linux/tools/perf/util/map.c
Wang Nan ba92732e98 perf kmaps: Check kmaps to make code more robust
This patch add checks in places where map__kmap is used to get kmaps
from struct kmap.

Error messages are added at map__kmap to warn invalid accessing of kmap
(for the case of !map->dso->kernel, kmap(map) does not exists at all).

Also, introduces map__kmaps() to warn uninitialized kmaps.

Reviewed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Cc: pi3orama@163.com
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1428394966-131044-2-git-send-email-wangnan0@huawei.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-04-08 09:07:03 -03:00

801 lines
18 KiB
C

#include "symbol.h"
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include "map.h"
#include "thread.h"
#include "strlist.h"
#include "vdso.h"
#include "build-id.h"
#include "util.h"
#include "debug.h"
#include "machine.h"
#include <linux/string.h>
const char *map_type__name[MAP__NR_TYPES] = {
[MAP__FUNCTION] = "Functions",
[MAP__VARIABLE] = "Variables",
};
static inline int is_anon_memory(const char *filename)
{
return !strcmp(filename, "//anon") ||
!strcmp(filename, "/dev/zero (deleted)") ||
!strcmp(filename, "/anon_hugepage (deleted)");
}
static inline int is_no_dso_memory(const char *filename)
{
return !strncmp(filename, "[stack", 6) ||
!strncmp(filename, "/SYSV",5) ||
!strcmp(filename, "[heap]");
}
static inline int is_android_lib(const char *filename)
{
return !strncmp(filename, "/data/app-lib", 13) ||
!strncmp(filename, "/system/lib", 11);
}
static inline bool replace_android_lib(const char *filename, char *newfilename)
{
const char *libname;
char *app_abi;
size_t app_abi_length, new_length;
size_t lib_length = 0;
libname = strrchr(filename, '/');
if (libname)
lib_length = strlen(libname);
app_abi = getenv("APP_ABI");
if (!app_abi)
return false;
app_abi_length = strlen(app_abi);
if (!strncmp(filename, "/data/app-lib", 13)) {
char *apk_path;
if (!app_abi_length)
return false;
new_length = 7 + app_abi_length + lib_length;
apk_path = getenv("APK_PATH");
if (apk_path) {
new_length += strlen(apk_path) + 1;
if (new_length > PATH_MAX)
return false;
snprintf(newfilename, new_length,
"%s/libs/%s/%s", apk_path, app_abi, libname);
} else {
if (new_length > PATH_MAX)
return false;
snprintf(newfilename, new_length,
"libs/%s/%s", app_abi, libname);
}
return true;
}
if (!strncmp(filename, "/system/lib/", 11)) {
char *ndk, *app;
const char *arch;
size_t ndk_length;
size_t app_length;
ndk = getenv("NDK_ROOT");
app = getenv("APP_PLATFORM");
if (!(ndk && app))
return false;
ndk_length = strlen(ndk);
app_length = strlen(app);
if (!(ndk_length && app_length && app_abi_length))
return false;
arch = !strncmp(app_abi, "arm", 3) ? "arm" :
!strncmp(app_abi, "mips", 4) ? "mips" :
!strncmp(app_abi, "x86", 3) ? "x86" : NULL;
if (!arch)
return false;
new_length = 27 + ndk_length +
app_length + lib_length
+ strlen(arch);
if (new_length > PATH_MAX)
return false;
snprintf(newfilename, new_length,
"%s/platforms/%s/arch-%s/usr/lib/%s",
ndk, app, arch, libname);
return true;
}
return false;
}
void map__init(struct map *map, enum map_type type,
u64 start, u64 end, u64 pgoff, struct dso *dso)
{
map->type = type;
map->start = start;
map->end = end;
map->pgoff = pgoff;
map->reloc = 0;
map->dso = dso;
map->map_ip = map__map_ip;
map->unmap_ip = map__unmap_ip;
RB_CLEAR_NODE(&map->rb_node);
map->groups = NULL;
map->referenced = false;
map->erange_warned = false;
}
struct map *map__new(struct machine *machine, u64 start, u64 len,
u64 pgoff, u32 pid, u32 d_maj, u32 d_min, u64 ino,
u64 ino_gen, u32 prot, u32 flags, char *filename,
enum map_type type, struct thread *thread)
{
struct map *map = malloc(sizeof(*map));
if (map != NULL) {
char newfilename[PATH_MAX];
struct dso *dso;
int anon, no_dso, vdso, android;
