linux/drivers/iommu/ipmmu-vmsa.c
Magnus Damm 7b2d59611f iommu/ipmmu-vmsa: Replace local utlb code with fwspec ids
Now when both 32-bit and 64-bit code inside the driver is using
fwspec it is possible to replace the utlb handling with fwspec ids
that get populated from ->of_xlate().

Suggested-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Magnus Damm <damm+renesas@opensource.se>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2017-07-26 12:45:56 +02:00

1040 lines
26 KiB
C

/*
* IPMMU VMSA
*
* Copyright (C) 2014 Renesas Electronics Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*/
#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/dma-iommu.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
#include <asm/dma-iommu.h>
#include <asm/pgalloc.h>
#endif
#include "io-pgtable.h"
#define IPMMU_CTX_MAX 1
struct ipmmu_vmsa_device {
struct device *dev;
void __iomem *base;
struct iommu_device iommu;
struct list_head list;
unsigned int num_utlbs;
spinlock_t lock; /* Protects ctx and domains[] */
DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
struct dma_iommu_mapping *mapping;
};
struct ipmmu_vmsa_domain {
struct ipmmu_vmsa_device *mmu;
struct iommu_domain io_domain;
struct io_pgtable_cfg cfg;
struct io_pgtable_ops *iop;
unsigned int context_id;
spinlock_t lock; /* Protects mappings */
};
struct ipmmu_vmsa_iommu_priv {
struct ipmmu_vmsa_device *mmu;
struct device *dev;
struct list_head list;
};
static DEFINE_SPINLOCK(ipmmu_devices_lock);
static LIST_HEAD(ipmmu_devices);
static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
{
return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
}
static struct ipmmu_vmsa_iommu_priv *to_priv(struct device *dev)
{
return dev->iommu_fwspec ? dev->iommu_fwspec->iommu_priv : NULL;
}
#define TLB_LOOP_TIMEOUT 100 /* 100us */
/* -----------------------------------------------------------------------------
* Registers Definition
*/
#define IM_NS_ALIAS_OFFSET 0x800
#define IM_CTX_SIZE 0x40
#define IMCTR 0x0000
#define IMCTR_TRE (1 << 17)
#define IMCTR_AFE (1 << 16)
#define IMCTR_RTSEL_MASK (3 << 4)
#define IMCTR_RTSEL_SHIFT 4
#define IMCTR_TREN (1 << 3)
#define IMCTR_INTEN (1 << 2)
#define IMCTR_FLUSH (1 << 1)
#define IMCTR_MMUEN (1 << 0)
#define IMCAAR 0x0004
#define IMTTBCR 0x0008
#define IMTTBCR_EAE (1 << 31)
#define IMTTBCR_PMB (1 << 30)
#define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
#define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
#define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
#define IMTTBCR_SH1_MASK (3 << 28)
#define IMTTBCR_ORGN1_NC (0 << 26)
#define IMTTBCR_ORGN1_WB_WA (1 << 26)
#define IMTTBCR_ORGN1_WT (2 << 26)
#define IMTTBCR_ORGN1_WB (3 << 26)
#define IMTTBCR_ORGN1_MASK (3 << 26)
#define IMTTBCR_IRGN1_NC (0 << 24)
#define IMTTBCR_IRGN1_WB_WA (1 << 24)
#define IMTTBCR_IRGN1_WT (2 << 24)
#define IMTTBCR_IRGN1_WB (3 << 24)
#define IMTTBCR_IRGN1_MASK (3 << 24)
#define IMTTBCR_TSZ1_MASK (7 << 16)
#define IMTTBCR_TSZ1_SHIFT 16
#define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
#define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
#define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
#define IMTTBCR_SH0_MASK (3 << 12)
#define IMTTBCR_ORGN0_NC (0 << 10)
#define IMTTBCR_ORGN0_WB_WA (1 << 10)
#define IMTTBCR_ORGN0_WT (2 << 10)
#define IMTTBCR_ORGN0_WB (3 << 10)
#define IMTTBCR_ORGN0_MASK (3 << 10)
