} else {
|
|
/* It is a file. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
|
|
/* Setup the data attribute, even if not present. */
|
|
ni->type = AT_DATA;
|
|
ni->name = NULL;
|
|
ni->name_len = 0;
|
|
|
|
/* Find first extent of the unnamed data attribute. */
|
|
err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
vi->i_size = ni->initialized_size =
|
|
ni->allocated_size = 0;
|
|
if (err != -ENOENT) {
|
|
ntfs_error(vi->i_sb, "Failed to lookup $DATA "
|
|
"attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* FILE_Secure does not have an unnamed $DATA
|
|
* attribute, so we special case it here.
|
|
*/
|
|
if (vi->i_ino == FILE_Secure)
|
|
goto no_data_attr_special_case;
|
|
/*
|
|
* Most if not all the system files in the $Extend
|
|
* system directory do not have unnamed data
|
|
* attributes so we need to check if the parent
|
|
* directory of the file is FILE_Extend and if it is
|
|
* ignore this error. To do this we need to get the
|
|
* name of this inode from the mft record as the name
|
|
* contains the back reference to the parent directory.
|
|
*/
|
|
if (ntfs_is_extended_system_file(ctx) > 0)
|
|
goto no_data_attr_special_case;
|
|
// FIXME: File is corrupt! Hot-fix with empty data
|
|
// attribute if recovery option is set.
|
|
ntfs_error(vi->i_sb, "$DATA attribute is missing.");
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
/* Setup the state. */
|
|
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
NInoSetCompressed(ni);
|
|
if (vol->cluster_size > 4096) {
|
|
ntfs_error(vi->i_sb, "Found "
|
|
"compressed data but "
|
|
"compression is "
|
|
"disabled due to "
|
|
"cluster size (%i) > "
|
|
"4kiB.",
|
|
vol->cluster_size);
|
|
goto unm_err_out;
|
|
}
|
|
if ((a->flags & ATTR_COMPRESSION_MASK)
|
|
!= ATTR_IS_COMPRESSED) {
|
|
ntfs_error(vi->i_sb, "Found unknown "
|
|
"compression method "
|
|
"or corrupt file.");
|
|
goto unm_err_out;
|
|
}
|
|
}
|
|
if (a->flags & ATTR_IS_SPARSE)
|
|
NInoSetSparse(ni);
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED) {
|
|
if (NInoCompressed(ni)) {
|
|
ntfs_error(vi->i_sb, "Found encrypted and "
|
|
"compressed data.");
|
|
goto unm_err_out;
|
|
}
|
|
NInoSetEncrypted(ni);
|
|
}
|
|
if (a->non_resident) {
|
|
NInoSetNonResident(ni);
|
|
if (NInoCompressed(ni) || NInoSparse(ni)) {
|
|
if (NInoCompressed(ni) && a->data.non_resident.
|
|
compression_unit != 4) {
|
|
ntfs_error(vi->i_sb, "Found "
|
|
"non-standard "
|
|
"compression unit (%u "
|
|
"instead of 4). "
|
|
"Cannot handle this.",
|
|
a->data.non_resident.
|
|
compression_unit);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
if (a->data.non_resident.compression_unit) {
|
|
ni->itype.compressed.block_size = 1U <<
|
|
(a->data.non_resident.
|
|
compression_unit +
|
|
vol->cluster_size_bits);
|
|
ni->itype.compressed.block_size_bits =
|
|
ffs(ni->itype.
|
|
compressed.
|
|
block_size) - 1;
|
|
ni->itype.compressed.block_clusters =
|
|
1U << a->data.
|
|
non_resident.
|
|
compression_unit;
|
|
} else {
|
|
ni->itype.compressed.block_size = 0;
|
|
ni->itype.compressed.block_size_bits =
|
|
0;
|
|
ni->itype.compressed.block_clusters =
|
|
0;
|
|
}
|
|
ni->itype.compressed.size = sle64_to_cpu(
|
|
a->data.non_resident.
|
|
compressed_size);
|
|
}
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(vi->i_sb, "First extent of $DATA "
|
|
"attribute has non zero "
|
|
"lowest_vcn.");
|
|
goto unm_err_out;
|
|
}
|
|
vi->i_size = sle64_to_cpu(
|
|
a->data.non_resident.data_size);
|
|
ni->initialized_size = sle64_to_cpu(
|
|
a->data.non_resident.initialized_size);
|
|
ni->allocated_size = sle64_to_cpu(
|
|
a->data.non_resident.allocated_size);
|
|
} else { /* Resident attribute. */
|
|
vi->i_size = ni->initialized_size = le32_to_cpu(
|
|
a->data.resident.value_length);
|
|
ni->allocated_size = le32_to_cpu(a->length) -
|
|
le16_to_cpu(
|
|
a->data.resident.value_offset);
|
|
if (vi->i_size > ni->allocated_size) {
|
|
ntfs_error(vi->i_sb, "Resident data attribute "
|
|
"is corrupt (size exceeds "
|
|
"allocation).");
|
|
goto unm_err_out;
|
|
}
|
|
}
|
|
no_data_attr_special_case:
|
|
/* We are done with the mft record, so we release it. */
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(ni);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
/* Setup the operations for this inode. */
|
|
vi->i_op = &ntfs_file_inode_ops;
|
|
vi->i_fop = &ntfs_file_ops;
|
|
}
|
|
if (NInoMstProtected(ni))
|
|
vi->i_mapping->a_ops = &ntfs_mst_aops;
|
|
else
|
|
vi->i_mapping->a_ops = &ntfs_aops;
|
|
/*
|
|
* The number of 512-byte blocks used on disk (for stat). This is in so
|
|
* far inaccurate as it doesn't account for any named streams or other
|
|
* special non-resident attributes, but that is how Windows works, too,
|
|
* so we are at least consistent with Windows, if not entirely
|
|
* consistent with the Linux Way. Doing it the Linux Way would cause a
|
|
* significant slowdown as it would involve iterating over all
|
|
* attributes in the mft record and adding the allocated/compressed
|
|
* sizes of all non-resident attributes present to give us the Linux
|
|
* correct size that should go into i_blocks (after division by 512).
|
|
*/
|
|
if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
|
|
vi->i_blocks = ni->itype.compressed.size >> 9;
|
|
else
|
|
vi->i_blocks = ni->allocated_size >> 9;
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
iput_unm_err_out:
|
|
iput(bvi);
|
|
unm_err_out:
|
|
if (!err)
|
|
err = -EIO;
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
if (m)
|
|
unmap_mft_record(ni);
|
|
err_out:
|
|
ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
|
|
"inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
|
|
make_bad_inode(vi);
|
|
if (err != -EOPNOTSUPP && err != -ENOMEM)
|
|
NVolSetErrors(vol);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_read_locked_attr_inode - read an attribute inode from its base inode
|
|
* @base_vi: base inode
|
|
* @vi: attribute inode to read
|
|
*
|
|
* ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
|
|
* attribute inode described by @vi into memory from the base mft record
|
|
* described by @base_ni.
|
|
*
|
|
* ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
|
|
* reading and looks up the attribute described by @vi before setting up the
|
|
* necessary fields in @vi as well as initializing the ntfs inode.
|
|
*
|
|
* Q: What locks are held when the function is called?
|
|
* A: i_state has I_LOCK set, hence the inode is locked, also
|
|
* i_count is set to 1, so it is not going to go away
|
|
*
|
|
* Return 0 on success and -errno on error. In the error case, the inode will
|
|
* have had make_bad_inode() executed on it.
|
|
*
|
|
* Note this cannot be called for AT_INDEX_ALLOCATION.
|
|
*/
|
|
static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
|
|
{
|
|
ntfs_volume *vol = NTFS_SB(vi->i_sb);
|
|
ntfs_inode *ni, *base_ni;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
ntfs_attr_search_ctx *ctx;
|
|
int err = 0;
|
|
|
|
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
|
|
|
|
ntfs_init_big_inode(vi);
|
|
|
|
ni = NTFS_I(vi);
|
|
base_ni = NTFS_I(base_vi);
|
|
|
|
/* Just mirror the values from the base inode. */
|
|
vi->i_version = base_vi->i_version;
|
|
vi->i_uid = base_vi->i_uid;
|
|
vi->i_gid = base_vi->i_gid;
|
|
vi->i_nlink = base_vi->i_nlink;
|
|
vi->i_mtime = base_vi->i_mtime;
|
|
vi->i_ctime = base_vi->i_ctime;
|
|
vi->i_atime = base_vi->i_atime;
|
|
vi->i_generation = ni->seq_no = base_ni->seq_no;
|
|
|
|
/* Set inode type to zero but preserve permissions. */
|
|
vi->i_mode = base_vi->i_mode & ~S_IFMT;
|
|
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
goto err_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (!ctx) {
|
|
err = -ENOMEM;
|
|
goto unm_err_out;
|
|
}
|
|
/* Find the attribute. */
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err))
|
|
goto unm_err_out;
|
|
a = ctx->attr;
|
|
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
NInoSetCompressed(ni);
|
|
if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
|
|
ni->name_len)) {
|
|
ntfs_error(vi->i_sb, "Found compressed "
|
|
"non-data or named data "
|
|
"attribute. Please report "
|
|
"you saw this message to "
|
|
"linux-ntfs-dev@lists."
