linux/drivers/gpu/drm/amd/amdgpu/dce_v8_0.c
Alex Deucher a2e73f56fa drm/amdgpu: Add support for CIK parts
This patch adds support for CIK parts.  These parts
are also supported by radeon which is the preferred
option, so there is a config option to enable support
for CIK parts in amdgpu for testing.

Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jammy Zhou <Jammy.Zhou@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2015-06-03 21:03:17 -04:00

3831 lines
116 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "drmP.h"
#include "amdgpu.h"
#include "amdgpu_pm.h"
#include "amdgpu_i2c.h"
#include "cikd.h"
#include "atom.h"
#include "amdgpu_atombios.h"
#include "atombios_crtc.h"
#include "atombios_encoders.h"
#include "amdgpu_pll.h"
#include "amdgpu_connectors.h"
#include "dce/dce_8_0_d.h"
#include "dce/dce_8_0_sh_mask.h"
#include "gca/gfx_7_2_enum.h"
#include "gmc/gmc_7_1_d.h"
#include "gmc/gmc_7_1_sh_mask.h"
#include "oss/oss_2_0_d.h"
#include "oss/oss_2_0_sh_mask.h"
static void dce_v8_0_set_display_funcs(struct amdgpu_device *adev);
static void dce_v8_0_set_irq_funcs(struct amdgpu_device *adev);
static const u32 crtc_offsets[6] =
{
CRTC0_REGISTER_OFFSET,
CRTC1_REGISTER_OFFSET,
CRTC2_REGISTER_OFFSET,
CRTC3_REGISTER_OFFSET,
CRTC4_REGISTER_OFFSET,
CRTC5_REGISTER_OFFSET
};
static const uint32_t dig_offsets[] = {
CRTC0_REGISTER_OFFSET,
CRTC1_REGISTER_OFFSET,
CRTC2_REGISTER_OFFSET,
CRTC3_REGISTER_OFFSET,
CRTC4_REGISTER_OFFSET,
CRTC5_REGISTER_OFFSET,
(0x13830 - 0x7030) >> 2,
};
static const struct {
uint32_t reg;
uint32_t vblank;
uint32_t vline;
uint32_t hpd;
} interrupt_status_offsets[6] = { {
.reg = mmDISP_INTERRUPT_STATUS,
.vblank = DISP_INTERRUPT_STATUS__LB_D1_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS__LB_D1_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS__DC_HPD1_INTERRUPT_MASK
}, {
.reg = mmDISP_INTERRUPT_STATUS_CONTINUE,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE__DC_HPD2_INTERRUPT_MASK
}, {
.reg = mmDISP_INTERRUPT_STATUS_CONTINUE2,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE2__DC_HPD3_INTERRUPT_MASK
}, {
.reg = mmDISP_INTERRUPT_STATUS_CONTINUE3,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE3__DC_HPD4_INTERRUPT_MASK
}, {
.reg = mmDISP_INTERRUPT_STATUS_CONTINUE4,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE4__DC_HPD5_INTERRUPT_MASK
}, {
.reg = mmDISP_INTERRUPT_STATUS_CONTINUE5,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE5__DC_HPD6_INTERRUPT_MASK
} };
static const uint32_t hpd_int_control_offsets[6] = {
mmDC_HPD1_INT_CONTROL,
mmDC_HPD2_INT_CONTROL,
mmDC_HPD3_INT_CONTROL,
mmDC_HPD4_INT_CONTROL,
mmDC_HPD5_INT_CONTROL,
mmDC_HPD6_INT_CONTROL,
};
static u32 dce_v8_0_audio_endpt_rreg(struct amdgpu_device *adev,
u32 block_offset, u32 reg)
{
unsigned long flags;
u32 r;
spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags);
WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg);
r = RREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset);
spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags);
return r;
}
static void dce_v8_0_audio_endpt_wreg(struct amdgpu_device *adev,
u32 block_offset, u32 reg, u32 v)
{
unsigned long flags;
spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags);
WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg);
WREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset, v);
spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags);
}
static bool dce_v8_0_is_in_vblank(struct amdgpu_device *adev, int crtc)
{
if (RREG32(mmCRTC_STATUS + crtc_offsets[crtc]) &
CRTC_V_BLANK_START_END__CRTC_V_BLANK_START_MASK)
return true;
else
return false;
}
static bool dce_v8_0_is_counter_moving(struct amdgpu_device *adev, int crtc)
{
u32 pos1, pos2;
pos1 = RREG32(mmCRTC_STATUS_POSITION + crtc_offsets[crtc]);
pos2 = RREG32(mmCRTC_STATUS_POSITION + crtc_offsets[crtc]);
if (pos1 != pos2)
return true;
else
return false;
}
/**
* dce_v8_0_vblank_wait - vblank wait asic callback.
