linux/arch/powerpc/kvm/book3s_pr.c
Alexander Graf e371f713db KVM: PPC: Book3S: PR: Fix signal check race
As Scott put it:

> If we get a signal after the check, we want to be sure that we don't
> receive the reschedule IPI until after we're in the guest, so that it
> will cause another signal check.

we need to have interrupts disabled from the point we do signal_check()
all the way until we actually enter the guest.

This patch fixes potential signal loss races.

Reported-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:30 +02:00

1102 lines
28 KiB
C

/*
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
* Paul Mackerras <paulus@samba.org>
*
* Description:
* Functions relating to running KVM on Book 3S processors where
* we don't have access to hypervisor mode, and we run the guest
* in problem state (user mode).
*
* This file is derived from arch/powerpc/kvm/44x.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kvm_host.h>
#include <linux/export.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include "trace.h"
/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
ulong msr);
/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
#define __hard_irq_disable local_irq_disable
#define __hard_irq_enable local_irq_enable
#endif
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
#ifdef CONFIG_PPC_BOOK3S_64
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
memcpy(&get_paca()->shadow_vcpu, to_book3s(vcpu)->shadow_vcpu,
sizeof(get_paca()->shadow_vcpu));
svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
svcpu_put(svcpu);
#endif
#ifdef CONFIG_PPC_BOOK3S_32
current->thread.kvm_shadow_vcpu = to_book3s(vcpu)->shadow_vcpu;
#endif
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PPC_BOOK3S_64
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
memcpy(to_book3s(vcpu)->shadow_vcpu, &get_paca()->shadow_vcpu,
sizeof(get_paca()->shadow_vcpu));
to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
svcpu_put(svcpu);
#endif
kvmppc_giveup_ext(vcpu, MSR_FP);
kvmppc_giveup_ext(vcpu, MSR_VEC);
kvmppc_giveup_ext(vcpu, MSR_VSX);
}
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
ulong smsr = vcpu->arch.shared->msr;
/* Guest MSR values */
smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_DE;
/* Process MSR values */
smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
/* External providers the guest reserved */
smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext);
/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
smsr |= MSR_ISF | MSR_HV;
#endif
vcpu->arch.shadow_msr = smsr;
}
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
ulong old_msr = vcpu->arch.shared->msr;
#ifdef EXIT_DEBUG
printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif
msr &= to_book3s(vcpu)->msr_mask;
vcpu->arch.shared->msr = msr;
kvmppc_recalc_shadow_msr(vcpu);
if (msr & MSR_POW) {
if (!vcpu->arch.pending_exceptions) {
kvm_vcpu_block(vcpu);
vcpu->stat.halt_wakeup++;
/* Unset POW bit after we woke up */
msr &= ~MSR_POW;
vcpu->arch.shared->msr = msr;
}
}
if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) !=
(old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
kvmppc_mmu_flush_segments(vcpu);
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
/* Preload magic page segment when in kernel mode */
if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
struct kvm_vcpu_arch *a = &vcpu->arch;
if (msr & MSR_DR)
kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
else
kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
}
}
/* Preload FPU if it's enabled */
if (vcpu->arch.shared->msr & MSR_FP)
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}
void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
u32 host_pvr;
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
kvmppc_mmu_book3s_64_init(vcpu);
to_book3s(vcpu)->hior = 0xfff00000;
to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
vcpu->arch.cpu_type = KVM_CPU_3S_64;
} else
#endif
{
kvmppc_mmu_book3s_32_init(vcpu);
to_book3s(vcpu)->hior = 0;
to_book3s(vcpu)->msr_mask = 0xffffffffULL;
vcpu->arch.cpu_type = KVM_CPU_3S_32;
}
kvmppc_sanity_check(vcpu);
/* If we are in hypervisor level on 970, we can tell the CPU to
* treat DCBZ as 32 bytes store */
vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
!strcmp(cur_cpu_spec->platform, "ppc970"))
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
/* Cell performs badly if MSR_FEx are set. So let's hope nobody
really needs them in a VM on Cell and force disable them. */
if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
#ifdef CONFIG_PPC_BOOK3S_32
/* 32 bit Book3S always has 32 byte dcbz */
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif
/* On some CPUs we can execute paired single operations natively */
asm ( "mfpvr %0" : "=r"(host_pvr));
switch (host_pvr) {
case 0x00080200: /* lonestar 2.0 */
case 0x00088202: /* lonestar 2.2 */
case 0x70000100: /* gekko 1.0 */
case 0x00080100: /* gekko 2.0 */
case 0x00083203: /* gekko 2.3a */
case 0x00083213: /* gekko 2.3b */
case 0x00083204: /* gekko 2.4 */
case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
case 0x00087200: /* broadway */
vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
/* Enable HID2.PSE - in case we need it later */
mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
}
}
/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
* make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
* emulate 32 bytes dcbz length.