|
|
"sourceforge.net");
|
|
goto unm_err_out;
|
|
}
|
|
if (vol->cluster_size > 4096) {
|
|
ntfs_error(vi->i_sb, "Found compressed "
|
|
"attribute but compression is "
|
|
"disabled due to cluster size "
|
|
"(%i) > 4kiB.",
|
|
vol->cluster_size);
|
|
goto unm_err_out;
|
|
}
|
|
if ((a->flags & ATTR_COMPRESSION_MASK) !=
|
|
ATTR_IS_COMPRESSED) {
|
|
ntfs_error(vi->i_sb, "Found unknown "
|
|
"compression method.");
|
|
goto unm_err_out;
|
|
}
|
|
}
|
|
/*
|
|
* The compressed/sparse flag set in an index root just means
|
|
* to compress all files.
|
|
*/
|
|
if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
|
|
ntfs_error(vi->i_sb, "Found mst protected attribute "
|
|
"but the attribute is %s. Please "
|
|
"report you saw this message to "
|
|
"linux-ntfs-dev@lists.sourceforge.net",
|
|
NInoCompressed(ni) ? "compressed" :
|
|
"sparse");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_SPARSE)
|
|
NInoSetSparse(ni);
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED) {
|
|
if (NInoCompressed(ni)) {
|
|
ntfs_error(vi->i_sb, "Found encrypted and compressed "
|
|
"data.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* The encryption flag set in an index root just means to
|
|
* encrypt all files.
|
|
*/
|
|
if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
|
|
ntfs_error(vi->i_sb, "Found mst protected attribute "
|
|
"but the attribute is encrypted. "
|
|
"Please report you saw this message "
|
|
"to linux-ntfs-dev@lists.sourceforge."
|
|
"net");
|
|
goto unm_err_out;
|
|
}
|
|
if (ni->type != AT_DATA) {
|
|
ntfs_error(vi->i_sb, "Found encrypted non-data "
|
|
"attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
NInoSetEncrypted(ni);
|
|
}
|
|
if (!a->non_resident) {
|
|
/* Ensure the attribute name is placed before the value. */
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(a->data.resident.value_offset)))) {
|
|
ntfs_error(vol->sb, "Attribute name is placed after "
|
|
"the attribute value.");
|
|
goto unm_err_out;
|
|
}
|
|
if (NInoMstProtected(ni)) {
|
|
ntfs_error(vi->i_sb, "Found mst protected attribute "
|
|
"but the attribute is resident. "
|
|
"Please report you saw this message to "
|
|
"linux-ntfs-dev@lists.sourceforge.net");
|
|
goto unm_err_out;
|
|
}
|
|
vi->i_size = ni->initialized_size = le32_to_cpu(
|
|
a->data.resident.value_length);
|
|
ni->allocated_size = le32_to_cpu(a->length) -
|
|
le16_to_cpu(a->data.resident.value_offset);
|
|
if (vi->i_size > ni->allocated_size) {
|
|
ntfs_error(vi->i_sb, "Resident attribute is corrupt "
|
|
"(size exceeds allocation).");
|
|
goto unm_err_out;
|
|
}
|
|
} else {
|
|
NInoSetNonResident(ni);
|
|
/*
|
|
* Ensure the attribute name is placed before the mapping pairs
|
|
* array.
|
|
*/
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(
|
|
a->data.non_resident.mapping_pairs_offset)))) {
|
|
ntfs_error(vol->sb, "Attribute name is placed after "
|
|
"the mapping pairs array.");
|
|
goto unm_err_out;
|
|
}
|
|
if (NInoCompressed(ni) || NInoSparse(ni)) {
|
|
if (NInoCompressed(ni) && a->data.non_resident.
|
|
compression_unit != 4) {
|
|
ntfs_error(vi->i_sb, "Found non-standard "
|
|
"compression unit (%u instead "
|
|
"of 4). Cannot handle this.",
|
|
a->data.non_resident.
|
|
compression_unit);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
if (a->data.non_resident.compression_unit) {
|
|
ni->itype.compressed.block_size = 1U <<
|
|
(a->data.non_resident.
|
|
compression_unit +
|
|
vol->cluster_size_bits);
|
|
ni->itype.compressed.block_size_bits =
|
|
ffs(ni->itype.compressed.
|
|
block_size) - 1;
|
|
ni->itype.compressed.block_clusters = 1U <<
|
|
a->data.non_resident.
|
|
compression_unit;
|
|
} else {
|
|
ni->itype.compressed.block_size = 0;
|
|
ni->itype.compressed.block_size_bits = 0;
|
|
ni->itype.compressed.block_clusters = 0;
|
|
}
|
|
ni->itype.compressed.size = sle64_to_cpu(
|
|
a->data.non_resident.compressed_size);
|
|
}
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(vi->i_sb, "First extent of attribute has "
|
|
"non-zero lowest_vcn.");
|
|
goto unm_err_out;
|
|
}
|
|
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
|
|
ni->initialized_size = sle64_to_cpu(
|
|
a->data.non_resident.initialized_size);
|
|
ni->allocated_size = sle64_to_cpu(
|
|
a->data.non_resident.allocated_size);
|
|
}
|
|
/* Setup the operations for this attribute inode. */
|
|
vi->i_op = NULL;
|
|
vi->i_fop = NULL;
|
|
if (NInoMstProtected(ni))
|
|
vi->i_mapping->a_ops = &ntfs_mst_aops;
|
|
else
|
|
vi->i_mapping->a_ops = &ntfs_aops;
|
|
if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
|
|
vi->i_blocks = ni->itype.compressed.size >> 9;
|
|
else
|
|
vi->i_blocks = ni->allocated_size >> 9;
|
|
/*
|
|
* Make sure the base inode does not go away and attach it to the
|
|
* attribute inode.
|
|
*/
|
|
igrab(base_vi);
|
|
ni->ext.base_ntfs_ino = base_ni;
|
|
ni->nr_extents = -1;
|
|
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
|
|
unm_err_out:
|
|
if (!err)
|
|
err = -EIO;
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
err_out:
|
|
ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
|
|
"inode (mft_no 0x%lx, type 0x%x, name_len %i). "
|
|
"Marking corrupt inode and base inode 0x%lx as bad. "
|
|
"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
|
|
base_vi->i_ino);
|
|
make_bad_inode(vi);
|
|
if (err != -ENOMEM)
|
|
NVolSetErrors(vol);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_read_locked_index_inode - read an index inode from its base inode
|
|
* @base_vi: base inode
|
|
* @vi: index inode to read
|
|
*
|
|
* ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
|
|
* index inode described by @vi into memory from the base mft record described
|
|
* by @base_ni.
|
|
*
|
|
* ntfs_read_locked_index_inode() maps, pins and locks the base inode for
|
|
* reading and looks up the attributes relating to the index described by @vi
|
|
* before setting up the necessary fields in @vi as well as initializing the
|
|
* ntfs inode.
|
|
*
|
|
* Note, index inodes are essentially attribute inodes (NInoAttr() is true)
|
|
* with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
|
|
* are setup like directory inodes since directories are a special case of
|
|
* indices ao they need to be treated in much the same way. Most importantly,
|
|
* for small indices the index allocation attribute might not actually exist.
|
|
* However, the index root attribute always exists but this does not need to
|
|
* have an inode associated with it and this is why we define a new inode type
|
|
* index. Also, like for directories, we need to have an attribute inode for
|
|
* the bitmap attribute corresponding to the index allocation attribute and we
|
|
* can store this in the appropriate field of the inode, just like we do for
|
|
* normal directory inodes.
|
|
*
|
|
* Q: What locks are held when the function is called?
|
|
* A: i_state has I_LOCK set, hence the inode is locked, also
|
|
* i_count is set to 1, so it is not going to go away
|
|
*
|
|
* Return 0 on success and -errno on error. In the error case, the inode will
|
|
* have had make_bad_inode() executed on it.
|
|
*/
|
|
static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
|
|
{
|
|
loff_t bvi_size;
|
|
ntfs_volume *vol = NTFS_SB(vi->i_sb);
|
|
ntfs_inode *ni, *base_ni, *bni;
|
|
struct inode *bvi;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
ntfs_attr_search_ctx *ctx;
|
|
INDEX_ROOT *ir;
|
|
u8 *ir_end, *index_end;
|
|
int err = 0;
|
|
|
|
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
|
|
ntfs_init_big_inode(vi);
|
|
ni = NTFS_I(vi);
|
|
base_ni = NTFS_I(base_vi);
|
|
/* Just mirror the values from the base inode. */
|
|
vi->i_version = base_vi->i_version;
|
|
vi->i_uid = base_vi->i_uid;
|
|
vi->i_gid = base_vi->i_gid;
|
|
vi->i_nlink = base_vi->i_nlink;
|
|
vi->i_mtime = base_vi->i_mtime;
|
|
vi->i_ctime = base_vi->i_ctime;
|
|
vi->i_atime = base_vi->i_atime;
|
|
vi->i_generation = ni->seq_no = base_ni->seq_no;
|
|
/* Set inode type to zero but preserve permissions. */
|
|
vi->i_mode = base_vi->i_mode & ~S_IFMT;
|
|
/* Map the mft record for the base inode. */
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
goto err_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (!ctx) {
|
|
err = -ENOMEM;
|
|
goto unm_err_out;
|
|
}
|
|
/* Find the index root attribute. */
|
|
err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT)
|
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
|
|
"missing.");
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
/* Set up the state. */
|
|
if (unlikely(a->non_resident)) {
|
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
|
|
goto unm_err_out;
|
|
}
|
|
/* Ensure the attribute name is placed before the value. */
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(a->data.resident.value_offset)))) {
|
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
|
|
"after the attribute value.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* Compressed/encrypted/sparse index root is not allowed, except for
|
|
* directories of course but those are not dealt with here.