*
* @adev: amdgpu_device pointer
* @crtc: crtc to wait for vblank on
*
* Wait for vblank on the requested crtc (evergreen+).
*/
static void dce_v8_0_vblank_wait(struct amdgpu_device *adev, int crtc)
{
unsigned i = 0;
if (crtc >= adev->mode_info.num_crtc)
return;
if (!(RREG32(mmCRTC_CONTROL + crtc_offsets[crtc]) & CRTC_CONTROL__CRTC_MASTER_EN_MASK))
return;
/* depending on when we hit vblank, we may be close to active; if so,
* wait for another frame.
*/
while (dce_v8_0_is_in_vblank(adev, crtc)) {
if (i++ % 100 == 0) {
if (!dce_v8_0_is_counter_moving(adev, crtc))
break;
}
}
while (!dce_v8_0_is_in_vblank(adev, crtc)) {
if (i++ % 100 == 0) {
if (!dce_v8_0_is_counter_moving(adev, crtc))
break;
}
}
}
static u32 dce_v8_0_vblank_get_counter(struct amdgpu_device *adev, int crtc)
{
if (crtc >= adev->mode_info.num_crtc)
return 0;
else
return RREG32(mmCRTC_STATUS_FRAME_COUNT + crtc_offsets[crtc]);
}
/**
* dce_v8_0_page_flip - pageflip callback.
*
* @adev: amdgpu_device pointer
* @crtc_id: crtc to cleanup pageflip on
* @crtc_base: new address of the crtc (GPU MC address)
*
* Does the actual pageflip (evergreen+).
* During vblank we take the crtc lock and wait for the update_pending
* bit to go high, when it does, we release the lock, and allow the
* double buffered update to take place.
* Returns the current update pending status.
*/
static void dce_v8_0_page_flip(struct amdgpu_device *adev,
int crtc_id, u64 crtc_base)
{
struct amdgpu_crtc *amdgpu_crtc = adev->mode_info.crtcs[crtc_id];
u32 tmp = RREG32(mmGRPH_UPDATE + amdgpu_crtc->crtc_offset);
int i;
/* Lock the graphics update lock */
tmp |= GRPH_UPDATE__GRPH_UPDATE_LOCK_MASK;
WREG32(mmGRPH_UPDATE + amdgpu_crtc->crtc_offset, tmp);
/* update the scanout addresses */
WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(crtc_base));
WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
(u32)crtc_base);
WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(crtc_base));
WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
(u32)crtc_base);
/* Wait for update_pending to go high. */
for (i = 0; i < adev->usec_timeout; i++) {
if (RREG32(mmGRPH_UPDATE + amdgpu_crtc->crtc_offset) &
GRPH_UPDATE__GRPH_SURFACE_UPDATE_PENDING_MASK)
break;
udelay(1);
}
DRM_DEBUG("Update pending now high. Unlocking vupdate_lock.\n");
/* Unlock the lock, so double-buffering can take place inside vblank */
tmp &= ~GRPH_UPDATE__GRPH_UPDATE_LOCK_MASK;
WREG32(mmGRPH_UPDATE + amdgpu_crtc->crtc_offset, tmp);
}
static int dce_v8_0_crtc_get_scanoutpos(struct amdgpu_device *adev, int crtc,
u32 *vbl, u32 *position)
{
if ((crtc < 0) || (crtc >= adev->mode_info.num_crtc))
return -EINVAL;
*vbl = RREG32(mmCRTC_V_BLANK_START_END + crtc_offsets[crtc]);
*position = RREG32(mmCRTC_STATUS_POSITION + crtc_offsets[crtc]);
return 0;
}
/**
* dce_v8_0_hpd_sense - hpd sense callback.