*
* The Book3s_64 inventors also realized this case and implemented a special bit
* in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
*
* My approach here is to patch the dcbz instruction on executing pages.
*/
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
struct page *hpage;
u64 hpage_offset;
u32 *page;
int i;
hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (is_error_page(hpage)) {
kvm_release_page_clean(hpage);
return;
}
hpage_offset = pte->raddr & ~PAGE_MASK;
hpage_offset &= ~0xFFFULL;
hpage_offset /= 4;
get_page(hpage);
page = kmap_atomic(hpage, KM_USER0);
/* patch dcbz into reserved instruction, so we trap */
for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
if ((page[i] & 0xff0007ff) == INS_DCBZ)
page[i] &= 0xfffffff7;
kunmap_atomic(page, KM_USER0);
put_page(hpage);
}
static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
ulong mp_pa = vcpu->arch.magic_page_pa;
if (unlikely(mp_pa) &&
unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
return 1;
}
return kvm_is_visible_gfn(vcpu->kvm, gfn);
}
int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
ulong eaddr, int vec)
{
bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
int r = RESUME_GUEST;
int relocated;
int page_found = 0;
struct kvmppc_pte pte;
bool is_mmio = false;
bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false;
bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false;
u64 vsid;
relocated = data ? dr : ir;
/* Resolve real address if translation turned on */
if (relocated) {
page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data);
} else {
pte.may_execute = true;
pte.may_read = true;
pte.may_write = true;
pte.raddr = eaddr & KVM_PAM;
pte.eaddr = eaddr;
pte.vpage = eaddr >> 12;
}
switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
case 0:
pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
break;
case MSR_DR:
case MSR_IR:
vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR)
pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
else
pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
pte.vpage |= vsid;
if (vsid == -1)
page_found = -EINVAL;
break;
}
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* If we do the dcbz hack, we have to NX on every execution,
* so we can patch the executing code. This renders our guest
* NX-less.
*/
pte.may_execute = !data;
}
if (page_found == -ENOENT) {
/* Page not found in guest PTE entries */
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
vcpu->arch.shared->dsisr = svcpu->fault_dsisr;
vcpu->arch.shared->msr |=
(svcpu->shadow_srr1 & 0x00000000f8000000ULL);
svcpu_put(svcpu);
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EPERM) {
/* Storage protection */
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
vcpu->arch.shared->dsisr = svcpu->fault_dsisr & ~DSISR_NOHPTE;
vcpu->arch.shared->dsisr |= DSISR_PROTFAULT;
vcpu->arch.shared->msr |=
svcpu->shadow_srr1 & 0x00000000f8000000ULL;
svcpu_put(svcpu);
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EINVAL) {
/* Page not found in guest SLB */
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
} else if (!is_mmio &&
kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
/* The guest's PTE is not mapped yet. Map on the host */
kvmppc_mmu_map_page(vcpu, &pte);
if (data)
vcpu->stat.sp_storage++;
else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
kvmppc_patch_dcbz(vcpu, &pte);
} else {
/* MMIO */
vcpu->stat.mmio_exits++;
vcpu->arch.paddr_accessed = pte.raddr;
r = kvmppc_emulate_mmio(run, vcpu);
if ( r == RESUME_HOST_NV )
r = RESUME_HOST;
}
return r;
}
static inline int get_fpr_index(int i)
{
#ifdef CONFIG_VSX
i *= 2;
#endif
return i;
}
/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
struct thread_struct *t = &current->thread;
u64 *vcpu_fpr = vcpu->arch.fpr;
#ifdef CONFIG_VSX
u64 *vcpu_vsx = vcpu->arch.vsr;
#endif
u64 *thread_fpr = (u64*)t->fpr;
int i;
if (!(vcpu->arch.guest_owned_ext & msr))
return;
#ifdef DEBUG_EXT
printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif
switch (msr) {
case MSR_FP:
giveup_fpu(current);
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
vcpu_fpr[i] = thread_fpr[get_fpr_index(i)];
vcpu->arch.fpscr = t->fpscr.val;
break;
case MSR_VEC:
#ifdef CONFIG_ALTIVEC
giveup_altivec(current);
memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr));
vcpu->arch.vscr = t->vscr;
#endif
break;
case MSR_VSX:
#ifdef CONFIG_VSX
__giveup_vsx(current);
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++)
vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1];
#endif
break;
default:
BUG();
}
vcpu->arch.guest_owned_ext &= ~msr;
current->thread.regs->msr &= ~msr;
kvmppc_recalc_shadow_msr(vcpu);
}
static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
{
ulong srr0 = kvmppc_get_pc(vcpu);
u32 last_inst = kvmppc_get_last_inst(vcpu);
int ret;
ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
if (ret == -ENOENT) {
ulong msr = vcpu->arch.shared->msr;
msr = kvmppc_set_field(msr, 33, 33, 1);
msr = kvmppc_set_field(msr, 34, 36, 0);
vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0);
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
return EMULATE_AGAIN;
}
return EMULATE_DONE;
}
static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{
/* Need to do paired single emulation? */
if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
return EMULATE_DONE;
/* Read out the instruction */
if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
/* Need to emulate */
return EMULATE_FAIL;
return EMULATE_AGAIN;
}
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
ulong msr)
{
struct thread_struct *t = &current->thread;
u64 *vcpu_fpr = vcpu->arch.fpr;
#ifdef CONFIG_VSX
u64 *vcpu_vsx = vcpu->arch.vsr;
#endif
u64 *thread_fpr = (u64*)t->fpr;
int i;
/* When we have paired singles, we emulate in software */
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
return RESUME_GUEST;
if (!(vcpu->arch.shared->msr & msr)) {
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
return RESUME_GUEST;
}
/* We already own the ext */
if (vcpu->arch.guest_owned_ext & msr) {
return RESUME_GUEST;
}
#ifdef DEBUG_EXT
printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif
current->thread.regs->msr |= msr;
switch (msr) {
case MSR_FP:
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
thread_fpr[get_fpr_index(i)] = vcpu_fpr[i];
t->fpscr.val = vcpu->arch.fpscr;
t->fpexc_mode = 0;
kvmppc_load_up_fpu();
break;
case MSR_VEC:
#ifdef CONFIG_ALTIVEC
memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr));
t->vscr = vcpu->arch.vscr;
t->vrsave = -1;
kvmppc_load_up_altivec();
#endif
break;
case MSR_VSX:
#ifdef CONFIG_VSX
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++)
thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i];
kvmppc_load_up_vsx();
#endif
break;
default:
BUG();
}
vcpu->arch.guest_owned_ext |= msr;
kvmppc_recalc_shadow_msr(vcpu);
return RESUME_GUEST;
}
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
int r = RESUME_HOST;
vcpu->stat.sum_exits++;
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
trace_kvm_book3s_exit(exit_nr, vcpu);
preempt_enable();
kvm_resched(vcpu);
switch (exit_nr) {
case BOOK3S_INTERRUPT_INST_STORAGE:
{
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
ulong shadow_srr1 = svcpu->shadow_srr1;
vcpu->stat.pf_instruc++;
#ifdef CONFIG_PPC_BOOK3S_32
/* We set segments as unused segments when invalidating them. So
* treat the respective fault as segment fault. */
if (svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT] == SR_INVALID) {
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
r = RESUME_GUEST;
svcpu_put(svcpu);
break;
}
#endif
svcpu_put(svcpu);
/* only care about PTEG not found errors, but leave NX alone */
if (shadow_srr1 & 0x40000000) {
r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
vcpu->stat.sp_instruc++;
} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
* so we can't use the NX bit inside the guest. Let's cross our fingers,
* that no guest that needs the dcbz hack does NX.