|
|
*/
|
|
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
|
|
ATTR_IS_SPARSE)) {
|
|
ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
|
|
"root attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
|
|
ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
|
|
if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
|
|
goto unm_err_out;
|
|
}
|
|
index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
|
|
if (index_end > ir_end) {
|
|
ntfs_error(vi->i_sb, "Index is corrupt.");
|
|
goto unm_err_out;
|
|
}
|
|
if (ir->type) {
|
|
ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
|
|
le32_to_cpu(ir->type));
|
|
goto unm_err_out;
|
|
}
|
|
ni->itype.index.collation_rule = ir->collation_rule;
|
|
ntfs_debug("Index collation rule is 0x%x.",
|
|
le32_to_cpu(ir->collation_rule));
|
|
ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
|
|
if (ni->itype.index.block_size & (ni->itype.index.block_size - 1)) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
|
|
"two.", ni->itype.index.block_size);
|
|
goto unm_err_out;
|
|
}
|
|
if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
|
|
"(%ld) is not supported. Sorry.",
|
|
ni->itype.index.block_size, PAGE_CACHE_SIZE);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
|
|
"(%i) is not supported. Sorry.",
|
|
ni->itype.index.block_size, NTFS_BLOCK_SIZE);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
|
|
/* Determine the size of a vcn in the index. */
|
|
if (vol->cluster_size <= ni->itype.index.block_size) {
|
|
ni->itype.index.vcn_size = vol->cluster_size;
|
|
ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
|
|
} else {
|
|
ni->itype.index.vcn_size = vol->sector_size;
|
|
ni->itype.index.vcn_size_bits = vol->sector_size_bits;
|
|
}
|
|
/* Check for presence of index allocation attribute. */
|
|
if (!(ir->index.flags & LARGE_INDEX)) {
|
|
/* No index allocation. */
|
|
vi->i_size = ni->initialized_size = ni->allocated_size = 0;
|
|
/* We are done with the mft record, so we release it. */
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
goto skip_large_index_stuff;
|
|
} /* LARGE_INDEX: Index allocation present. Setup state. */
|
|
NInoSetIndexAllocPresent(ni);
|
|
/* Find index allocation attribute. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT)
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
|
|
"not present but $INDEX_ROOT "
|
|
"indicated it is.");
|
|
else
|
|
ntfs_error(vi->i_sb, "Failed to lookup "
|
|
"$INDEX_ALLOCATION attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
if (!a->non_resident) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
|
|
"resident.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* Ensure the attribute name is placed before the mapping pairs array.
|
|
*/
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(
|
|
a->data.non_resident.mapping_pairs_offset)))) {
|
|
ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
|
|
"placed after the mapping pairs array.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
|
|
"encrypted.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_SPARSE) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
|
|
"compressed.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
|
|
"attribute has non zero lowest_vcn.");
|
|
goto unm_err_out;
|
|
}
|
|
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
|
|
ni->initialized_size = sle64_to_cpu(
|
|
a->data.non_resident.initialized_size);
|
|
ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
|
|
/*
|
|
* We are done with the mft record, so we release it. Otherwise
|
|
* we would deadlock in ntfs_attr_iget().
|
|
*/
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
/* Get the index bitmap attribute inode. */
|
|
bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
|
|
if (IS_ERR(bvi)) {
|
|
ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
|
|
err = PTR_ERR(bvi);
|
|
goto unm_err_out;
|
|
}
|
|
bni = NTFS_I(bvi);
|
|
if (NInoCompressed(bni) || NInoEncrypted(bni) ||
|
|
NInoSparse(bni)) {
|
|
ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
|
|
"encrypted and/or sparse.");
|
|
goto iput_unm_err_out;
|
|
}
|
|
/* Consistency check bitmap size vs. index allocation size. */
|
|
bvi_size = i_size_read(bvi);
|
|
if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
|
|
ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
|
|
"index allocation (0x%llx).", bvi_size << 3,
|
|
vi->i_size);
|
|
goto iput_unm_err_out;
|
|
}
|
|
iput(bvi);
|
|
skip_large_index_stuff:
|
|
/* Setup the operations for this index inode. */
|
|
vi->i_op = NULL;
|
|
vi->i_fop = NULL;
|
|
vi->i_mapping->a_ops = &ntfs_mst_aops;
|
|
vi->i_blocks = ni->allocated_size >> 9;
|
|
/*
|
|
* Make sure the base inode doesn't go away and attach it to the
|
|
* index inode.
|
|
*/
|
|
igrab(base_vi);
|
|
ni->ext.base_ntfs_ino = base_ni;
|
|
ni->nr_extents = -1;
|
|
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
iput_unm_err_out:
|
|
iput(bvi);
|
|
unm_err_out:
|
|
if (!err)
|
|
err = -EIO;
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
if (m)
|
|
unmap_mft_record(base_ni);
|
|
err_out:
|
|
ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
|
|
"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
|
|
ni->name_len);
|
|
make_bad_inode(vi);
|
|
if (err != -EOPNOTSUPP && err != -ENOMEM)
|
|
NVolSetErrors(vol);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* The MFT inode has special locking, so teach the lock validator
|
|
* about this by splitting off the locking rules of the MFT from
|
|
* the locking rules of other inodes. The MFT inode can never be
|
|
* accessed from the VFS side (or even internally), only by the
|
|
* map_mft functions.
|
|
*/
|
|
static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
|
|
|
|
/**
|
|
* ntfs_read_inode_mount - special read_inode for mount time use only
|
|
* @vi: inode to read
|
|
*
|
|
* Read inode FILE_MFT at mount time, only called with super_block lock
|
|
* held from within the read_super() code path.
|
|
*
|
|
* This function exists because when it is called the page cache for $MFT/$DATA
|
|
* is not initialized and hence we cannot get at the contents of mft records
|
|
* by calling map_mft_record*().
|
|
*
|
|
* Further it needs to cope with the circular references problem, i.e. cannot
|
|
* load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
|
|
* we do not know where the other extent mft records are yet and again, because
|
|
* we cannot call map_mft_record*() yet. Obviously this applies only when an
|
|
* attribute list is actually present in $MFT inode.
|
|
*
|
|
* We solve these problems by starting with the $DATA attribute before anything
|
|
* else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
|
|
* extent is found, we ntfs_mapping_pairs_decompress() including the implied
|
|
* ntfs_runlists_merge(). Each step of the iteration necessarily provides
|
|
* sufficient information for the next step to complete.
|
|
*
|
|
* This should work but there are two possible pit falls (see inline comments
|
|
* below), but only time will tell if they are real pits or just smoke...
|
|
*/
|
|
int ntfs_read_inode_mount(struct inode *vi)
|
|
{
|
|
VCN next_vcn, last_vcn, highest_vcn;
|
|
s64 block;
|
|
struct super_block *sb = vi->i_sb;
|
|
ntfs_volume *vol = NTFS_SB(sb);
|
|
struct buffer_head *bh;
|
|
ntfs_inode *ni;
|
|
MFT_RECORD *m = NULL;
|
|
ATTR_RECORD *a;
|
|
ntfs_attr_search_ctx *ctx;
|
|
unsigned int i, nr_blocks;
|
|
int err;
|
|
|
|
ntfs_debug("Entering.");
|
|
|
|
/* Initialize the ntfs specific part of @vi. */
|
|
ntfs_init_big_inode(vi);
|
|
|
|
ni = NTFS_I(vi);
|
|
|
|
/* Setup the data attribute. It is special as it is mst protected. */
|
|
NInoSetNonResident(ni);
|
|
NInoSetMstProtected(ni);
|
|
NInoSetSparseDisabled(ni);
|
|
ni->type = AT_DATA;
|
|
ni->name = NULL;
|
|
ni->name_len = 0;
|
|
/*
|
|
* This sets up our little cheat allowing us to reuse the async read io
|
|
* completion handler for directories.