android = is_android_lib(filename);
anon = is_anon_memory(filename);
vdso = is_vdso_map(filename);
no_dso = is_no_dso_memory(filename);
map->maj = d_maj;
map->min = d_min;
map->ino = ino;
map->ino_generation = ino_gen;
map->prot = prot;
map->flags = flags;
if ((anon || no_dso) && type == MAP__FUNCTION) {
snprintf(newfilename, sizeof(newfilename), "/tmp/perf-%d.map", pid);
filename = newfilename;
}
if (android) {
if (replace_android_lib(filename, newfilename))
filename = newfilename;
}
if (vdso) {
pgoff = 0;
dso = vdso__dso_findnew(machine, thread);
} else
dso = __dsos__findnew(&machine->user_dsos, filename);
if (dso == NULL)
goto out_delete;
map__init(map, type, start, start + len, pgoff, dso);
if (anon || no_dso) {
map->map_ip = map->unmap_ip = identity__map_ip;
/*
* Set memory without DSO as loaded. All map__find_*
* functions still return NULL, and we avoid the
* unnecessary map__load warning.
*/
if (type != MAP__FUNCTION)
dso__set_loaded(dso, map->type);
}
}
return map;
out_delete:
free(map);
return NULL;
}
/*
* Constructor variant for modules (where we know from /proc/modules where
* they are loaded) and for vmlinux, where only after we load all the
* symbols we'll know where it starts and ends.
*/
struct map *map__new2(u64 start, struct dso *dso, enum map_type type)
{
struct map *map = calloc(1, (sizeof(*map) +
(dso->kernel ? sizeof(struct kmap) : 0)));
if (map != NULL) {
/*
* ->end will be filled after we load all the symbols
*/
map__init(map, type, start, 0, 0, dso);
}
return map;
}
void map__delete(struct map *map)
{
free(map);
}
void map__fixup_start(struct map *map)
{
struct rb_root *symbols = &map->dso->symbols[map->type];
struct rb_node *nd = rb_first(symbols);
if (nd != NULL) {
struct symbol *sym = rb_entry(nd, struct symbol, rb_node);
map->start = sym->start;
}
}
void map__fixup_end(struct map *map)
{
struct rb_root *symbols = &map->dso->symbols[map->type];
struct rb_node *nd = rb_last(symbols);
if (nd != NULL) {
struct symbol *sym = rb_entry(nd, struct symbol, rb_node);
map->end = sym->end;
}
}
#define DSO__DELETED "(deleted)"
int map__load(struct map *map, symbol_filter_t filter)
{
const char *name = map->dso->long_name;
int nr;
if (dso__loaded(map->dso, map->type))
return 0;
nr = dso__load(map->dso, map, filter);
if (nr < 0) {
if (map->dso->has_build_id) {
char sbuild_id[BUILD_ID_SIZE * 2 + 1];
build_id__sprintf(map->dso->build_id,
sizeof(map->dso->build_id),
sbuild_id);
pr_warning("%s with build id %s not found",
name, sbuild_id);
} else
pr_warning("Failed to open %s", name);
pr_warning(", continuing without symbols\n");
return -1;
} else if (nr == 0) {
#ifdef HAVE_LIBELF_SUPPORT
const size_t len = strlen(name);
const size_t real_len = len - sizeof(DSO__DELETED);
if (len > sizeof(DSO__DELETED) &&
strcmp(name + real_len + 1, DSO__DELETED) == 0) {
pr_warning("%.*s was updated (is prelink enabled?). "
"Restart the long running apps that use it!\n",
(int)real_len, name);
} else {
pr_warning("no symbols found in %s, maybe install "
"a debug package?\n", name);
}
#endif
return -1;
}
return 0;
}
struct symbol *map__find_symbol(struct map *map, u64 addr,
symbol_filter_t filter)
{
if (map__load(map, filter) < 0)
return NULL;
return dso__find_symbol(map->dso, map->type, addr);
}
struct symbol *map__find_symbol_by_name(struct map *map, const char *name,
symbol_filter_t filter)
{
if (map__load(map, filter) < 0)
return NULL;
if (!dso__sorted_by_name(map->dso, map->type))
dso__sort_by_name(map->dso, map->type);
return dso__find_symbol_by_name(map->dso, map->type, name);
}
struct map *map__clone(struct map *map)
{
return memdup(map, sizeof(*map));
}
int map__overlap(struct map *l, struct map *r)
{
if (l->start > r->start) {
struct map *t = l;
l = r;
r = t;
}
if (l->end > r->start)
return 1;
return 0;
}
size_t map__fprintf(struct map *map, FILE *fp)
