linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c
Ben Goz c3447e8150 drm/amdkfd: Enforce kill all waves on process termination
This commit makes sure that on process termination, after
we're destroying all the active queues, we're killing all the
existing wave front of the current process.

By doing this we're making sure that if any of the CUs were blocked
by infinite loop we're enforcing it to end the shader explicitly.

Signed-off-by: Ben Goz <ben.goz@amd.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
2015-06-03 11:34:47 +03:00

1249 lines
30 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/printk.h>
#include <linux/bitops.h>
#include <linux/sched.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_mqd_manager.h"
#include "cik_regs.h"
#include "kfd_kernel_queue.h"
/* Size of the per-pipe EOP queue */
#define CIK_HPD_EOP_BYTES_LOG2 11
#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
unsigned int pasid, unsigned int vmid);
static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd);
static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
static int destroy_queues_cpsch(struct device_queue_manager *dqm,
bool preempt_static_queues, bool lock);
static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd);
static void deallocate_sdma_queue(struct device_queue_manager *dqm,
unsigned int sdma_queue_id);
static inline
enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
{
if (type == KFD_QUEUE_TYPE_SDMA)
return KFD_MQD_TYPE_SDMA;
return KFD_MQD_TYPE_CP;
}
unsigned int get_first_pipe(struct device_queue_manager *dqm)
{
BUG_ON(!dqm || !dqm->dev);
return dqm->dev->shared_resources.first_compute_pipe;
}
unsigned int get_pipes_num(struct device_queue_manager *dqm)
{
BUG_ON(!dqm || !dqm->dev);
return dqm->dev->shared_resources.compute_pipe_count;
}
static inline unsigned int get_pipes_num_cpsch(void)
{
return PIPE_PER_ME_CP_SCHEDULING;
}
void program_sh_mem_settings(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
return dqm->dev->kfd2kgd->program_sh_mem_settings(
dqm->dev->kgd, qpd->vmid,
qpd->sh_mem_config,
qpd->sh_mem_ape1_base,
qpd->sh_mem_ape1_limit,
qpd->sh_mem_bases);
}
static int allocate_vmid(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int bit, allocated_vmid;
if (dqm->vmid_bitmap == 0)
return -ENOMEM;
bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
/* Kaveri kfd vmid's starts from vmid 8 */
allocated_vmid = bit + KFD_VMID_START_OFFSET;
pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
qpd->vmid = allocated_vmid;
q->properties.vmid = allocated_vmid;
set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
program_sh_mem_settings(dqm, qpd);
return 0;
}
static void deallocate_vmid(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int bit = qpd->vmid - KFD_VMID_START_OFFSET;
/* Release the vmid mapping */
set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
qpd->vmid = 0;
q->properties.vmid = 0;
}
static int create_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd,
int *allocated_vmid)
{
int retval;
BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
pr_debug("kfd: In func %s\n", __func__);
print_queue(q);
mutex_lock(&dqm->lock);
if (dqm->total_queue_count >= max_num_of_queues_per_device) {
pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
dqm->total_queue_count);
mutex_unlock(&dqm->lock);
return -EPERM;
}
if (list_empty(&qpd->queues_list)) {
retval = allocate_vmid(dqm, qpd, q);
if (retval != 0) {
mutex_unlock(&dqm->lock);
return retval;
}
}
*allocated_vmid = qpd->vmid;
q->properties.vmid = qpd->vmid;
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
retval = create_compute_queue_nocpsch(dqm, q, qpd);
if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
retval = create_sdma_queue_nocpsch(dqm, q, qpd);
if (retval != 0) {
if (list_empty(&qpd->queues_list)) {
deallocate_vmid(dqm, qpd, q);
*allocated_vmid = 0;
}
mutex_unlock(&dqm->lock);
return retval;
}
list_add(&q->list, &qpd->queues_list);
if (q->properties.is_active)
dqm->queue_count++;
if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
dqm->sdma_queue_count++;
/*
* Unconditionally increment this counter, regardless of the queue's
* type or whether the queue is active.