|
|
*/
|
|
ni->itype.index.block_size = vol->mft_record_size;
|
|
ni->itype.index.block_size_bits = vol->mft_record_size_bits;
|
|
|
|
/* Very important! Needed to be able to call map_mft_record*(). */
|
|
vol->mft_ino = vi;
|
|
|
|
/* Allocate enough memory to read the first mft record. */
|
|
if (vol->mft_record_size > 64 * 1024) {
|
|
ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
|
|
vol->mft_record_size);
|
|
goto err_out;
|
|
}
|
|
i = vol->mft_record_size;
|
|
if (i < sb->s_blocksize)
|
|
i = sb->s_blocksize;
|
|
m = (MFT_RECORD*)ntfs_malloc_nofs(i);
|
|
if (!m) {
|
|
ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
|
|
goto err_out;
|
|
}
|
|
|
|
/* Determine the first block of the $MFT/$DATA attribute. */
|
|
block = vol->mft_lcn << vol->cluster_size_bits >>
|
|
sb->s_blocksize_bits;
|
|
nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
|
|
if (!nr_blocks)
|
|
nr_blocks = 1;
|
|
|
|
/* Load $MFT/$DATA's first mft record. */
|
|
for (i = 0; i < nr_blocks; i++) {
|
|
bh = sb_bread(sb, block++);
|
|
if (!bh) {
|
|
ntfs_error(sb, "Device read failed.");
|
|
goto err_out;
|
|
}
|
|
memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
|
|
sb->s_blocksize);
|
|
brelse(bh);
|
|
}
|
|
|
|
/* Apply the mst fixups. */
|
|
if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
|
|
/* FIXME: Try to use the $MFTMirr now. */
|
|
ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
|
|
goto err_out;
|
|
}
|
|
|
|
/* Need this to sanity check attribute list references to $MFT. */
|
|
vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
|
|
|
|
/* Provides readpage() and sync_page() for map_mft_record(). */
|
|
vi->i_mapping->a_ops = &ntfs_mst_aops;
|
|
|
|
ctx = ntfs_attr_get_search_ctx(ni, m);
|
|
if (!ctx) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
/* Find the attribute list attribute if present. */
|
|
err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
|
|
if (err) {
|
|
if (unlikely(err != -ENOENT)) {
|
|
ntfs_error(sb, "Failed to lookup attribute list "
|
|
"attribute. You should run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
} else /* if (!err) */ {
|
|
ATTR_LIST_ENTRY *al_entry, *next_al_entry;
|
|
u8 *al_end;
|
|
static const char *es = " Not allowed. $MFT is corrupt. "
|
|
"You should run chkdsk.";
|
|
|
|
ntfs_debug("Attribute list attribute found in $MFT.");
|
|
NInoSetAttrList(ni);
|
|
a = ctx->attr;
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
ntfs_error(sb, "Attribute list attribute is "
|
|
"compressed.%s", es);
|
|
goto put_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED ||
|
|
a->flags & ATTR_IS_SPARSE) {
|
|
if (a->non_resident) {
|
|
ntfs_error(sb, "Non-resident attribute list "
|
|
"attribute is encrypted/"
|
|
"sparse.%s", es);
|
|
goto put_err_out;
|
|
}
|
|
ntfs_warning(sb, "Resident attribute list attribute "
|
|
"in $MFT system file is marked "
|
|
"encrypted/sparse which is not true. "
|
|
"However, Windows allows this and "
|
|
"chkdsk does not detect or correct it "
|
|
"so we will just ignore the invalid "
|
|
"flags and pretend they are not set.");
|
|
}
|
|
/* Now allocate memory for the attribute list. */
|
|
ni->attr_list_size = (u32)ntfs_attr_size(a);
|
|
ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
|
|
if (!ni->attr_list) {
|
|
ntfs_error(sb, "Not enough memory to allocate buffer "
|
|
"for attribute list.");
|
|
goto put_err_out;
|
|
}
|
|
if (a->non_resident) {
|
|
NInoSetAttrListNonResident(ni);
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(sb, "Attribute list has non zero "
|
|
"lowest_vcn. $MFT is corrupt. "
|
|
"You should run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
/* Setup the runlist. */
|
|
ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
|
|
a, NULL);
|
|
if (IS_ERR(ni->attr_list_rl.rl)) {
|
|
err = PTR_ERR(ni->attr_list_rl.rl);
|
|
ni->attr_list_rl.rl = NULL;
|
|
ntfs_error(sb, "Mapping pairs decompression "
|
|
"failed with error code %i.",
|
|
-err);
|
|
goto put_err_out;
|
|
}
|
|
/* Now load the attribute list. */
|
|
if ((err = load_attribute_list(vol, &ni->attr_list_rl,
|
|
ni->attr_list, ni->attr_list_size,
|
|
sle64_to_cpu(a->data.
|
|
non_resident.initialized_size)))) {
|
|
ntfs_error(sb, "Failed to load attribute list "
|
|
"attribute with error code %i.",
|
|
-err);
|
|
goto put_err_out;
|
|
}
|
|
} else /* if (!ctx.attr->non_resident) */ {
|
|
if ((u8*)a + le16_to_cpu(
|
|
a->data.resident.value_offset) +
|
|
le32_to_cpu(
|
|
a->data.resident.value_length) >
|
|
(u8*)ctx->mrec + vol->mft_record_size) {
|
|
ntfs_error(sb, "Corrupt attribute list "
|
|
"attribute.");
|
|
goto put_err_out;
|
|
}
|
|
/* Now copy the attribute list. */
|
|
memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
|
|
a->data.resident.value_offset),
|
|
le32_to_cpu(
|
|
a->data.resident.value_length));
|
|
}
|
|
/* The attribute list is now setup in memory. */
|
|
/*
|
|
* FIXME: I don't know if this case is actually possible.
|
|
* According to logic it is not possible but I have seen too
|
|
* many weird things in MS software to rely on logic... Thus we
|
|
* perform a manual search and make sure the first $MFT/$DATA
|
|
* extent is in the base inode. If it is not we abort with an
|
|
* error and if we ever see a report of this error we will need
|
|
* to do some magic in order to have the necessary mft record
|
|
* loaded and in the right place in the page cache. But
|
|
* hopefully logic will prevail and this never happens...
|
|
*/
|
|
al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
|
|
al_end = (u8*)al_entry + ni->attr_list_size;
|
|
for (;; al_entry = next_al_entry) {
|
|
/* Out of bounds check. */
|
|
if ((u8*)al_entry < ni->attr_list ||
|
|
(u8*)al_entry > al_end)
|
|
goto em_put_err_out;
|
|
/* Catch the end of the attribute list. */
|
|
if ((u8*)al_entry == al_end)
|
|
goto em_put_err_out;
|
|
if (!al_entry->length)
|
|
goto em_put_err_out;
|
|
if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
|
|
le16_to_cpu(al_entry->length) > al_end)
|
|
goto em_put_err_out;
|
|
next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
|
|
le16_to_cpu(al_entry->length));
|
|
if (le32_to_cpu(al_entry->type) >
|
|
const_le32_to_cpu(AT_DATA))
|
|
goto em_put_err_out;
|
|
if (AT_DATA != al_entry->type)
|
|
continue;
|
|
/* We want an unnamed attribute. */
|
|
if (al_entry->name_length)
|
|
goto em_put_err_out;
|
|
/* Want the first entry, i.e. lowest_vcn == 0. */
|
|
if (al_entry->lowest_vcn)
|
|
goto em_put_err_out;
|
|
/* First entry has to be in the base mft record. */
|
|
if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
|
|
/* MFT references do not match, logic fails. */
|
|
ntfs_error(sb, "BUG: The first $DATA extent "
|
|
"of $MFT is not in the base "
|
|
"mft record. Please report "
|
|
"you saw this message to "
|
|
"linux-ntfs-dev@lists."
|
|
"sourceforge.net");
|
|
goto put_err_out;
|
|
} else {
|
|
/* Sequence numbers must match. */
|
|
if (MSEQNO_LE(al_entry->mft_reference) !=
|
|
ni->seq_no)
|
|
goto em_put_err_out;
|
|
/* Got it. All is ok. We can stop now. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
|
|
/* Now load all attribute extents. */
|
|
a = NULL;
|
|
next_vcn = last_vcn = highest_vcn = 0;
|
|
while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
|
|
ctx))) {
|
|
runlist_element *nrl;
|
|
|
|
/* Cache the current attribute. */
|
|
a = ctx->attr;
|
|
/* $MFT must be non-resident. */
|
|
if (!a->non_resident) {
|
|
ntfs_error(sb, "$MFT must be non-resident but a "
|
|
"resident extent was found. $MFT is "
|
|
"corrupt. Run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
/* $MFT must be uncompressed and unencrypted. */
|
|
if (a->flags & ATTR_COMPRESSION_MASK ||
|
|
a->flags & ATTR_IS_ENCRYPTED ||
|
|
a->flags & ATTR_IS_SPARSE) {
|
|
ntfs_error(sb, "$MFT must be uncompressed, "
|
|
"non-sparse, and unencrypted but a "
|
|
"compressed/sparse/encrypted extent "
|
|
"was found. $MFT is corrupt. Run "
|
|
"chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
/*
|
|
* Decompress the mapping pairs array of this extent and merge
|
|
* the result into the existing runlist. No need for locking
|
|
* as we have exclusive access to the inode at this time and we
|
|
* are a mount in progress task, too.
|
|
*/
|
|
nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
|
|
if (IS_ERR(nrl)) {
|
|
ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
|
|
"failed with error code %ld. $MFT is "
|
|
"corrupt.", PTR_ERR(nrl));
|
|
goto put_err_out;
|
|
}
|
|
ni->runlist.rl = nrl;
|
|
|
|
/* Are we in the first extent? */
|
|
if (!next_vcn) {
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(sb, "First extent of $DATA "
|
|
"attribute has non zero "
|
|
"lowest_vcn. $MFT is corrupt. "
|
|
"You should run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
/* Get the last vcn in the $DATA attribute. */
|
|
last_vcn = sle64_to_cpu(
|
|
a->data.non_resident.allocated_size)
|
|
>> vol->cluster_size_bits;
|
|
/* Fill in the inode size. */
|
|
vi->i_size = sle64_to_cpu(
|
|
a->data.non_resident.data_size);
|
|
ni->initialized_size = sle64_to_cpu(
|
|
a->data.non_resident.initialized_size);
|
|
ni->allocated_size = sle64_to_cpu(
|
|
a->data.non_resident.allocated_size);
|
|
/*
|
|
* Verify the number of mft records does not exceed
|
|
* 2^32 - 1.
|
|
*/
|
|
if ((vi->i_size >> vol->mft_record_size_bits) >=
|
|
(1ULL << 32)) {
|
|
ntfs_error(sb, "$MFT is too big! Aborting.");
|
|
goto put_err_out;
|
|
}
|
|
/*
|
|
* We have got the first extent of the runlist for
|
|
* $MFT which means it is now relatively safe to call
|
|
* the normal ntfs_read_inode() function.