#define IMTTBCR_IRGN0_NC (0 << 8)
#define IMTTBCR_IRGN0_WB_WA (1 << 8)
#define IMTTBCR_IRGN0_WT (2 << 8)
#define IMTTBCR_IRGN0_WB (3 << 8)
#define IMTTBCR_IRGN0_MASK (3 << 8)
#define IMTTBCR_SL0_LVL_2 (0 << 4)
#define IMTTBCR_SL0_LVL_1 (1 << 4)
#define IMTTBCR_TSZ0_MASK (7 << 0)
#define IMTTBCR_TSZ0_SHIFT O
#define IMBUSCR 0x000c
#define IMBUSCR_DVM (1 << 2)
#define IMBUSCR_BUSSEL_SYS (0 << 0)
#define IMBUSCR_BUSSEL_CCI (1 << 0)
#define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
#define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
#define IMBUSCR_BUSSEL_MASK (3 << 0)
#define IMTTLBR0 0x0010
#define IMTTUBR0 0x0014
#define IMTTLBR1 0x0018
#define IMTTUBR1 0x001c
#define IMSTR 0x0020
#define IMSTR_ERRLVL_MASK (3 << 12)
#define IMSTR_ERRLVL_SHIFT 12
#define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
#define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
#define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
#define IMSTR_ERRCODE_MASK (7 << 8)
#define IMSTR_MHIT (1 << 4)
#define IMSTR_ABORT (1 << 2)
#define IMSTR_PF (1 << 1)
#define IMSTR_TF (1 << 0)
#define IMMAIR0 0x0028
#define IMMAIR1 0x002c
#define IMMAIR_ATTR_MASK 0xff
#define IMMAIR_ATTR_DEVICE 0x04
#define IMMAIR_ATTR_NC 0x44
#define IMMAIR_ATTR_WBRWA 0xff
#define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
#define IMMAIR_ATTR_IDX_NC 0
#define IMMAIR_ATTR_IDX_WBRWA 1
#define IMMAIR_ATTR_IDX_DEV 2
#define IMEAR 0x0030
#define IMPCTR 0x0200
#define IMPSTR 0x0208
#define IMPEAR 0x020c
#define IMPMBA(n) (0x0280 + ((n) * 4))
#define IMPMBD(n) (0x02c0 + ((n) * 4))
#define IMUCTR(n) (0x0300 + ((n) * 16))
#define IMUCTR_FIXADDEN (1 << 31)
#define IMUCTR_FIXADD_MASK (0xff << 16)
#define IMUCTR_FIXADD_SHIFT 16
#define IMUCTR_TTSEL_MMU(n) ((n) << 4)
#define IMUCTR_TTSEL_PMB (8 << 4)
#define IMUCTR_TTSEL_MASK (15 << 4)
#define IMUCTR_FLUSH (1 << 1)
#define IMUCTR_MMUEN (1 << 0)
#define IMUASID(n) (0x0308 + ((n) * 16))
#define IMUASID_ASID8_MASK (0xff << 8)
#define IMUASID_ASID8_SHIFT 8
#define IMUASID_ASID0_MASK (0xff << 0)
#define IMUASID_ASID0_SHIFT 0
/* -----------------------------------------------------------------------------
* Read/Write Access
*/
static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
{
return ioread32(mmu->base + offset);
}
static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
u32 data)
{
iowrite32(data, mmu->base + offset);
}
static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
{
return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
}
static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
u32 data)
{
ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
}
/* -----------------------------------------------------------------------------
* TLB and microTLB Management
*/
/* Wait for any pending TLB invalidations to complete */
static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
{
unsigned int count = 0;
while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
cpu_relax();
if (++count == TLB_LOOP_TIMEOUT) {
dev_err_ratelimited(domain->mmu->dev,
"TLB sync timed out -- MMU may be deadlocked\n");
return;
}
udelay(1);
}
}
static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
{
u32 reg;
reg = ipmmu_ctx_read(domain, IMCTR);
reg |= IMCTR_FLUSH;
ipmmu_ctx_write(domain, IMCTR, reg);
ipmmu_tlb_sync(domain);
}
/*
* Enable MMU translation for the microTLB.