*/
kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
r = RESUME_GUEST;
} else {
vcpu->arch.shared->msr |= shadow_srr1 & 0x58000000;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
}
break;
}
case BOOK3S_INTERRUPT_DATA_STORAGE:
{
ulong dar = kvmppc_get_fault_dar(vcpu);
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
u32 fault_dsisr = svcpu->fault_dsisr;
vcpu->stat.pf_storage++;
#ifdef CONFIG_PPC_BOOK3S_32
/* We set segments as unused segments when invalidating them. So
* treat the respective fault as segment fault. */
if ((svcpu->sr[dar >> SID_SHIFT]) == SR_INVALID) {
kvmppc_mmu_map_segment(vcpu, dar);
r = RESUME_GUEST;
svcpu_put(svcpu);
break;
}
#endif
svcpu_put(svcpu);
/* The only case we need to handle is missing shadow PTEs */
if (fault_dsisr & DSISR_NOHPTE) {
r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
} else {
vcpu->arch.shared->dar = dar;
vcpu->arch.shared->dsisr = fault_dsisr;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
}
break;
}
case BOOK3S_INTERRUPT_DATA_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_DATA_SEGMENT);
}
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_INST_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_INST_SEGMENT);
}
r = RESUME_GUEST;
break;
/* We're good on these - the host merely wanted to get our attention */
case BOOK3S_INTERRUPT_DECREMENTER:
vcpu->stat.dec_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_EXTERNAL:
vcpu->stat.ext_intr_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PERFMON:
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PROGRAM:
{
enum emulation_result er;
struct kvmppc_book3s_shadow_vcpu *svcpu;
ulong flags;
program_interrupt:
svcpu = svcpu_get(vcpu);
flags = svcpu->shadow_srr1 & 0x1f0000ull;
svcpu_put(svcpu);
if (vcpu->arch.shared->msr & MSR_PR) {
#ifdef EXIT_DEBUG
printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
#endif
if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
(INS_DCBZ & 0xfffffff7)) {
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
}
}
vcpu->stat.emulated_inst_exits++;
er = kvmppc_emulate_instruction(run, vcpu);
switch (er) {
case EMULATE_DONE:
r = RESUME_GUEST_NV;
break;
case EMULATE_AGAIN:
r = RESUME_GUEST;
break;
case EMULATE_FAIL:
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
__func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
case EMULATE_DO_MMIO:
run->exit_reason = KVM_EXIT_MMIO;
r = RESUME_HOST_NV;
break;
default:
BUG();
}
break;
}
case BOOK3S_INTERRUPT_SYSCALL:
if (vcpu->arch.papr_enabled &&
(kvmppc_get_last_inst(vcpu) == 0x44000022) &&
!(vcpu->arch.shared->msr & MSR_PR)) {
/* SC 1 papr hypercalls */
ulong cmd = kvmppc_get_gpr(vcpu, 3);
int i;
#ifdef CONFIG_KVM_BOOK3S_64_PR
if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
r = RESUME_GUEST;
break;
}
#endif
run->papr_hcall.nr = cmd;
for (i = 0; i < 9; ++i) {
ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
run->papr_hcall.args[i] = gpr;
}
run->exit_reason = KVM_EXIT_PAPR_HCALL;
vcpu->arch.hcall_needed = 1;
r = RESUME_HOST;
} else if (vcpu->arch.osi_enabled &&
(((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
(((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
/* MOL hypercalls */
u64 *gprs = run->osi.gprs;
int i;
run->exit_reason = KVM_EXIT_OSI;
for (i = 0; i < 32; i++)
gprs[i] = kvmppc_get_gpr(vcpu, i);
vcpu->arch.osi_needed = 1;
r = RESUME_HOST_NV;
} else if (!(vcpu->arch.shared->msr & MSR_PR) &&
(((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
/* KVM PV hypercalls */
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
r = RESUME_GUEST;
} else {
/* Guest syscalls */
vcpu->stat.syscall_exits++;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
}
break;
case BOOK3S_INTERRUPT_FP_UNAVAIL:
case BOOK3S_INTERRUPT_ALTIVEC:
case BOOK3S_INTERRUPT_VSX:
{
int ext_msr = 0;
switch (exit_nr) {
case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break;
case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break;
case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break;
}
switch (kvmppc_check_ext(vcpu, exit_nr)) {
case EMULATE_DONE:
/* everything ok - let's enable the ext */
r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
break;
case EMULATE_FAIL:
/* we need to emulate this instruction */
goto program_interrupt;
break;
default:
/* nothing to worry about - go again */
break;
}
break;
}
case BOOK3S_INTERRUPT_ALIGNMENT:
if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu,
kvmppc_get_last_inst(vcpu));
vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu,
kvmppc_get_last_inst(vcpu));