|
|
* Complete reading the inode, this will actually
|
|
* re-read the mft record for $MFT, this time entering
|
|
* it into the page cache with which we complete the
|
|
* kick start of the volume. It should be safe to do
|
|
* this now as the first extent of $MFT/$DATA is
|
|
* already known and we would hope that we don't need
|
|
* further extents in order to find the other
|
|
* attributes belonging to $MFT. Only time will tell if
|
|
* this is really the case. If not we will have to play
|
|
* magic at this point, possibly duplicating a lot of
|
|
* ntfs_read_inode() at this point. We will need to
|
|
* ensure we do enough of its work to be able to call
|
|
* ntfs_read_inode() on extents of $MFT/$DATA. But lets
|
|
* hope this never happens...
|
|
*/
|
|
ntfs_read_locked_inode(vi);
|
|
if (is_bad_inode(vi)) {
|
|
ntfs_error(sb, "ntfs_read_inode() of $MFT "
|
|
"failed. BUG or corrupt $MFT. "
|
|
"Run chkdsk and if no errors "
|
|
"are found, please report you "
|
|
"saw this message to "
|
|
"linux-ntfs-dev@lists."
|
|
"sourceforge.net");
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
/* Revert to the safe super operations. */
|
|
ntfs_free(m);
|
|
return -1;
|
|
}
|
|
/*
|
|
* Re-initialize some specifics about $MFT's inode as
|
|
* ntfs_read_inode() will have set up the default ones.
|
|
*/
|
|
/* Set uid and gid to root. */
|
|
vi->i_uid = vi->i_gid = 0;
|
|
/* Regular file. No access for anyone. */
|
|
vi->i_mode = S_IFREG;
|
|
/* No VFS initiated operations allowed for $MFT. */
|
|
vi->i_op = &ntfs_empty_inode_ops;
|
|
vi->i_fop = &ntfs_empty_file_ops;
|
|
}
|
|
|
|
/* Get the lowest vcn for the next extent. */
|
|
highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
|
|
next_vcn = highest_vcn + 1;
|
|
|
|
/* Only one extent or error, which we catch below. */
|
|
if (next_vcn <= 0)
|
|
break;
|
|
|
|
/* Avoid endless loops due to corruption. */
|
|
if (next_vcn < sle64_to_cpu(
|
|
a->data.non_resident.lowest_vcn)) {
|
|
ntfs_error(sb, "$MFT has corrupt attribute list "
|
|
"attribute. Run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
}
|
|
if (err != -ENOENT) {
|
|
ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
|
|
"$MFT is corrupt. Run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
if (!a) {
|
|
ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
|
|
"corrupt. Run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
if (highest_vcn && highest_vcn != last_vcn - 1) {
|
|
ntfs_error(sb, "Failed to load the complete runlist for "
|
|
"$MFT/$DATA. Driver bug or corrupt $MFT. "
|
|
"Run chkdsk.");
|
|
ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
|
|
(unsigned long long)highest_vcn,
|
|
(unsigned long long)last_vcn - 1);
|
|
goto put_err_out;
|
|
}
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
ntfs_debug("Done.");
|
|
ntfs_free(m);
|
|
|
|
/*
|
|
* Split the locking rules of the MFT inode from the
|
|
* locking rules of other inodes:
|
|
*/
|
|
lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
|
|
lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
|
|
|
|
return 0;
|
|
|
|
em_put_err_out:
|
|
ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
|
|
"attribute list. $MFT is corrupt. Run chkdsk.");
|
|
put_err_out:
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
err_out:
|
|
ntfs_error(sb, "Failed. Marking inode as bad.");
|
|
make_bad_inode(vi);
|
|
ntfs_free(m);
|
|
return -1;
|
|
}
|
|
|
|
static void __ntfs_clear_inode(ntfs_inode *ni)
|
|
{
|
|
/* Free all alocated memory. */
|
|
down_write(&ni->runlist.lock);
|
|
if (ni->runlist.rl) {
|
|
ntfs_free(ni->runlist.rl);
|
|
ni->runlist.rl = NULL;
|
|
}
|
|
up_write(&ni->runlist.lock);
|
|
|
|
if (ni->attr_list) {
|
|
ntfs_free(ni->attr_list);
|
|
ni->attr_list = NULL;
|
|
}
|
|
|
|
down_write(&ni->attr_list_rl.lock);
|
|
if (ni->attr_list_rl.rl) {
|
|
ntfs_free(ni->attr_list_rl.rl);
|
|
ni->attr_list_rl.rl = NULL;
|
|
}
|
|
up_write(&ni->attr_list_rl.lock);
|
|
|
|
if (ni->name_len && ni->name != I30) {
|
|
/* Catch bugs... */
|
|
BUG_ON(!ni->name);
|
|
kfree(ni->name);
|
|
}
|
|
}
|
|
|
|
void ntfs_clear_extent_inode(ntfs_inode *ni)
|
|
{
|
|
ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
|
|
|
|
BUG_ON(NInoAttr(ni));
|
|
BUG_ON(ni->nr_extents != -1);
|
|
|
|
#ifdef NTFS_RW
|
|
if (NInoDirty(ni)) {
|
|
if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
|
|
ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
|
|
"Losing data! This is a BUG!!!");
|
|
// FIXME: Do something!!!
|
|
}
|
|
#endif /* NTFS_RW */
|
|
|
|
__ntfs_clear_inode(ni);
|
|
|
|
/* Bye, bye... */
|
|
ntfs_destroy_extent_inode(ni);
|
|
}
|
|
|
|
/**
|
|
* ntfs_clear_big_inode - clean up the ntfs specific part of an inode
|
|
* @vi: vfs inode pending annihilation
|
|
*
|
|
* When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
|
|
* is called, which deallocates all memory belonging to the NTFS specific part
|
|
* of the inode and returns.
|
|
*
|
|
* If the MFT record is dirty, we commit it before doing anything else.
|
|
*/
|
|
void ntfs_clear_big_inode(struct inode *vi)
|
|
{
|
|
ntfs_inode *ni = NTFS_I(vi);
|
|
|
|
#ifdef NTFS_RW
|
|
if (NInoDirty(ni)) {
|
|
bool was_bad = (is_bad_inode(vi));
|
|
|
|
/* Committing the inode also commits all extent inodes. */
|
|
ntfs_commit_inode(vi);
|
|
|
|
if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
|
|
ntfs_error(vi->i_sb, "Failed to commit dirty inode "
|
|
"0x%lx. Losing data!", vi->i_ino);
|
|
// FIXME: Do something!!!
|
|
}
|
|
}
|
|
#endif /* NTFS_RW */
|
|
|
|
/* No need to lock at this stage as no one else has a reference. */
|
|
if (ni->nr_extents > 0) {
|
|
int i;
|
|
|
|
for (i = 0; i < ni->nr_extents; i++)
|
|
ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
|
|
kfree(ni->ext.extent_ntfs_inos);
|
|
}
|
|
|
|
__ntfs_clear_inode(ni);
|
|
|
|
if (NInoAttr(ni)) {
|
|
/* Release the base inode if we are holding it. */
|
|
if (ni->nr_extents == -1) {
|
|
iput(VFS_I(ni->ext.base_ntfs_ino));
|
|
ni->nr_extents = 0;
|
|
ni->ext.base_ntfs_ino = NULL;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* ntfs_show_options - show mount options in /proc/mounts
|
|
* @sf: seq_file in which to write our mount options
|
|
* @mnt: vfs mount whose mount options to display
|
|
*
|
|
* Called by the VFS once for each mounted ntfs volume when someone reads
|
|
* /proc/mounts in order to display the NTFS specific mount options of each
|
|
* mount. The mount options of the vfs mount @mnt are written to the seq file
|
|
* @sf and success is returned.
|
|
*/
|
|
int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt)
|
|
{
|
|
ntfs_volume *vol = NTFS_SB(mnt->mnt_sb);
|
|
int i;
|
|
|
|
seq_printf(sf, ",uid=%i", vol->uid);
|
|
seq_printf(sf, ",gid=%i", vol->gid);
|
|
if (vol->fmask == vol->dmask)
|
|
seq_printf(sf, ",umask=0%o", vol->fmask);
|
|
else {
|
|
seq_printf(sf, ",fmask=0%o", vol->fmask);
|
|
seq_printf(sf, ",dmask=0%o", vol->dmask);
|
|
}
|
|
seq_printf(sf, ",nls=%s", vol->nls_map->charset);
|
|
if (NVolCaseSensitive(vol))
|
|
seq_printf(sf, ",case_sensitive");
|
|
if (NVolShowSystemFiles(vol))
|
|
seq_printf(sf, ",show_sys_files");
|
|
if (!NVolSparseEnabled(vol))
|
|
seq_printf(sf, ",disable_sparse");
|
|
for (i = 0; on_errors_arr[i].val; i++) {
|
|
if (on_errors_arr[i].val & vol->on_errors)
|
|
seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
|
|
}
|
|
seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef NTFS_RW
|
|
|
|
static const char *es = " Leaving inconsistent metadata. Unmount and run "
|
|
"chkdsk.";
|
|
|
|
/**
|
|
* ntfs_truncate - called when the i_size of an ntfs inode is changed
|
|
* @vi: inode for which the i_size was changed
|
|
*
|
|
* We only support i_size changes for normal files at present, i.e. not
|
|
* compressed and not encrypted. This is enforced in ntfs_setattr(), see
|
|
* below.
|
|
*
|
|
* The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
|
|
* that the change is allowed.
|
|
*
|
|
* This implies for us that @vi is a file inode rather than a directory, index,
|
|
* or attribute inode as well as that @vi is a base inode.
|
|
*
|
|
* Returns 0 on success or -errno on error.
|
|
*
|
|
* Called with ->i_mutex held. In all but one case ->i_alloc_sem is held for
|
|
* writing. The only case in the kernel where ->i_alloc_sem is not held is
|
|
* mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
|
|
* with the current i_size as the offset. The analogous place in NTFS is in
|
|
* fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
|
|
* without holding ->i_alloc_sem.