*/
static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
unsigned int utlb)
{
struct ipmmu_vmsa_device *mmu = domain->mmu;
/*
* TODO: Reference-count the microTLB as several bus masters can be
* connected to the same microTLB.
*/
/* TODO: What should we set the ASID to ? */
ipmmu_write(mmu, IMUASID(utlb), 0);
/* TODO: Do we need to flush the microTLB ? */
ipmmu_write(mmu, IMUCTR(utlb),
IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
IMUCTR_MMUEN);
}
/*
* Disable MMU translation for the microTLB.
*/
static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
unsigned int utlb)
{
struct ipmmu_vmsa_device *mmu = domain->mmu;
ipmmu_write(mmu, IMUCTR(utlb), 0);
}
static void ipmmu_tlb_flush_all(void *cookie)
{
struct ipmmu_vmsa_domain *domain = cookie;
ipmmu_tlb_invalidate(domain);
}
static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
size_t granule, bool leaf, void *cookie)
{
/* The hardware doesn't support selective TLB flush. */
}
static struct iommu_gather_ops ipmmu_gather_ops = {
.tlb_flush_all = ipmmu_tlb_flush_all,
.tlb_add_flush = ipmmu_tlb_add_flush,
.tlb_sync = ipmmu_tlb_flush_all,
};
/* -----------------------------------------------------------------------------
* Domain/Context Management
*/
static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
struct ipmmu_vmsa_domain *domain)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&mmu->lock, flags);
ret = find_first_zero_bit(mmu->ctx, IPMMU_CTX_MAX);
if (ret != IPMMU_CTX_MAX) {
mmu->domains[ret] = domain;
set_bit(ret, mmu->ctx);
}
spin_unlock_irqrestore(&mmu->lock, flags);
return ret;
}
static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
{
u64 ttbr;
int ret;
/*
* Allocate the page table operations.
*
* VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
* access, Long-descriptor format" that the NStable bit being set in a
* table descriptor will result in the NStable and NS bits of all child
* entries being ignored and considered as being set. The IPMMU seems
* not to comply with this, as it generates a secure access page fault
* if any of the NStable and NS bits isn't set when running in
* non-secure mode.
*/
domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
domain->cfg.ias = 32;
domain->cfg.oas = 40;
domain->cfg.tlb = &ipmmu_gather_ops;
domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
domain->io_domain.geometry.force_aperture = true;
/*
* TODO: Add support for coherent walk through CCI with DVM and remove
* cache handling. For now, delegate it to the io-pgtable code.
*/
domain->cfg.iommu_dev = domain->mmu->dev;
domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
domain);
if (!domain->iop)
return -EINVAL;
/*
* Find an unused context.
*/
ret = ipmmu_domain_allocate_context(domain->mmu, domain);
if (ret == IPMMU_CTX_MAX) {
free_io_pgtable_ops(domain->iop);
return -EBUSY;
}
domain->context_id = ret;
/* TTBR0 */
ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
/*
* TTBCR
* We use long descriptors with inner-shareable WBWA tables and allocate
* the whole 32-bit VA space to TTBR0.
*/
ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
/* MAIR0 */
ipmmu_ctx_write(domain, IMMAIR0, domain->cfg.arm_lpae_s1_cfg.mair[0]);
/* IMBUSCR */
ipmmu_ctx_write(domain, IMBUSCR,
ipmmu_ctx_read(domain, IMBUSCR) &
~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
/*
* IMSTR
* Clear all interrupt flags.