*/
dqm->total_queue_count++;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
mutex_unlock(&dqm->lock);
return 0;
}
static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
{
bool set;
int pipe, bit, i;
set = false;
for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
if (dqm->allocated_queues[pipe] != 0) {
bit = find_first_bit(
(unsigned long *)&dqm->allocated_queues[pipe],
QUEUES_PER_PIPE);
clear_bit(bit,
(unsigned long *)&dqm->allocated_queues[pipe]);
q->pipe = pipe;
q->queue = bit;
set = true;
break;
}
}
if (set == false)
return -EBUSY;
pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
__func__, q->pipe, q->queue);
/* horizontal hqd allocation */
dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
return 0;
}
static inline void deallocate_hqd(struct device_queue_manager *dqm,
struct queue *q)
{
set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
}
static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd)
{
int retval;
struct mqd_manager *mqd;
BUG_ON(!dqm || !q || !qpd);
mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
if (mqd == NULL)
return -ENOMEM;
retval = allocate_hqd(dqm, q);
if (retval != 0)
return retval;
retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
&q->gart_mqd_addr, &q->properties);
if (retval != 0) {
deallocate_hqd(dqm, q);
return retval;
}
pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
q->pipe,
q->queue);
retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
q->queue, (uint32_t __user *) q->properties.write_ptr);
if (retval != 0) {
deallocate_hqd(dqm, q);
mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
return retval;
}
return 0;
}
static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int retval;
struct mqd_manager *mqd;
BUG_ON(!dqm || !q || !q->mqd || !qpd);
retval = 0;
pr_debug("kfd: In Func %s\n", __func__);
mutex_lock(&dqm->lock);
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
if (mqd == NULL) {
retval = -ENOMEM;
goto out;
}
deallocate_hqd(dqm, q);
} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
if (mqd == NULL) {
retval = -ENOMEM;
goto out;
}
dqm->sdma_queue_count--;
deallocate_sdma_queue(dqm, q->sdma_id);
} else {
pr_debug("q->properties.type is invalid (%d)\n",
q->properties.type);
retval = -EINVAL;
goto out;
}
retval = mqd->destroy_mqd(mqd, q->mqd,
KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
q->pipe, q->queue);
if (retval != 0)
goto out;
mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
list_del(&q->list);
if (list_empty(&qpd->queues_list))
deallocate_vmid(dqm, qpd, q);
if (q->properties.is_active)
dqm->queue_count--;
/*
* Unconditionally decrement this counter, regardless of the queue's
* type
*/
dqm->total_queue_count--;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
out:
mutex_unlock(&dqm->lock);
return retval;
}
static int update_queue(struct device_queue_manager *dqm, struct queue *q)
{
int retval;
struct mqd_manager *mqd;
bool prev_active = false;
BUG_ON(!dqm || !q || !q->mqd);
mutex_lock(&dqm->lock);
mqd = dqm->ops.get_mqd_manager(dqm,
get_mqd_type_from_queue_type(q->properties.type));
if (mqd == NULL) {
mutex_unlock(&dqm->lock);
return -ENOMEM;
}
if (q->properties.is_active == true)
prev_active = true;
/*
*
* check active state vs. the previous state
* and modify counter accordingly
*/
retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
if ((q->properties.is_active == true) && (prev_active == false))
dqm->queue_count++;
else if ((q->properties.is_active == false) && (prev_active == true))
dqm->queue_count--;
if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
retval = execute_queues_cpsch(dqm, false);
mutex_unlock(&dqm->lock);
return retval;
}
static struct mqd_manager *get_mqd_manager_nocpsch(
struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
{
struct mqd_manager *mqd;
BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
mqd = dqm->mqds[type];
if (!mqd) {
mqd = mqd_manager_init(type, dqm->dev);
if (mqd == NULL)
pr_err("kfd: mqd manager is NULL");
dqm->mqds[type] = mqd;
}
return mqd;
}
static int register_process_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct device_process_node *n;
int retval;
BUG_ON(!dqm || !qpd);
pr_debug("kfd: In func %s\n", __func__);
n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
if (!n)
return -ENOMEM;
n->qpd = qpd;
mutex_lock(&dqm->lock);
list_add(&n->list, &dqm->queues);
retval = dqm->ops_asic_specific.register_process(dqm, qpd);
dqm->processes_count++;
mutex_unlock(&dqm->lock);
return retval;
}
static int unregister_process_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
int retval;
struct device_process_node *cur, *next;
BUG_ON(!dqm || !qpd);
pr_debug("In func %s\n", __func__);
pr_debug("qpd->queues_list is %s\n",
list_empty(&qpd->queues_list) ? "empty" : "not empty");
retval = 0;
mutex_lock(&dqm->lock);
list_for_each_entry_safe(cur, next, &dqm->queues, list) {
if (qpd == cur->qpd) {
list_del(&cur->list);
kfree(cur);
dqm->processes_count--;
goto out;
}
}
/* qpd not found in dqm list */
retval = 1;
out:
mutex_unlock(&dqm->lock);
return retval;
}
static int
set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
unsigned int vmid)
{
uint32_t pasid_mapping;
pasid_mapping = (pasid == 0) ? 0 :
(uint32_t)pasid |
ATC_VMID_PASID_MAPPING_VALID;
return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
dqm->dev->kgd, pasid_mapping,
vmid);
}
int init_pipelines(struct device_queue_manager *dqm,
unsigned int pipes_num, unsigned int first_pipe)
{
void *hpdptr;
struct mqd_manager *mqd;
unsigned int i, err, inx;
uint64_t pipe_hpd_addr;
BUG_ON(!dqm || !dqm->dev);
pr_debug("kfd: In func %s\n", __func__);
/*
* Allocate memory for the HPDs. This is hardware-owned per-pipe data.