|
|
*/
|
|
int ntfs_truncate(struct inode *vi)
|
|
{
|
|
s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
|
|
VCN highest_vcn;
|
|
unsigned long flags;
|
|
ntfs_inode *base_ni, *ni = NTFS_I(vi);
|
|
ntfs_volume *vol = ni->vol;
|
|
ntfs_attr_search_ctx *ctx;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
const char *te = " Leaving file length out of sync with i_size.";
|
|
int err, mp_size, size_change, alloc_change;
|
|
u32 attr_len;
|
|
|
|
ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
|
|
BUG_ON(NInoAttr(ni));
|
|
BUG_ON(S_ISDIR(vi->i_mode));
|
|
BUG_ON(NInoMstProtected(ni));
|
|
BUG_ON(ni->nr_extents < 0);
|
|
retry_truncate:
|
|
/*
|
|
* Lock the runlist for writing and map the mft record to ensure it is
|
|
* safe to mess with the attribute runlist and sizes.
|
|
*/
|
|
down_write(&ni->runlist.lock);
|
|
if (!NInoAttr(ni))
|
|
base_ni = ni;
|
|
else
|
|
base_ni = ni->ext.base_ntfs_ino;
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
|
|
"(error code %d).%s", vi->i_ino, err, te);
|
|
ctx = NULL;
|
|
m = NULL;
|
|
goto old_bad_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (unlikely(!ctx)) {
|
|
ntfs_error(vi->i_sb, "Failed to allocate a search context for "
|
|
"inode 0x%lx (not enough memory).%s",
|
|
vi->i_ino, te);
|
|
err = -ENOMEM;
|
|
goto old_bad_out;
|
|
}
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT) {
|
|
ntfs_error(vi->i_sb, "Open attribute is missing from "
|
|
"mft record. Inode 0x%lx is corrupt. "
|
|
"Run chkdsk.%s", vi->i_ino, te);
|
|
err = -EIO;
|
|
} else
|
|
ntfs_error(vi->i_sb, "Failed to lookup attribute in "
|
|
"inode 0x%lx (error code %d).%s",
|
|
vi->i_ino, err, te);
|
|
goto old_bad_out;
|
|
}
|
|
m = ctx->mrec;
|
|
a = ctx->attr;
|
|
/*
|
|
* The i_size of the vfs inode is the new size for the attribute value.
|
|
*/
|
|
new_size = i_size_read(vi);
|
|
/* The current size of the attribute value is the old size. */
|
|
old_size = ntfs_attr_size(a);
|
|
/* Calculate the new allocated size. */
|
|
if (NInoNonResident(ni))
|
|
new_alloc_size = (new_size + vol->cluster_size - 1) &
|
|
~(s64)vol->cluster_size_mask;
|
|
else
|
|
new_alloc_size = (new_size + 7) & ~7;
|
|
/* The current allocated size is the old allocated size. */
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
old_alloc_size = ni->allocated_size;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
/*
|
|
* The change in the file size. This will be 0 if no change, >0 if the
|
|
* size is growing, and <0 if the size is shrinking.
|
|
*/
|
|
size_change = -1;
|
|
if (new_size - old_size >= 0) {
|
|
size_change = 1;
|
|
if (new_size == old_size)
|
|
size_change = 0;
|
|
}
|
|
/* As above for the allocated size. */
|
|
alloc_change = -1;
|
|
if (new_alloc_size - old_alloc_size >= 0) {
|
|
alloc_change = 1;
|
|
if (new_alloc_size == old_alloc_size)
|
|
alloc_change = 0;
|
|
}
|
|
/*
|
|
* If neither the size nor the allocation are being changed there is
|
|
* nothing to do.
|
|
*/
|
|
if (!size_change && !alloc_change)
|
|
goto unm_done;
|
|
/* If the size is changing, check if new size is allowed in $AttrDef. */
|
|
if (size_change) {
|
|
err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
|
|
if (unlikely(err)) {
|
|
if (err == -ERANGE) {
|
|
ntfs_error(vol->sb, "Truncate would cause the "
|
|
"inode 0x%lx to %simum size "
|
|
"for its attribute type "
|
|
"(0x%x). Aborting truncate.",
|
|
vi->i_ino,
|
|
new_size > old_size ? "exceed "
|
|
"the max" : "go under the min",
|
|
le32_to_cpu(ni->type));
|
|
err = -EFBIG;
|
|
} else {
|
|
ntfs_error(vol->sb, "Inode 0x%lx has unknown "
|
|
"attribute type 0x%x. "
|
|
"Aborting truncate.",
|
|
vi->i_ino,
|
|
le32_to_cpu(ni->type));
|
|
err = -EIO;
|
|
}
|
|
/* Reset the vfs inode size to the old size. */
|
|
i_size_write(vi, old_size);
|
|
goto err_out;
|
|
}
|
|
}
|
|
if (NInoCompressed(ni) || NInoEncrypted(ni)) {
|
|
ntfs_warning(vi->i_sb, "Changes in inode size are not "
|
|
"supported yet for %s files, ignoring.",
|
|
NInoCompressed(ni) ? "compressed" :
|
|
"encrypted");
|
|
err = -EOPNOTSUPP;
|
|
goto bad_out;
|
|
}
|
|
if (a->non_resident)
|
|
goto do_non_resident_truncate;
|
|
BUG_ON(NInoNonResident(ni));
|
|
/* Resize the attribute record to best fit the new attribute size. */
|
|
if (new_size < vol->mft_record_size &&
|
|
!ntfs_resident_attr_value_resize(m, a, new_size)) {
|
|
unsigned long flags;
|
|
|
|
/* The resize succeeded! */
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
/* Update the sizes in the ntfs inode and all is done. */
|
|
ni->allocated_size = le32_to_cpu(a->length) -
|
|
le16_to_cpu(a->data.resident.value_offset);
|
|
/*
|
|
* Note ntfs_resident_attr_value_resize() has already done any
|
|
* necessary data clearing in the attribute record. When the
|
|
* file is being shrunk vmtruncate() will already have cleared
|
|
* the top part of the last partial page, i.e. since this is
|
|
* the resident case this is the page with index 0. However,
|
|
* when the file is being expanded, the page cache page data
|
|
* between the old data_size, i.e. old_size, and the new_size
|
|
* has not been zeroed. Fortunately, we do not need to zero it
|
|
* either since on one hand it will either already be zero due
|
|
* to both readpage and writepage clearing partial page data
|
|
* beyond i_size in which case there is nothing to do or in the
|
|
* case of the file being mmap()ped at the same time, POSIX
|
|
* specifies that the behaviour is unspecified thus we do not
|
|
* have to do anything. This means that in our implementation
|
|
* in the rare case that the file is mmap()ped and a write
|
|
* occured into the mmap()ped region just beyond the file size
|
|
* and writepage has not yet been called to write out the page
|
|
* (which would clear the area beyond the file size) and we now
|
|
* extend the file size to incorporate this dirty region
|
|
* outside the file size, a write of the page would result in
|
|
* this data being written to disk instead of being cleared.
|
|
* Given both POSIX and the Linux mmap(2) man page specify that
|
|
* this corner case is undefined, we choose to leave it like
|
|
* that as this is much simpler for us as we cannot lock the
|
|
* relevant page now since we are holding too many ntfs locks
|
|
* which would result in a lock reversal deadlock.
|
|
*/
|
|
ni->initialized_size = new_size;
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
goto unm_done;
|
|
}
|
|
/* If the above resize failed, this must be an attribute extension. */
|
|
BUG_ON(size_change < 0);
|
|
/*
|
|
* We have to drop all the locks so we can call
|
|
* ntfs_attr_make_non_resident(). This could be optimised by try-
|
|
* locking the first page cache page and only if that fails dropping
|
|
* the locks, locking the page, and redoing all the locking and
|
|
* lookups. While this would be a huge optimisation, it is not worth
|
|
* it as this is definitely a slow code path as it only ever can happen
|
|
* once for any given file.
|
|
*/
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
/*
|
|
* Not enough space in the mft record, try to make the attribute
|
|
* non-resident and if successful restart the truncation process.
|
|
*/
|
|
err = ntfs_attr_make_non_resident(ni, old_size);
|
|
if (likely(!err))
|
|
goto retry_truncate;
|
|
/*
|
|
* Could not make non-resident. If this is due to this not being
|
|
* permitted for this attribute type or there not being enough space,
|
|
* try to make other attributes non-resident. Otherwise fail.
|
|
*/
|
|
if (unlikely(err != -EPERM && err != -ENOSPC)) {
|
|
ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
|
|
"type 0x%x, because the conversion from "
|
|
"resident to non-resident attribute failed "
|
|
"with error code %i.", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type), err);
|
|
if (err != -ENOMEM)
|
|
err = -EIO;
|
|
goto conv_err_out;
|
|
}
|
|
/* TODO: Not implemented from here, abort. */
|
|
if (err == -ENOSPC)
|
|
ntfs_error(vol->sb, "Not enough space in the mft record/on "
|
|
"disk for the non-resident attribute value. "
|
|
"This case is not implemented yet.");
|
|
else /* if (err == -EPERM) */
|
|
ntfs_error(vol->sb, "This attribute type may not be "
|
|
"non-resident. This case is not implemented "
|
|
"yet.");
|
|
err = -EOPNOTSUPP;
|
|
goto conv_err_out;
|
|
#if 0
|
|
// TODO: Attempt to make other attributes non-resident.