*/
ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
/*
* IMCTR
* Enable the MMU and interrupt generation. The long-descriptor
* translation table format doesn't use TEX remapping. Don't enable AF
* software management as we have no use for it. Flush the TLB as
* required when modifying the context registers.
*/
ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
return 0;
}
static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
unsigned int context_id)
{
unsigned long flags;
spin_lock_irqsave(&mmu->lock, flags);
clear_bit(context_id, mmu->ctx);
mmu->domains[context_id] = NULL;
spin_unlock_irqrestore(&mmu->lock, flags);
}
static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
{
/*
* Disable the context. Flush the TLB as required when modifying the
* context registers.
*
* TODO: Is TLB flush really needed ?
*/
ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
ipmmu_tlb_sync(domain);
ipmmu_domain_free_context(domain->mmu, domain->context_id);
}
/* -----------------------------------------------------------------------------
* Fault Handling
*/
static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
{
const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
struct ipmmu_vmsa_device *mmu = domain->mmu;
u32 status;
u32 iova;
status = ipmmu_ctx_read(domain, IMSTR);
if (!(status & err_mask))
return IRQ_NONE;
iova = ipmmu_ctx_read(domain, IMEAR);
/*
* Clear the error status flags. Unlike traditional interrupt flag
* registers that must be cleared by writing 1, this status register
* seems to require 0. The error address register must be read before,
* otherwise its value will be 0.
*/
ipmmu_ctx_write(domain, IMSTR, 0);
/* Log fatal errors. */
if (status & IMSTR_MHIT)
dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
iova);
if (status & IMSTR_ABORT)
dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
iova);
if (!(status & (IMSTR_PF | IMSTR_TF)))
return IRQ_NONE;
/*
* Try to handle page faults and translation faults.
*
* TODO: We need to look up the faulty device based on the I/O VA. Use
* the IOMMU device for now.
*/
if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
return IRQ_HANDLED;
dev_err_ratelimited(mmu->dev,
"Unhandled fault: status 0x%08x iova 0x%08x\n",
status, iova);
return IRQ_HANDLED;
}
static irqreturn_t ipmmu_irq(int irq, void *dev)
{
struct ipmmu_vmsa_device *mmu = dev;
irqreturn_t status = IRQ_NONE;
unsigned int i;
unsigned long flags;
spin_lock_irqsave(&mmu->lock, flags);
/*
* Check interrupts for all active contexts.
*/
for (i = 0; i < IPMMU_CTX_MAX; i++) {
if (!mmu->domains[i])
continue;
if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
status = IRQ_HANDLED;
}
spin_unlock_irqrestore(&mmu->lock, flags);
return status;
}
/* -----------------------------------------------------------------------------
* IOMMU Operations
*/
static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
{
struct ipmmu_vmsa_domain *domain;
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!domain)
return NULL;
spin_lock_init(&domain->lock);
return &domain->io_domain;
}
static void ipmmu_domain_free(struct iommu_domain *io_domain)
{
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
/*
* Free the domain resources. We assume that all devices have already
* been detached.
*/
ipmmu_domain_destroy_context(domain);
free_io_pgtable_ops(domain->iop);
kfree(domain);
}
static int ipmmu_attach_device(struct iommu_domain *io_domain,
struct device *dev)
{
struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
struct iommu_fwspec *fwspec = dev->iommu_fwspec;
struct ipmmu_vmsa_device *mmu = priv->mmu;
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
unsigned long flags;
unsigned int i;
int ret = 0;
if (!priv || !priv->mmu) {
dev_err(dev, "Cannot attach to IPMMU\n");
return -ENXIO;
}
spin_lock_irqsave(&domain->lock, flags);
if (!domain->mmu) {
/* The domain hasn't been used yet, initialize it. */
domain->mmu = mmu;
ret = ipmmu_domain_init_context(domain);
} else if (domain->mmu != mmu) {
/*
* Something is wrong, we can't attach two devices using
* different IOMMUs to the same domain.