* The driver never accesses this memory after zeroing it.
* It doesn't even have to be saved/restored on suspend/resume
* because it contains no data when there are no active queues.
*/
err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
&dqm->pipeline_mem);
if (err) {
pr_err("kfd: error allocate vidmem num pipes: %d\n",
pipes_num);
return -ENOMEM;
}
hpdptr = dqm->pipeline_mem->cpu_ptr;
dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
if (mqd == NULL) {
kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
return -ENOMEM;
}
for (i = 0; i < pipes_num; i++) {
inx = i + first_pipe;
/*
* HPD buffer on GTT is allocated by amdkfd, no need to waste
* space in GTT for pipelines we don't initialize
*/
pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
/* = log2(bytes/4)-1 */
dqm->dev->kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
}
return 0;
}
static void init_interrupts(struct device_queue_manager *dqm)
{
unsigned int i;
BUG_ON(dqm == NULL);
for (i = 0 ; i < get_pipes_num(dqm) ; i++)
dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd,
i + get_first_pipe(dqm));
}
static int init_scheduler(struct device_queue_manager *dqm)
{
int retval;
BUG_ON(!dqm);
pr_debug("kfd: In %s\n", __func__);
retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
return retval;
}
static int initialize_nocpsch(struct device_queue_manager *dqm)
{
int i;
BUG_ON(!dqm);
pr_debug("kfd: In func %s num of pipes: %d\n",
__func__, get_pipes_num(dqm));
mutex_init(&dqm->lock);
INIT_LIST_HEAD(&dqm->queues);
dqm->queue_count = dqm->next_pipe_to_allocate = 0;
dqm->sdma_queue_count = 0;
dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
sizeof(unsigned int), GFP_KERNEL);
if (!dqm->allocated_queues) {
mutex_destroy(&dqm->lock);
return -ENOMEM;
}
for (i = 0; i < get_pipes_num(dqm); i++)
dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
init_scheduler(dqm);
return 0;
}
static void uninitialize_nocpsch(struct device_queue_manager *dqm)
{
int i;
BUG_ON(!dqm);
BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
kfree(dqm->allocated_queues);
for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
kfree(dqm->mqds[i]);
mutex_destroy(&dqm->lock);
kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
}
static int start_nocpsch(struct device_queue_manager *dqm)
{
init_interrupts(dqm);
return 0;
}
static int stop_nocpsch(struct device_queue_manager *dqm)
{
return 0;
}
static int allocate_sdma_queue(struct device_queue_manager *dqm,
unsigned int *sdma_queue_id)
{
int bit;
if (dqm->sdma_bitmap == 0)
return -ENOMEM;
bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
CIK_SDMA_QUEUES);
clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
*sdma_queue_id = bit;
return 0;
}
static void deallocate_sdma_queue(struct device_queue_manager *dqm,
unsigned int sdma_queue_id)
{
if (sdma_queue_id >= CIK_SDMA_QUEUES)
return;
set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
}
static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd)
{
struct mqd_manager *mqd;
int retval;
mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
if (!mqd)
return -ENOMEM;
retval = allocate_sdma_queue(dqm, &q->sdma_id);
if (retval != 0)
return retval;
q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
pr_debug("kfd: sdma id is: %d\n", q->sdma_id);
pr_debug(" sdma queue id: %d\n", q->properties.sdma_queue_id);
pr_debug(" sdma engine id: %d\n", q->properties.sdma_engine_id);
dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
&q->gart_mqd_addr, &q->properties);
if (retval != 0) {
deallocate_sdma_queue(dqm, q->sdma_id);
return retval;
}
retval = mqd->load_mqd(mqd, q->mqd, 0,
0, NULL);
if (retval != 0) {
deallocate_sdma_queue(dqm, q->sdma_id);
mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
return retval;
}