|
|
if (!err)
|
|
goto do_resident_extend;
|
|
/*
|
|
* Both the attribute list attribute and the standard information
|
|
* attribute must remain in the base inode. Thus, if this is one of
|
|
* these attributes, we have to try to move other attributes out into
|
|
* extent mft records instead.
|
|
*/
|
|
if (ni->type == AT_ATTRIBUTE_LIST ||
|
|
ni->type == AT_STANDARD_INFORMATION) {
|
|
// TODO: Attempt to move other attributes into extent mft
|
|
// records.
|
|
err = -EOPNOTSUPP;
|
|
if (!err)
|
|
goto do_resident_extend;
|
|
goto err_out;
|
|
}
|
|
// TODO: Attempt to move this attribute to an extent mft record, but
|
|
// only if it is not already the only attribute in an mft record in
|
|
// which case there would be nothing to gain.
|
|
err = -EOPNOTSUPP;
|
|
if (!err)
|
|
goto do_resident_extend;
|
|
/* There is nothing we can do to make enough space. )-: */
|
|
goto err_out;
|
|
#endif
|
|
do_non_resident_truncate:
|
|
BUG_ON(!NInoNonResident(ni));
|
|
if (alloc_change < 0) {
|
|
highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
|
|
if (highest_vcn > 0 &&
|
|
old_alloc_size >> vol->cluster_size_bits >
|
|
highest_vcn + 1) {
|
|
/*
|
|
* This attribute has multiple extents. Not yet
|
|
* supported.
|
|
*/
|
|
ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
|
|
"attribute type 0x%x, because the "
|
|
"attribute is highly fragmented (it "
|
|
"consists of multiple extents) and "
|
|
"this case is not implemented yet.",
|
|
vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type));
|
|
err = -EOPNOTSUPP;
|
|
goto bad_out;
|
|
}
|
|
}
|
|
/*
|
|
* If the size is shrinking, need to reduce the initialized_size and
|
|
* the data_size before reducing the allocation.
|
|
*/
|
|
if (size_change < 0) {
|
|
/*
|
|
* Make the valid size smaller (i_size is already up-to-date).
|
|
*/
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
if (new_size < ni->initialized_size) {
|
|
ni->initialized_size = new_size;
|
|
a->data.non_resident.initialized_size =
|
|
cpu_to_sle64(new_size);
|
|
}
|
|
a->data.non_resident.data_size = cpu_to_sle64(new_size);
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
/* If the allocated size is not changing, we are done. */
|
|
if (!alloc_change)
|
|
goto unm_done;
|
|
/*
|
|
* If the size is shrinking it makes no sense for the
|
|
* allocation to be growing.
|
|
*/
|
|
BUG_ON(alloc_change > 0);
|
|
} else /* if (size_change >= 0) */ {
|
|
/*
|
|
* The file size is growing or staying the same but the
|
|
* allocation can be shrinking, growing or staying the same.
|
|
*/
|
|
if (alloc_change > 0) {
|
|
/*
|
|
* We need to extend the allocation and possibly update
|
|
* the data size. If we are updating the data size,
|
|
* since we are not touching the initialized_size we do
|
|
* not need to worry about the actual data on disk.
|
|
* And as far as the page cache is concerned, there
|
|
* will be no pages beyond the old data size and any
|
|
* partial region in the last page between the old and
|
|
* new data size (or the end of the page if the new
|
|
* data size is outside the page) does not need to be
|
|
* modified as explained above for the resident
|
|
* attribute truncate case. To do this, we simply drop
|
|
* the locks we hold and leave all the work to our
|
|
* friendly helper ntfs_attr_extend_allocation().
|
|
*/
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
err = ntfs_attr_extend_allocation(ni, new_size,
|
|
size_change > 0 ? new_size : -1, -1);
|
|
/*
|
|
* ntfs_attr_extend_allocation() will have done error
|
|
* output already.
|
|
*/
|
|
goto done;
|
|
}
|
|
if (!alloc_change)
|
|
goto alloc_done;
|
|
}
|
|
/* alloc_change < 0 */
|
|
/* Free the clusters. */
|
|
nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
|
|
vol->cluster_size_bits, -1, ctx);
|
|
m = ctx->mrec;
|
|
a = ctx->attr;
|
|
if (unlikely(nr_freed < 0)) {
|
|
ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
|
|
"%lli). Unmount and run chkdsk to recover "
|
|
"the lost cluster(s).", (long long)nr_freed);
|
|
NVolSetErrors(vol);
|
|
nr_freed = 0;
|
|
}
|
|
/* Truncate the runlist. */
|
|
err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
|
|
new_alloc_size >> vol->cluster_size_bits);
|
|
/*
|
|
* If the runlist truncation failed and/or the search context is no
|
|
* longer valid, we cannot resize the attribute record or build the
|
|
* mapping pairs array thus we mark the inode bad so that no access to
|
|
* the freed clusters can happen.
|
|
*/
|
|
if (unlikely(err || IS_ERR(m))) {
|
|
ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
|
|
IS_ERR(m) ?
|
|
"restore attribute search context" :
|
|
"truncate attribute runlist",
|
|
IS_ERR(m) ? PTR_ERR(m) : err, es);
|
|
err = -EIO;
|
|
goto bad_out;
|
|
}
|
|
/* Get the size for the shrunk mapping pairs array for the runlist. */
|
|
mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
|
|
if (unlikely(mp_size <= 0)) {
|
|
ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
|
|
"attribute type 0x%x, because determining the "
|
|
"size for the mapping pairs failed with error "
|
|
"code %i.%s", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type), mp_size, es);
|
|
err = -EIO;
|
|
goto bad_out;
|
|
}
|
|
/*
|
|
* Shrink the attribute record for the new mapping pairs array. Note,
|
|
* this cannot fail since we are making the attribute smaller thus by
|
|
* definition there is enough space to do so.
|
|
*/
|
|
attr_len = le32_to_cpu(a->length);
|
|
err = ntfs_attr_record_resize(m, a, mp_size +
|
|
le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
|
|
BUG_ON(err);
|
|
/*
|
|
* Generate the mapping pairs array directly into the attribute record.
|
|
*/
|
|
err = ntfs_mapping_pairs_build(vol, (u8*)a +
|
|
le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
|
|
mp_size, ni->runlist.rl, 0, -1, NULL);
|
|
if (unlikely(err)) {
|
|
ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
|
|
"attribute type 0x%x, because building the "
|
|
"mapping pairs failed with error code %i.%s",
|
|
vi->i_ino, (unsigned)le32_to_cpu(ni->type),
|
|
err, es);
|
|
err = -EIO;
|
|
goto bad_out;
|
|
}
|
|
/* Update the allocated/compressed size as well as the highest vcn. */
|
|
a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
|
|
vol->cluster_size_bits) - 1);
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
ni->allocated_size = new_alloc_size;
|
|
a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
|
|
if (NInoSparse(ni) || NInoCompressed(ni)) {
|
|
if (nr_freed) {
|
|
ni->itype.compressed.size -= nr_freed <<
|
|
vol->cluster_size_bits;
|
|
BUG_ON(ni->itype.compressed.size < 0);
|
|
a->data.non_resident.compressed_size = cpu_to_sle64(
|
|
ni->itype.compressed.size);
|
|
vi->i_blocks = ni->itype.compressed.size >> 9;
|
|
}
|
|
} else
|
|
vi->i_blocks = new_alloc_size >> 9;
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
/*
|
|
* We have shrunk the allocation. If this is a shrinking truncate we
|
|
* have already dealt with the initialized_size and the data_size above
|
|
* and we are done. If the truncate is only changing the allocation
|
|
* and not the data_size, we are also done. If this is an extending
|
|
* truncate, need to extend the data_size now which is ensured by the
|
|
* fact that @size_change is positive.
|
|
*/
|
|
alloc_done:
|
|
/*
|
|
* If the size is growing, need to update it now. If it is shrinking,
|
|
* we have already updated it above (before the allocation change).
|
|
*/
|
|
if (size_change > 0)
|
|
a->data.non_resident.data_size = cpu_to_sle64(new_size);
|
|
/* Ensure the modified mft record is written out. */
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
unm_done:
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
done:
|
|
/* Update the mtime and ctime on the base inode. */
|
|
/* normally ->truncate shouldn't update ctime or mtime,
|
|
* but ntfs did before so it got a copy & paste version
|
|
* of file_update_time. one day someone should fix this
|
|
* for real.
|
|
*/
|
|
if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
|
|
struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
|
|
int sync_it = 0;
|
|
|
|
if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
|
|
!timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
|
|
sync_it = 1;
|
|
VFS_I(base_ni)->i_mtime = now;
|
|
VFS_I(base_ni)->i_ctime = now;
|
|
|
|
if (sync_it)
|
|
mark_inode_dirty_sync(VFS_I(base_ni));
|
|
}
|
|
|
|
if (likely(!err)) {
|
|
NInoClearTruncateFailed(ni);
|
|
ntfs_debug("Done.");
|
|
}
|
|
return err;
|
|
old_bad_out:
|
|
old_size = -1;
|
|
bad_out:
|
|
if (err != -ENOMEM && err != -EOPNOTSUPP)
|
|
NVolSetErrors(vol);
|
|
if (err != -EOPNOTSUPP)
|
|
NInoSetTruncateFailed(ni);
|
|
else if (old_size >= 0)
|
|
i_size_write(vi, old_size);
|
|
err_out:
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
if (m)
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
out:
|
|
ntfs_debug("Failed. Returning error code %i.", err);
|
|
return err;
|
|
conv_err_out:
|
|
if (err != -ENOMEM && err != -EOPNOTSUPP)
|
|
NVolSetErrors(vol);
|
|
if (err != -EOPNOTSUPP)
|
|
NInoSetTruncateFailed(ni);
|
|
else
|
|
i_size_write(vi, old_size);
|
|
goto out;
|
|
}
|
|
|
|
/**
|
|
* ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
|
|
* @vi: inode for which the i_size was changed
|
|
*
|
|
* Wrapper for ntfs_truncate() that has no return value.