{
return fprintf(fp, " %" PRIx64 "-%" PRIx64 " %" PRIx64 " %s\n",
map->start, map->end, map->pgoff, map->dso->name);
}
size_t map__fprintf_dsoname(struct map *map, FILE *fp)
{
const char *dsoname = "[unknown]";
if (map && map->dso && (map->dso->name || map->dso->long_name)) {
if (symbol_conf.show_kernel_path && map->dso->long_name)
dsoname = map->dso->long_name;
else if (map->dso->name)
dsoname = map->dso->name;
}
return fprintf(fp, "%s", dsoname);
}
int map__fprintf_srcline(struct map *map, u64 addr, const char *prefix,
FILE *fp)
{
char *srcline;
int ret = 0;
if (map && map->dso) {
srcline = get_srcline(map->dso,
map__rip_2objdump(map, addr), NULL, true);
if (srcline != SRCLINE_UNKNOWN)
ret = fprintf(fp, "%s%s", prefix, srcline);
free_srcline(srcline);
}
return ret;
}
/**
* map__rip_2objdump - convert symbol start address to objdump address.
* @map: memory map
* @rip: symbol start address
*
* objdump wants/reports absolute IPs for ET_EXEC, and RIPs for ET_DYN.
* map->dso->adjust_symbols==1 for ET_EXEC-like cases except ET_REL which is
* relative to section start.
*
* Return: Address suitable for passing to "objdump --start-address="
*/
u64 map__rip_2objdump(struct map *map, u64 rip)
{
if (!map->dso->adjust_symbols)
return rip;
if (map->dso->rel)
return rip - map->pgoff;
return map->unmap_ip(map, rip) - map->reloc;
}
/**
* map__objdump_2mem - convert objdump address to a memory address.
* @map: memory map
* @ip: objdump address
*
* Closely related to map__rip_2objdump(), this function takes an address from
* objdump and converts it to a memory address. Note this assumes that @map
* contains the address. To be sure the result is valid, check it forwards
* e.g. map__rip_2objdump(map->map_ip(map, map__objdump_2mem(map, ip))) == ip
*
* Return: Memory address.
*/
u64 map__objdump_2mem(struct map *map, u64 ip)
{
if (!map->dso->adjust_symbols)
return map->unmap_ip(map, ip);
if (map->dso->rel)
return map->unmap_ip(map, ip + map->pgoff);
return ip + map->reloc;
}
void map_groups__init(struct map_groups *mg, struct machine *machine)
{
int i;
for (i = 0; i < MAP__NR_TYPES; ++i) {
mg->maps[i] = RB_ROOT;
INIT_LIST_HEAD(&mg->removed_maps[i]);
}
mg->machine = machine;
mg->refcnt = 1;
}
static void maps__delete(struct rb_root *maps)
{
struct rb_node *next = rb_first(maps);
while (next) {
struct map *pos = rb_entry(next, struct map, rb_node);
next = rb_next(&pos->rb_node);
rb_erase(&pos->rb_node, maps);
map__delete(pos);
}
}
static void maps__delete_removed(struct list_head *maps)
{
struct map *pos, *n;
list_for_each_entry_safe(pos, n, maps, node) {
list_del(&pos->node);
map__delete(pos);
}
}
void map_groups__exit(struct map_groups *mg)
{
int i;
for (i = 0; i < MAP__NR_TYPES; ++i) {
maps__delete(&mg->maps[i]);
maps__delete_removed(&mg->removed_maps[i]);
}
}
bool map_groups__empty(struct map_groups *mg)
{
int i;
for (i = 0; i < MAP__NR_TYPES; ++i) {
if (maps__first(&mg->maps[i]))
return false;
if (!list_empty(&mg->removed_maps[i]))
return false;
}
return true;
}
struct map_groups *map_groups__new(struct machine *machine)
{
struct map_groups *mg = malloc(sizeof(*mg));
if (mg != NULL)
map_groups__init(mg, machine);
return mg;
}
void map_groups__delete(struct map_groups *mg)
{
map_groups__exit(mg);
free(mg);
}
void map_groups__put(struct map_groups *mg)
{
if (--mg->refcnt == 0)
map_groups__delete(mg);
}
void map_groups__flush(struct map_groups *mg)
{
int type;
for (type = 0; type < MAP__NR_TYPES; type++) {
struct rb_root *root = &mg->maps[type];
struct rb_node *next = rb_first(root);
while (next) {
struct map *pos = rb_entry(next, struct map, rb_node);
next = rb_next(&pos->rb_node);
rb_erase(&pos->rb_node, root);
/*
* We may have references to this map, for
* instance in some hist_entry instances, so
* just move them to a separate list.