return 0;
}
/*
* Device Queue Manager implementation for cp scheduler
*/
static int set_sched_resources(struct device_queue_manager *dqm)
{
struct scheduling_resources res;
unsigned int queue_num, queue_mask;
BUG_ON(!dqm);
pr_debug("kfd: In func %s\n", __func__);
queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
queue_mask = (1 << queue_num) - 1;
res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
res.vmid_mask <<= KFD_VMID_START_OFFSET;
res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
res.gws_mask = res.oac_mask = res.gds_heap_base =
res.gds_heap_size = 0;
pr_debug("kfd: scheduling resources:\n"
" vmid mask: 0x%8X\n"
" queue mask: 0x%8llX\n",
res.vmid_mask, res.queue_mask);
return pm_send_set_resources(&dqm->packets, &res);
}
static int initialize_cpsch(struct device_queue_manager *dqm)
{
int retval;
BUG_ON(!dqm);
pr_debug("kfd: In func %s num of pipes: %d\n",
__func__, get_pipes_num_cpsch());
mutex_init(&dqm->lock);
INIT_LIST_HEAD(&dqm->queues);
dqm->queue_count = dqm->processes_count = 0;
dqm->sdma_queue_count = 0;
dqm->active_runlist = false;
retval = dqm->ops_asic_specific.initialize(dqm);
if (retval != 0)
goto fail_init_pipelines;
return 0;
fail_init_pipelines:
mutex_destroy(&dqm->lock);
return retval;
}
static int start_cpsch(struct device_queue_manager *dqm)
{
struct device_process_node *node;
int retval;
BUG_ON(!dqm);
retval = 0;
retval = pm_init(&dqm->packets, dqm);
if (retval != 0)
goto fail_packet_manager_init;
retval = set_sched_resources(dqm);
if (retval != 0)
goto fail_set_sched_resources;
pr_debug("kfd: allocating fence memory\n");
/* allocate fence memory on the gart */
retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
&dqm->fence_mem);
if (retval != 0)
goto fail_allocate_vidmem;
dqm->fence_addr = dqm->fence_mem->cpu_ptr;
dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
init_interrupts(dqm);
list_for_each_entry(node, &dqm->queues, list)
if (node->qpd->pqm->process && dqm->dev)
kfd_bind_process_to_device(dqm->dev,
node->qpd->pqm->process);
execute_queues_cpsch(dqm, true);
return 0;
fail_allocate_vidmem:
fail_set_sched_resources:
pm_uninit(&dqm->packets);
fail_packet_manager_init:
return retval;
}
static int stop_cpsch(struct device_queue_manager *dqm)
{
struct device_process_node *node;
struct kfd_process_device *pdd;
BUG_ON(!dqm);
destroy_queues_cpsch(dqm, true, true);
list_for_each_entry(node, &dqm->queues, list) {
pdd = qpd_to_pdd(node->qpd);
pdd->bound = false;
}
kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
pm_uninit(&dqm->packets);
return 0;
}
static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
struct kernel_queue *kq,
struct qcm_process_device *qpd)
{
BUG_ON(!dqm || !kq || !qpd);
pr_debug("kfd: In func %s\n", __func__);
mutex_lock(&dqm->lock);
if (dqm->total_queue_count >= max_num_of_queues_per_device) {
pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
dqm->total_queue_count);
mutex_unlock(&dqm->lock);
return -EPERM;
}
/*
* Unconditionally increment this counter, regardless of the queue's
* type or whether the queue is active.
*/
dqm->total_queue_count++;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
list_add(&kq->list, &qpd->priv_queue_list);
dqm->queue_count++;
qpd->is_debug = true;
execute_queues_cpsch(dqm, false);
mutex_unlock(&dqm->lock);
return 0;
}
static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
struct kernel_queue *kq,
struct qcm_process_device *qpd)
{
BUG_ON(!dqm || !kq);
pr_debug("kfd: In %s\n", __func__);
mutex_lock(&dqm->lock);
/* here we actually preempt the DIQ */
destroy_queues_cpsch(dqm, true, false);
list_del(&kq->list);
dqm->queue_count--;
qpd->is_debug = false;
execute_queues_cpsch(dqm, false);
/*
* Unconditionally decrement this counter, regardless of the queue's
* type.