*/
dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
dev_name(mmu->dev), dev_name(domain->mmu->dev));
ret = -EINVAL;
} else
dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
spin_unlock_irqrestore(&domain->lock, flags);
if (ret < 0)
return ret;
for (i = 0; i < fwspec->num_ids; ++i)
ipmmu_utlb_enable(domain, fwspec->ids[i]);
return 0;
}
static void ipmmu_detach_device(struct iommu_domain *io_domain,
struct device *dev)
{
struct iommu_fwspec *fwspec = dev->iommu_fwspec;
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
unsigned int i;
for (i = 0; i < fwspec->num_ids; ++i)
ipmmu_utlb_disable(domain, fwspec->ids[i]);
/*
* TODO: Optimize by disabling the context when no device is attached.
*/
}
static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
phys_addr_t paddr, size_t size, int prot)
{
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
if (!domain)
return -ENODEV;
return domain->iop->map(domain->iop, iova, paddr, size, prot);
}
static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
size_t size)
{
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
return domain->iop->unmap(domain->iop, iova, size);
}
static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
dma_addr_t iova)
{
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
/* TODO: Is locking needed ? */
return domain->iop->iova_to_phys(domain->iop, iova);
}
static int ipmmu_init_platform_device(struct device *dev,
struct of_phandle_args *args)
{
struct platform_device *ipmmu_pdev;
struct ipmmu_vmsa_iommu_priv *priv;
ipmmu_pdev = of_find_device_by_node(args->np);
if (!ipmmu_pdev)
return -ENODEV;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->mmu = platform_get_drvdata(ipmmu_pdev);
priv->dev = dev;
dev->iommu_fwspec->iommu_priv = priv;
return 0;
}
static int ipmmu_of_xlate(struct device *dev,
struct of_phandle_args *spec)
{
iommu_fwspec_add_ids(dev, spec->args, 1);
/* Initialize once - xlate() will call multiple times */
if (to_priv(dev))
return 0;
return ipmmu_init_platform_device(dev, spec);
}
#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
{
if (type != IOMMU_DOMAIN_UNMANAGED)
return NULL;
return __ipmmu_domain_alloc(type);
}
static int ipmmu_add_device(struct device *dev)
{
struct ipmmu_vmsa_device *mmu = NULL;
struct iommu_group *group;
int ret;
/*
* Only let through devices that have been verified in xlate()
*/
if (!to_priv(dev))
return -ENODEV;
/* Create a device group and add the device to it. */
group = iommu_group_alloc();
if (IS_ERR(group)) {
dev_err(dev, "Failed to allocate IOMMU group\n");
ret = PTR_ERR(group);
goto error;
}
ret = iommu_group_add_device(group, dev);
iommu_group_put(group);
if (ret < 0) {
dev_err(dev, "Failed to add device to IPMMU group\n");
group = NULL;
goto error;
}
/*
* Create the ARM mapping, used by the ARM DMA mapping core to allocate
* VAs. This will allocate a corresponding IOMMU domain.
*
* TODO:
* - Create one mapping per context (TLB).
* - Make the mapping size configurable ? We currently use a 2GB mapping
* at a 1GB offset to ensure that NULL VAs will fault.