|
|
*
|
|
* See ntfs_truncate() description above for details.
|
|
*/
|
|
void ntfs_truncate_vfs(struct inode *vi) {
|
|
ntfs_truncate(vi);
|
|
}
|
|
|
|
/**
|
|
* ntfs_setattr - called from notify_change() when an attribute is being changed
|
|
* @dentry: dentry whose attributes to change
|
|
* @attr: structure describing the attributes and the changes
|
|
*
|
|
* We have to trap VFS attempts to truncate the file described by @dentry as
|
|
* soon as possible, because we do not implement changes in i_size yet. So we
|
|
* abort all i_size changes here.
|
|
*
|
|
* We also abort all changes of user, group, and mode as we do not implement
|
|
* the NTFS ACLs yet.
|
|
*
|
|
* Called with ->i_mutex held. For the ATTR_SIZE (i.e. ->truncate) case, also
|
|
* called with ->i_alloc_sem held for writing.
|
|
*
|
|
* Basically this is a copy of generic notify_change() and inode_setattr()
|
|
* functionality, except we intercept and abort changes in i_size.
|
|
*/
|
|
int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
|
|
{
|
|
struct inode *vi = dentry->d_inode;
|
|
int err;
|
|
unsigned int ia_valid = attr->ia_valid;
|
|
|
|
err = inode_change_ok(vi, attr);
|
|
if (err)
|
|
goto out;
|
|
/* We do not support NTFS ACLs yet. */
|
|
if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
|
|
ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
|
|
"supported yet, ignoring.");
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
if (ia_valid & ATTR_SIZE) {
|
|
if (attr->ia_size != i_size_read(vi)) {
|
|
ntfs_inode *ni = NTFS_I(vi);
|
|
/*
|
|
* FIXME: For now we do not support resizing of
|
|
* compressed or encrypted files yet.
|
|
*/
|
|
if (NInoCompressed(ni) || NInoEncrypted(ni)) {
|
|
ntfs_warning(vi->i_sb, "Changes in inode size "
|
|
"are not supported yet for "
|
|
"%s files, ignoring.",
|
|
NInoCompressed(ni) ?
|
|
"compressed" : "encrypted");
|
|
err = -EOPNOTSUPP;
|
|
} else
|
|
err = vmtruncate(vi, attr->ia_size);
|
|
if (err || ia_valid == ATTR_SIZE)
|
|
goto out;
|
|
} else {
|
|
/*
|
|
* We skipped the truncate but must still update
|
|
* timestamps.
|
|
*/
|
|
ia_valid |= ATTR_MTIME | ATTR_CTIME;
|
|
}
|
|
}
|
|
if (ia_valid & ATTR_ATIME)
|
|
vi->i_atime = timespec_trunc(attr->ia_atime,
|
|
vi->i_sb->s_time_gran);
|
|
if (ia_valid & ATTR_MTIME)
|
|
vi->i_mtime = timespec_trunc(attr->ia_mtime,
|
|
vi->i_sb->s_time_gran);
|
|
if (ia_valid & ATTR_CTIME)
|
|
vi->i_ctime = timespec_trunc(attr->ia_ctime,
|
|
vi->i_sb->s_time_gran);
|
|
mark_inode_dirty(vi);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_write_inode - write out a dirty inode
|
|
* @vi: inode to write out
|
|
* @sync: if true, write out synchronously
|
|
*
|
|
* Write out a dirty inode to disk including any extent inodes if present.
|
|
*
|
|
* If @sync is true, commit the inode to disk and wait for io completion. This
|
|
* is done using write_mft_record().
|
|
*
|
|
* If @sync is false, just schedule the write to happen but do not wait for i/o
|
|
* completion. In 2.6 kernels, scheduling usually happens just by virtue of
|
|
* marking the page (and in this case mft record) dirty but we do not implement
|
|
* this yet as write_mft_record() largely ignores the @sync parameter and
|
|
* always performs synchronous writes.
|
|
*
|
|
* Return 0 on success and -errno on error.
|
|
*/
|
|
int ntfs_write_inode(struct inode *vi, int sync)
|
|
{
|
|
sle64 nt;
|
|
ntfs_inode *ni = NTFS_I(vi);
|
|
ntfs_attr_search_ctx *ctx;
|
|
MFT_RECORD *m;
|
|
STANDARD_INFORMATION *si;
|
|
int err = 0;
|
|
bool modified = false;
|
|
|
|
ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
|
|
vi->i_ino);
|
|
/*
|
|
* Dirty attribute inodes are written via their real inodes so just
|
|
* clean them here. Access time updates are taken care off when the
|
|
* real inode is written.
|
|
*/
|
|
if (NInoAttr(ni)) {
|
|
NInoClearDirty(ni);
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
}
|
|
/* Map, pin, and lock the mft record belonging to the inode. */
|
|
m = map_mft_record(ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
goto err_out;
|
|
}
|
|
/* Update the access times in the standard information attribute. */
|
|
ctx = ntfs_attr_get_search_ctx(ni, m);
|
|
if (unlikely(!ctx)) {
|
|
err = -ENOMEM;
|
|
goto unm_err_out;
|
|
}
|
|
err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
goto unm_err_out;
|
|
}
|
|
si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
|
|
le16_to_cpu(ctx->attr->data.resident.value_offset));
|
|
/* Update the access times if they have changed. */
|
|
nt = utc2ntfs(vi->i_mtime);
|
|
if (si->last_data_change_time != nt) {
|
|
ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
|
|
"new = 0x%llx", vi->i_ino, (long long)
|
|
sle64_to_cpu(si->last_data_change_time),
|
|
(long long)sle64_to_cpu(nt));
|
|
si->last_data_change_time = nt;
|
|
modified = true;
|
|
}
|
|
nt = utc2ntfs(vi->i_ctime);
|
|
if (si->last_mft_change_time != nt) {
|
|
ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
|
|
"new = 0x%llx", vi->i_ino, (long long)
|
|
sle64_to_cpu(si->last_mft_change_time),
|
|
(long long)sle64_to_cpu(nt));
|
|
si->last_mft_change_time = nt;
|
|
modified = true;
|
|
}
|
|
nt = utc2ntfs(vi->i_atime);
|
|
if (si->last_access_time != nt) {
|
|
ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
|
|
"new = 0x%llx", vi->i_ino,
|
|
(long long)sle64_to_cpu(si->last_access_time),
|
|
(long long)sle64_to_cpu(nt));
|
|
si->last_access_time = nt;
|
|
modified = true;
|
|
}
|
|
/*
|
|
* If we just modified the standard information attribute we need to
|
|
* mark the mft record it is in dirty. We do this manually so that
|
|
* mark_inode_dirty() is not called which would redirty the inode and
|
|
* hence result in an infinite loop of trying to write the inode.
|
|
* There is no need to mark the base inode nor the base mft record
|
|
* dirty, since we are going to write this mft record below in any case
|
|
* and the base mft record may actually not have been modified so it
|
|
* might not need to be written out.
|
|
* NOTE: It is not a problem when the inode for $MFT itself is being
|
|
* written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
|
|
* on the $MFT inode and hence ntfs_write_inode() will not be
|
|
* re-invoked because of it which in turn is ok since the dirtied mft
|
|
* record will be cleaned and written out to disk below, i.e. before
|
|
* this function returns.
|
|
*/
|
|
if (modified) {
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
if (!NInoTestSetDirty(ctx->ntfs_ino))
|
|
mark_ntfs_record_dirty(ctx->ntfs_ino->page,
|
|
ctx->ntfs_ino->page_ofs);
|
|
}
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
/* Now the access times are updated, write the base mft record. */
|
|
if (NInoDirty(ni))
|
|
err = write_mft_record(ni, m, sync);
|
|
/* Write all attached extent mft records. */
|
|
mutex_lock(&ni->extent_lock);
|
|
if (ni->nr_extents > 0) {
|
|
ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
|
|
int i;
|
|
|
|
ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
|
|
for (i = 0; i < ni->nr_extents; i++) {
|
|
ntfs_inode *tni = extent_nis[i];
|
|
|
|
if (NInoDirty(tni)) {
|
|
MFT_RECORD *tm = map_mft_record(tni);
|
|
int ret;
|
|
|
|
if (IS_ERR(tm)) {
|
|
if (!err || err == -ENOMEM)
|
|
err = PTR_ERR(tm);
|
|
continue;
|
|
}
|
|
ret = write_mft_record(tni, tm, sync);
|
|
unmap_mft_record(tni);
|
|
if (unlikely(ret)) {
|
|
if (!err || err == -ENOMEM)
|
|
err = ret;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&ni->extent_lock);
|
|
unmap_mft_record(ni);
|
|
if (unlikely(err))
|
|
goto err_out;
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
unm_err_out:
|
|
unmap_mft_record(ni);
|
|
err_out:
|
|
if (err == -ENOMEM) {
|
|
ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
|
|
"Marking the inode dirty again, so the VFS "
|
|
"retries later.");
|
|
mark_inode_dirty(vi);
|
|
} else {
|
|
ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
|
|
NVolSetErrors(ni->vol);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
#endif /* NTFS_RW */
|