*/
dqm->total_queue_count--;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
mutex_unlock(&dqm->lock);
}
static void select_sdma_engine_id(struct queue *q)
{
static int sdma_id;
q->sdma_id = sdma_id;
sdma_id = (sdma_id + 1) % 2;
}
static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
struct qcm_process_device *qpd, int *allocate_vmid)
{
int retval;
struct mqd_manager *mqd;
BUG_ON(!dqm || !q || !qpd);
retval = 0;
if (allocate_vmid)
*allocate_vmid = 0;
mutex_lock(&dqm->lock);
if (dqm->total_queue_count >= max_num_of_queues_per_device) {
pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
dqm->total_queue_count);
retval = -EPERM;
goto out;
}
if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
select_sdma_engine_id(q);
mqd = dqm->ops.get_mqd_manager(dqm,
get_mqd_type_from_queue_type(q->properties.type));
if (mqd == NULL) {
mutex_unlock(&dqm->lock);
return -ENOMEM;
}
dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
&q->gart_mqd_addr, &q->properties);
if (retval != 0)
goto out;
list_add(&q->list, &qpd->queues_list);
if (q->properties.is_active) {
dqm->queue_count++;
retval = execute_queues_cpsch(dqm, false);
}
if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
dqm->sdma_queue_count++;
/*
* Unconditionally increment this counter, regardless of the queue's
* type or whether the queue is active.
*/
dqm->total_queue_count++;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
out:
mutex_unlock(&dqm->lock);
return retval;
}
int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
unsigned int fence_value,
unsigned long timeout)
{
BUG_ON(!fence_addr);
timeout += jiffies;
while (*fence_addr != fence_value) {
if (time_after(jiffies, timeout)) {
pr_err("kfd: qcm fence wait loop timeout expired\n");
return -ETIME;
}
schedule();
}
return 0;
}
static int destroy_sdma_queues(struct device_queue_manager *dqm,
unsigned int sdma_engine)
{
return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false,
sdma_engine);
}
static int destroy_queues_cpsch(struct device_queue_manager *dqm,
bool preempt_static_queues, bool lock)
{
int retval;
enum kfd_preempt_type_filter preempt_type;
struct kfd_process *p;
BUG_ON(!dqm);
retval = 0;
if (lock)
mutex_lock(&dqm->lock);
if (dqm->active_runlist == false)
goto out;
pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
dqm->sdma_queue_count);
if (dqm->sdma_queue_count > 0) {
destroy_sdma_queues(dqm, 0);
destroy_sdma_queues(dqm, 1);
}
preempt_type = preempt_static_queues ?
KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES :
KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES;
retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
preempt_type, 0, false, 0);
if (retval != 0)
goto out;
*dqm->fence_addr = KFD_FENCE_INIT;
pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
KFD_FENCE_COMPLETED);
/* should be timed out */
retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
if (retval != 0) {
p = kfd_get_process(current);
p->reset_wavefronts = true;
goto out;
}
pm_release_ib(&dqm->packets);
dqm->active_runlist = false;
out:
if (lock)
mutex_unlock(&dqm->lock);
return retval;
}
static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
int retval;
BUG_ON(!dqm);
if (lock)
mutex_lock(&dqm->lock);
retval = destroy_queues_cpsch(dqm, false, false);
if (retval != 0) {
pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
goto out;
}
if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
retval = 0;
goto out;
}
if (dqm->active_runlist) {
retval = 0;
goto out;
}
retval = pm_send_runlist(&dqm->packets, &dqm->queues);
if (retval != 0) {
pr_err("kfd: failed to execute runlist");
goto out;
}
dqm->active_runlist = true;
out:
if (lock)
mutex_unlock(&dqm->lock);
return retval;
}
static int destroy_queue_cpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int retval;
struct mqd_manager *mqd;
bool preempt_all_queues;
BUG_ON(!dqm || !qpd || !q);
preempt_all_queues = false;
retval = 0;
/* remove queue from list to prevent rescheduling after preemption */
mutex_lock(&dqm->lock);
if (qpd->is_debug) {
/*
* error, currently we do not allow to destroy a queue
* of a currently debugged process
*/
retval = -EBUSY;
goto failed_try_destroy_debugged_queue;
}
mqd = dqm->ops.get_mqd_manager(dqm,
get_mqd_type_from_queue_type(q->properties.type));
if (!mqd) {
retval = -ENOMEM;
goto failed;
}
if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
dqm->sdma_queue_count--;
list_del(&q->list);
if (q->properties.is_active)
dqm->queue_count--;
execute_queues_cpsch(dqm, false);
mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
/*
* Unconditionally decrement this counter, regardless of the queue's
* type
*/
dqm->total_queue_count--;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
mutex_unlock(&dqm->lock);
return 0;
failed:
failed_try_destroy_debugged_queue:
mutex_unlock(&dqm->lock);
return retval;
}
/*
* Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
* stay in user mode.