*/
mmu = to_priv(dev)->mmu;
if (!mmu->mapping) {
struct dma_iommu_mapping *mapping;
mapping = arm_iommu_create_mapping(&platform_bus_type,
SZ_1G, SZ_2G);
if (IS_ERR(mapping)) {
dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
ret = PTR_ERR(mapping);
goto error;
}
mmu->mapping = mapping;
}
/* Attach the ARM VA mapping to the device. */
ret = arm_iommu_attach_device(dev, mmu->mapping);
if (ret < 0) {
dev_err(dev, "Failed to attach device to VA mapping\n");
goto error;
}
return 0;
error:
if (mmu)
arm_iommu_release_mapping(mmu->mapping);
if (!IS_ERR_OR_NULL(group))
iommu_group_remove_device(dev);
return ret;
}
static void ipmmu_remove_device(struct device *dev)
{
arm_iommu_detach_device(dev);
iommu_group_remove_device(dev);
}
static const struct iommu_ops ipmmu_ops = {
.domain_alloc = ipmmu_domain_alloc,
.domain_free = ipmmu_domain_free,
.attach_dev = ipmmu_attach_device,
.detach_dev = ipmmu_detach_device,
.map = ipmmu_map,
.unmap = ipmmu_unmap,
.map_sg = default_iommu_map_sg,
.iova_to_phys = ipmmu_iova_to_phys,
.add_device = ipmmu_add_device,
.remove_device = ipmmu_remove_device,
.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
.of_xlate = ipmmu_of_xlate,
};
#endif /* !CONFIG_ARM && CONFIG_IOMMU_DMA */
#ifdef CONFIG_IOMMU_DMA
static DEFINE_SPINLOCK(ipmmu_slave_devices_lock);
static LIST_HEAD(ipmmu_slave_devices);
static struct iommu_domain *ipmmu_domain_alloc_dma(unsigned type)
{
struct iommu_domain *io_domain = NULL;
switch (type) {
case IOMMU_DOMAIN_UNMANAGED:
io_domain = __ipmmu_domain_alloc(type);
break;
case IOMMU_DOMAIN_DMA:
io_domain = __ipmmu_domain_alloc(type);
if (io_domain)
iommu_get_dma_cookie(io_domain);
break;
}
return io_domain;
}
static void ipmmu_domain_free_dma(struct iommu_domain *io_domain)
{
switch (io_domain->type) {
case IOMMU_DOMAIN_DMA:
iommu_put_dma_cookie(io_domain);
/* fall-through */
default:
ipmmu_domain_free(io_domain);
break;
}
}
static int ipmmu_add_device_dma(struct device *dev)
{
struct iommu_group *group;
/*
* Only let through devices that have been verified in xlate()
*/
if (!to_priv(dev))
return -ENODEV;
group = iommu_group_get_for_dev(dev);
if (IS_ERR(group))
return PTR_ERR(group);
spin_lock(&ipmmu_slave_devices_lock);
list_add(&to_priv(dev)->list, &ipmmu_slave_devices);
spin_unlock(&ipmmu_slave_devices_lock);
return 0;
}
static void ipmmu_remove_device_dma(struct device *dev)
{
struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
spin_lock(&ipmmu_slave_devices_lock);
list_del(&priv->list);
spin_unlock(&ipmmu_slave_devices_lock);
iommu_group_remove_device(dev);
}
static struct device *ipmmu_find_sibling_device(struct device *dev)
{
struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
struct ipmmu_vmsa_iommu_priv *sibling_priv = NULL;
bool found = false;
spin_lock(&ipmmu_slave_devices_lock);
list_for_each_entry(sibling_priv, &ipmmu_slave_devices, list) {
if (priv == sibling_priv)
continue;
if (sibling_priv->mmu == priv->mmu) {
found = true;
break;
}
}
spin_unlock(&ipmmu_slave_devices_lock);
return found ? sibling_priv->dev : NULL;
}
static struct iommu_group *ipmmu_find_group_dma(struct device *dev)
{
struct iommu_group *group;
struct device *sibling;
sibling = ipmmu_find_sibling_device(dev);
if (sibling)
group = iommu_group_get(sibling);
if (!sibling || IS_ERR(group))
group = generic_device_group(dev);
return group;
}
static const struct iommu_ops ipmmu_ops = {
.domain_alloc = ipmmu_domain_alloc_dma,
.domain_free = ipmmu_domain_free_dma,
.attach_dev = ipmmu_attach_device,
.detach_dev = ipmmu_detach_device,
.map = ipmmu_map,
.unmap = ipmmu_unmap,
.map_sg = default_iommu_map_sg,