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
}
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_MACHINE_CHECK:
case BOOK3S_INTERRUPT_TRACE:
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
break;
default:
{
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
ulong shadow_srr1 = svcpu->shadow_srr1;
svcpu_put(svcpu);
/* Ugh - bork here! What did we get? */
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
r = RESUME_HOST;
BUG();
break;
}
}
if (!(r & RESUME_HOST)) {
/* To avoid clobbering exit_reason, only check for signals if
* we aren't already exiting to userspace for some other
* reason. */
/*
* Interrupts could be timers for the guest which we have to
* inject again, so let's postpone them until we're in the guest
* and if we really did time things so badly, then we just exit
* again due to a host external interrupt.
*/
__hard_irq_disable();
if (signal_pending(current)) {
__hard_irq_enable();
#ifdef EXIT_DEBUG
printk(KERN_EMERG "KVM: Going back to host\n");
#endif
vcpu->stat.signal_exits++;
run->exit_reason = KVM_EXIT_INTR;
r = -EINTR;
} else {
preempt_disable();
/* In case an interrupt came in that was triggered
* from userspace (like DEC), we need to check what
* to inject now! */
kvmppc_core_prepare_to_enter(vcpu);
}
}
trace_kvm_book3s_reenter(r, vcpu);
return r;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
sregs->pvr = vcpu->arch.pvr;
sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
}
} else {
for (i = 0; i < 16; i++)
sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i];
for (i = 0; i < 8; i++) {
sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
}
}
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
kvmppc_set_pvr(vcpu, sregs->pvr);
vcpu3s->sdr1 = sregs->u.s.sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
sregs->u.s.ppc64.slb[i].slbe);
}
} else {
for (i = 0; i < 16; i++) {
vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
}
for (i = 0; i < 8; i++) {
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
(u32)sregs->u.s.ppc32.ibat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
(u32)(sregs->u.s.ppc32.ibat[i] >> 32));
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
(u32)sregs->u.s.ppc32.dbat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
(u32)(sregs->u.s.ppc32.dbat[i] >> 32));
}
}
/* Flush the MMU after messing with the segments */
kvmppc_mmu_pte_flush(vcpu, 0, 0);
return 0;
}
int kvmppc_core_check_processor_compat(void)
{
return 0;
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
struct kvmppc_vcpu_book3s *vcpu_book3s;
struct kvm_vcpu *vcpu;
int err = -ENOMEM;
unsigned long p;
vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
if (!vcpu_book3s)
goto out;
vcpu_book3s->shadow_vcpu = (struct kvmppc_book3s_shadow_vcpu *)
kzalloc(sizeof(*vcpu_book3s->shadow_vcpu), GFP_KERNEL);
if (!vcpu_book3s->shadow_vcpu)
goto free_vcpu;
vcpu = &vcpu_book3s->vcpu;
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_shadow_vcpu;
p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
/* the real shared page fills the last 4k of our page */
vcpu->arch.shared = (void*)(p + PAGE_SIZE - 4096);
if (!p)
goto uninit_vcpu;
#ifdef CONFIG_PPC_BOOK3S_64
/* default to book3s_64 (970fx) */
vcpu->arch.pvr = 0x3C0301;
#else
/* default to book3s_32 (750) */
vcpu->arch.pvr = 0x84202;
#endif
kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
vcpu->arch.slb_nr = 64;
vcpu->arch.shadow_msr = MSR_USER64;
err = kvmppc_mmu_init(vcpu);
if (err < 0)
goto uninit_vcpu;
return vcpu;
uninit_vcpu:
kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
kfree(vcpu_book3s->shadow_vcpu);
free_vcpu:
vfree(vcpu_book3s);
out:
return ERR_PTR(err);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
kvm_vcpu_uninit(vcpu);
kfree(vcpu_book3s->shadow_vcpu);
vfree(vcpu_book3s);
}
int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int ret;
double fpr[32][TS_FPRWIDTH];
unsigned int fpscr;
int fpexc_mode;
#ifdef CONFIG_ALTIVEC
vector128 vr[32];
vector128 vscr;
unsigned long uninitialized_var(vrsave);
int used_vr;
#endif
#ifdef CONFIG_VSX
int used_vsr;
#endif
ulong ext_msr;
preempt_disable();
/* Check if we can run the vcpu at all */
if (!vcpu->arch.sane) {
kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = -EINVAL;
goto out;
}
kvmppc_core_prepare_to_enter(vcpu);
/*
* Interrupts could be timers for the guest which we have to inject
* again, so let's postpone them until we're in the guest and if we
* really did time things so badly, then we just exit again due to
* a host external interrupt.