*/
#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
/* APE1 limit is inclusive and 64K aligned. */
#define APE1_LIMIT_ALIGNMENT 0xFFFF
static bool set_cache_memory_policy(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
enum cache_policy default_policy,
enum cache_policy alternate_policy,
void __user *alternate_aperture_base,
uint64_t alternate_aperture_size)
{
bool retval;
pr_debug("kfd: In func %s\n", __func__);
mutex_lock(&dqm->lock);
if (alternate_aperture_size == 0) {
/* base > limit disables APE1 */
qpd->sh_mem_ape1_base = 1;
qpd->sh_mem_ape1_limit = 0;
} else {
/*
* In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
* SH_MEM_APE1_BASE[31:0], 0x0000 }
* APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
* SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
* Verify that the base and size parameters can be
* represented in this format and convert them.
* Additionally restrict APE1 to user-mode addresses.
*/
uint64_t base = (uintptr_t)alternate_aperture_base;
uint64_t limit = base + alternate_aperture_size - 1;
if (limit <= base)
goto out;
if ((base & APE1_FIXED_BITS_MASK) != 0)
goto out;
if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
goto out;
qpd->sh_mem_ape1_base = base >> 16;
qpd->sh_mem_ape1_limit = limit >> 16;
}
retval = dqm->ops_asic_specific.set_cache_memory_policy(
dqm,
qpd,
default_policy,
alternate_policy,
alternate_aperture_base,
alternate_aperture_size);
if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
program_sh_mem_settings(dqm, qpd);
pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
qpd->sh_mem_config, qpd->sh_mem_ape1_base,
qpd->sh_mem_ape1_limit);
mutex_unlock(&dqm->lock);
return retval;
out:
mutex_unlock(&dqm->lock);
return false;
}
struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
{
struct device_queue_manager *dqm;
BUG_ON(!dev);
pr_debug("kfd: loading device queue manager\n");
dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
if (!dqm)
return NULL;
dqm->dev = dev;
switch (sched_policy) {
case KFD_SCHED_POLICY_HWS:
case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
/* initialize dqm for cp scheduling */
dqm->ops.create_queue = create_queue_cpsch;
dqm->ops.initialize = initialize_cpsch;
dqm->ops.start = start_cpsch;
dqm->ops.stop = stop_cpsch;
dqm->ops.destroy_queue = destroy_queue_cpsch;
dqm->ops.update_queue = update_queue;
dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
dqm->ops.register_process = register_process_nocpsch;
dqm->ops.unregister_process = unregister_process_nocpsch;
dqm->ops.uninitialize = uninitialize_nocpsch;
dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
break;
case KFD_SCHED_POLICY_NO_HWS:
/* initialize dqm for no cp scheduling */
dqm->ops.start = start_nocpsch;
dqm->ops.stop = stop_nocpsch;
dqm->ops.create_queue = create_queue_nocpsch;
dqm->ops.destroy_queue = destroy_queue_nocpsch;
dqm->ops.update_queue = update_queue;
dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
dqm->ops.register_process = register_process_nocpsch;
dqm->ops.unregister_process = unregister_process_nocpsch;
dqm->ops.initialize = initialize_nocpsch;
dqm->ops.uninitialize = uninitialize_nocpsch;
dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
break;
default:
BUG();
break;
}
switch (dev->device_info->asic_family) {
case CHIP_CARRIZO:
device_queue_manager_init_vi(&dqm->ops_asic_specific);
break;
case CHIP_KAVERI:
device_queue_manager_init_cik(&dqm->ops_asic_specific);
break;
}
if (dqm->ops.initialize(dqm) != 0) {
kfree(dqm);
return NULL;
}
return dqm;
}
void device_queue_manager_uninit(struct device_queue_manager *dqm)
{
BUG_ON(!dqm);
dqm->ops.uninitialize(dqm);
kfree(dqm);
}