.iova_to_phys = ipmmu_iova_to_phys,
.add_device = ipmmu_add_device_dma,
.remove_device = ipmmu_remove_device_dma,
.device_group = ipmmu_find_group_dma,
.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
.of_xlate = ipmmu_of_xlate,
};
#endif /* CONFIG_IOMMU_DMA */
/* -----------------------------------------------------------------------------
* Probe/remove and init
*/
static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
{
unsigned int i;
/* Disable all contexts. */
for (i = 0; i < 4; ++i)
ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
}
static int ipmmu_probe(struct platform_device *pdev)
{
struct ipmmu_vmsa_device *mmu;
struct resource *res;
int irq;
int ret;
mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
if (!mmu) {
dev_err(&pdev->dev, "cannot allocate device data\n");
return -ENOMEM;
}
mmu->dev = &pdev->dev;
mmu->num_utlbs = 32;
spin_lock_init(&mmu->lock);
bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
/* Map I/O memory and request IRQ. */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mmu->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mmu->base))
return PTR_ERR(mmu->base);
/*
* The IPMMU has two register banks, for secure and non-secure modes.
* The bank mapped at the beginning of the IPMMU address space
* corresponds to the running mode of the CPU. When running in secure
* mode the non-secure register bank is also available at an offset.
*
* Secure mode operation isn't clearly documented and is thus currently
* not implemented in the driver. Furthermore, preliminary tests of
* non-secure operation with the main register bank were not successful.
* Offset the registers base unconditionally to point to the non-secure
* alias space for now.
*/
mmu->base += IM_NS_ALIAS_OFFSET;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no IRQ found\n");
return irq;
}
ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
dev_name(&pdev->dev), mmu);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
return ret;
}
ipmmu_device_reset(mmu);
iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
iommu_device_set_fwnode(&mmu->iommu, &pdev->dev.of_node->fwnode);
ret = iommu_device_register(&mmu->iommu);
if (ret)
return ret;
/*
* We can't create the ARM mapping here as it requires the bus to have
* an IOMMU, which only happens when bus_set_iommu() is called in
* ipmmu_init() after the probe function returns.
*/
spin_lock(&ipmmu_devices_lock);
list_add(&mmu->list, &ipmmu_devices);
spin_unlock(&ipmmu_devices_lock);
platform_set_drvdata(pdev, mmu);
return 0;
}
static int ipmmu_remove(struct platform_device *pdev)
{
struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
spin_lock(&ipmmu_devices_lock);
list_del(&mmu->list);
spin_unlock(&ipmmu_devices_lock);
iommu_device_unregister(&mmu->iommu);
#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
arm_iommu_release_mapping(mmu->mapping);
#endif
ipmmu_device_reset(mmu);
return 0;
}
static const struct of_device_id ipmmu_of_ids[] = {
{ .compatible = "renesas,ipmmu-vmsa", },
{ }
};
static struct platform_driver ipmmu_driver = {
.driver = {
.name = "ipmmu-vmsa",
.of_match_table = of_match_ptr(ipmmu_of_ids),
},
.probe = ipmmu_probe,
.remove = ipmmu_remove,
};
static int __init ipmmu_init(void)
{
int ret;
ret = platform_driver_register(&ipmmu_driver);
if (ret < 0)
return ret;
if (!iommu_present(&platform_bus_type))
bus_set_iommu(&platform_bus_type, &ipmmu_ops);
return 0;
}
static void __exit ipmmu_exit(void)
{
return platform_driver_unregister(&ipmmu_driver);
}
subsys_initcall(ipmmu_init);
module_exit(ipmmu_exit);
MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
MODULE_LICENSE("GPL v2");