*/
list_add_tail(&pos->node, &mg->removed_maps[pos->type]);
}
}
}
struct symbol *map_groups__find_symbol(struct map_groups *mg,
enum map_type type, u64 addr,
struct map **mapp,
symbol_filter_t filter)
{
struct map *map = map_groups__find(mg, type, addr);
/* Ensure map is loaded before using map->map_ip */
if (map != NULL && map__load(map, filter) >= 0) {
if (mapp != NULL)
*mapp = map;
return map__find_symbol(map, map->map_ip(map, addr), filter);
}
return NULL;
}
struct symbol *map_groups__find_symbol_by_name(struct map_groups *mg,
enum map_type type,
const char *name,
struct map **mapp,
symbol_filter_t filter)
{
struct rb_node *nd;
for (nd = rb_first(&mg->maps[type]); nd; nd = rb_next(nd)) {
struct map *pos = rb_entry(nd, struct map, rb_node);
struct symbol *sym = map__find_symbol_by_name(pos, name, filter);
if (sym == NULL)
continue;
if (mapp != NULL)
*mapp = pos;
return sym;
}
return NULL;
}
int map_groups__find_ams(struct addr_map_symbol *ams, symbol_filter_t filter)
{
if (ams->addr < ams->map->start || ams->addr >= ams->map->end) {
if (ams->map->groups == NULL)
return -1;
ams->map = map_groups__find(ams->map->groups, ams->map->type,
ams->addr);
if (ams->map == NULL)
return -1;
}
ams->al_addr = ams->map->map_ip(ams->map, ams->addr);
ams->sym = map__find_symbol(ams->map, ams->al_addr, filter);
return ams->sym ? 0 : -1;
}
size_t __map_groups__fprintf_maps(struct map_groups *mg, enum map_type type,
FILE *fp)
{
size_t printed = fprintf(fp, "%s:\n", map_type__name[type]);
struct rb_node *nd;
for (nd = rb_first(&mg->maps[type]); nd; nd = rb_next(nd)) {
struct map *pos = rb_entry(nd, struct map, rb_node);
printed += fprintf(fp, "Map:");
printed += map__fprintf(pos, fp);
if (verbose > 2) {
printed += dso__fprintf(pos->dso, type, fp);
printed += fprintf(fp, "--\n");
}
}
return printed;
}
static size_t map_groups__fprintf_maps(struct map_groups *mg, FILE *fp)
{
size_t printed = 0, i;
for (i = 0; i < MAP__NR_TYPES; ++i)
printed += __map_groups__fprintf_maps(mg, i, fp);
return printed;
}
static size_t __map_groups__fprintf_removed_maps(struct map_groups *mg,
enum map_type type, FILE *fp)
{
struct map *pos;
size_t printed = 0;
list_for_each_entry(pos, &mg->removed_maps[type], node) {
printed += fprintf(fp, "Map:");
printed += map__fprintf(pos, fp);
if (verbose > 1) {
printed += dso__fprintf(pos->dso, type, fp);
printed += fprintf(fp, "--\n");
}
}
return printed;
}
static size_t map_groups__fprintf_removed_maps(struct map_groups *mg,
FILE *fp)
{
size_t printed = 0, i;
for (i = 0; i < MAP__NR_TYPES; ++i)
printed += __map_groups__fprintf_removed_maps(mg, i, fp);
return printed;
}
size_t map_groups__fprintf(struct map_groups *mg, FILE *fp)
{
size_t printed = map_groups__fprintf_maps(mg, fp);
printed += fprintf(fp, "Removed maps:\n");
return printed + map_groups__fprintf_removed_maps(mg, fp);
}
int map_groups__fixup_overlappings(struct map_groups *mg, struct map *map,
FILE *fp)
{
struct rb_root *root = &mg->maps[map->type];
struct rb_node *next = rb_first(root);