*/
__hard_irq_disable();
/* No need to go into the guest when all we do is going out */
if (signal_pending(current)) {
__hard_irq_enable();
kvm_run->exit_reason = KVM_EXIT_INTR;
ret = -EINTR;
goto out;
}
/* Save FPU state in stack */
if (current->thread.regs->msr & MSR_FP)
giveup_fpu(current);
memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr));
fpscr = current->thread.fpscr.val;
fpexc_mode = current->thread.fpexc_mode;
#ifdef CONFIG_ALTIVEC
/* Save Altivec state in stack */
used_vr = current->thread.used_vr;
if (used_vr) {
if (current->thread.regs->msr & MSR_VEC)
giveup_altivec(current);
memcpy(vr, current->thread.vr, sizeof(current->thread.vr));
vscr = current->thread.vscr;
vrsave = current->thread.vrsave;
}
#endif
#ifdef CONFIG_VSX
/* Save VSX state in stack */
used_vsr = current->thread.used_vsr;
if (used_vsr && (current->thread.regs->msr & MSR_VSX))
__giveup_vsx(current);
#endif
/* Remember the MSR with disabled extensions */
ext_msr = current->thread.regs->msr;
/* Preload FPU if it's enabled */
if (vcpu->arch.shared->msr & MSR_FP)
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
kvm_guest_enter();
ret = __kvmppc_vcpu_run(kvm_run, vcpu);
kvm_guest_exit();
current->thread.regs->msr = ext_msr;
/* Make sure we save the guest FPU/Altivec/VSX state */
kvmppc_giveup_ext(vcpu, MSR_FP);
kvmppc_giveup_ext(vcpu, MSR_VEC);
kvmppc_giveup_ext(vcpu, MSR_VSX);
/* Restore FPU state from stack */
memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr));
current->thread.fpscr.val = fpscr;
current->thread.fpexc_mode = fpexc_mode;
#ifdef CONFIG_ALTIVEC
/* Restore Altivec state from stack */
if (used_vr && current->thread.used_vr) {
memcpy(current->thread.vr, vr, sizeof(current->thread.vr));
current->thread.vscr = vscr;
current->thread.vrsave = vrsave;
}
current->thread.used_vr = used_vr;
#endif
#ifdef CONFIG_VSX
current->thread.used_vsr = used_vsr;
#endif
out:
preempt_enable();
return ret;
}
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem)
{
return 0;
}
void kvmppc_core_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem)
{
}
int kvmppc_core_init_vm(struct kvm *kvm)
{
return 0;
}
void kvmppc_core_destroy_vm(struct kvm *kvm)
{
}
static int kvmppc_book3s_init(void)
{
int r;
r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), 0,
THIS_MODULE);
if (r)
return r;
r = kvmppc_mmu_hpte_sysinit();
return r;
}
static void kvmppc_book3s_exit(void)
{
kvmppc_mmu_hpte_sysexit();
kvm_exit();
}
module_init(kvmppc_book3s_init);
module_exit(kvmppc_book3s_exit);