int err = 0;
while (next) {
struct map *pos = rb_entry(next, struct map, rb_node);
next = rb_next(&pos->rb_node);
if (!map__overlap(pos, map))
continue;
if (verbose >= 2) {
fputs("overlapping maps:\n", fp);
map__fprintf(map, fp);
map__fprintf(pos, fp);
}
rb_erase(&pos->rb_node, root);
/*
* Now check if we need to create new maps for areas not
* overlapped by the new map:
*/
if (map->start > pos->start) {
struct map *before = map__clone(pos);
if (before == NULL) {
err = -ENOMEM;
goto move_map;
}
before->end = map->start;
map_groups__insert(mg, before);
if (verbose >= 2)
map__fprintf(before, fp);
}
if (map->end < pos->end) {
struct map *after = map__clone(pos);
if (after == NULL) {
err = -ENOMEM;
goto move_map;
}
after->start = map->end;
map_groups__insert(mg, after);
if (verbose >= 2)
map__fprintf(after, fp);
}
move_map:
/*
* If we have references, just move them to a separate list.
*/
if (pos->referenced)
list_add_tail(&pos->node, &mg->removed_maps[map->type]);
else
map__delete(pos);
if (err)
return err;
}
return 0;
}
/*
* XXX This should not really _copy_ te maps, but refcount them.
*/
int map_groups__clone(struct map_groups *mg,
struct map_groups *parent, enum map_type type)
{
struct rb_node *nd;
for (nd = rb_first(&parent->maps[type]); nd; nd = rb_next(nd)) {
struct map *map = rb_entry(nd, struct map, rb_node);
struct map *new = map__clone(map);
if (new == NULL)
return -ENOMEM;
map_groups__insert(mg, new);
}
return 0;
}
void maps__insert(struct rb_root *maps, struct map *map)
{
struct rb_node **p = &maps->rb_node;
struct rb_node *parent = NULL;
const u64 ip = map->start;
struct map *m;
while (*p != NULL) {
parent = *p;
m = rb_entry(parent, struct map, rb_node);
if (ip < m->start)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&map->rb_node, parent, p);
rb_insert_color(&map->rb_node, maps);
}
void maps__remove(struct rb_root *maps, struct map *map)
{
rb_erase(&map->rb_node, maps);
}
struct map *maps__find(struct rb_root *maps, u64 ip)
{
struct rb_node **p = &maps->rb_node;
struct rb_node *parent = NULL;
struct map *m;
while (*p != NULL) {
parent = *p;
m = rb_entry(parent, struct map, rb_node);
if (ip < m->start)
p = &(*p)->rb_left;
else if (ip >= m->end)
p = &(*p)->rb_right;
else
return m;
}
return NULL;
}
struct map *maps__first(struct rb_root *maps)
{
struct rb_node *first = rb_first(maps);
if (first)
return rb_entry(first, struct map, rb_node);
return NULL;
}
struct map *maps__next(struct map *map)
{
struct rb_node *next = rb_next(&map->rb_node);
if (next)
return rb_entry(next, struct map, rb_node);
return NULL;
}
struct kmap *map__kmap(struct map *map)
{
if (!map->dso || !map->dso->kernel) {
pr_err("Internal error: map__kmap with a non-kernel map\n");
return NULL;
}
return (struct kmap *)(map + 1);
}
struct map_groups *map__kmaps(struct map *map)
{
struct kmap *kmap = map__kmap(map);
if (!kmap || !kmap->kmaps) {
pr_err("Internal error: map__kmaps with a non-kernel map\n");
return NULL;
}
return kmap->kmaps;
}