*
* @adev: amdgpu_device pointer
* @hpd: hpd (hotplug detect) pin
*
* Checks if a digital monitor is connected (evergreen+).
* Returns true if connected, false if not connected.
*/
static bool dce_v8_0_hpd_sense(struct amdgpu_device *adev,
enum amdgpu_hpd_id hpd)
{
bool connected = false;
switch (hpd) {
case AMDGPU_HPD_1:
if (RREG32(mmDC_HPD1_INT_STATUS) & DC_HPD1_INT_STATUS__DC_HPD1_SENSE_MASK)
connected = true;
break;
case AMDGPU_HPD_2:
if (RREG32(mmDC_HPD2_INT_STATUS) & DC_HPD2_INT_STATUS__DC_HPD2_SENSE_MASK)
connected = true;
break;
case AMDGPU_HPD_3:
if (RREG32(mmDC_HPD3_INT_STATUS) & DC_HPD3_INT_STATUS__DC_HPD3_SENSE_MASK)
connected = true;
break;
case AMDGPU_HPD_4:
if (RREG32(mmDC_HPD4_INT_STATUS) & DC_HPD4_INT_STATUS__DC_HPD4_SENSE_MASK)
connected = true;
break;
case AMDGPU_HPD_5:
if (RREG32(mmDC_HPD5_INT_STATUS) & DC_HPD5_INT_STATUS__DC_HPD5_SENSE_MASK)
connected = true;
break;
case AMDGPU_HPD_6:
if (RREG32(mmDC_HPD6_INT_STATUS) & DC_HPD6_INT_STATUS__DC_HPD6_SENSE_MASK)
connected = true;
break;
default:
break;
}
return connected;
}
/**
* dce_v8_0_hpd_set_polarity - hpd set polarity callback.
*
* @adev: amdgpu_device pointer
* @hpd: hpd (hotplug detect) pin
*
* Set the polarity of the hpd pin (evergreen+).
*/
static void dce_v8_0_hpd_set_polarity(struct amdgpu_device *adev,
enum amdgpu_hpd_id hpd)
{
u32 tmp;
bool connected = dce_v8_0_hpd_sense(adev, hpd);
switch (hpd) {
case AMDGPU_HPD_1:
tmp = RREG32(mmDC_HPD1_INT_CONTROL);
if (connected)
tmp &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_POLARITY_MASK;
else
tmp |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_POLARITY_MASK;
WREG32(mmDC_HPD1_INT_CONTROL, tmp);
break;
case AMDGPU_HPD_2:
tmp = RREG32(mmDC_HPD2_INT_CONTROL);
if (connected)
tmp &= ~DC_HPD2_INT_CONTROL__DC_HPD2_INT_POLARITY_MASK;
else
tmp |= DC_HPD2_INT_CONTROL__DC_HPD2_INT_POLARITY_MASK;
WREG32(mmDC_HPD2_INT_CONTROL, tmp);
break;
case AMDGPU_HPD_3:
tmp = RREG32(mmDC_HPD3_INT_CONTROL);
if (connected)
tmp &= ~DC_HPD3_INT_CONTROL__DC_HPD3_INT_POLARITY_MASK;
else
tmp |= DC_HPD3_INT_CONTROL__DC_HPD3_INT_POLARITY_MASK;
WREG32(mmDC_HPD3_INT_CONTROL, tmp);
break;
case AMDGPU_HPD_4:
tmp = RREG32(mmDC_HPD4_INT_CONTROL);
if (connected)
tmp &= ~DC_HPD4_INT_CONTROL__DC_HPD4_INT_POLARITY_MASK;
else
tmp |= DC_HPD4_INT_CONTROL__DC_HPD4_INT_POLARITY_MASK;
WREG32(mmDC_HPD4_INT_CONTROL, tmp);
break;
case AMDGPU_HPD_5:
tmp = RREG32(mmDC_HPD5_INT_CONTROL);
if (connected)
tmp &= ~DC_HPD5_INT_CONTROL__DC_HPD5_INT_POLARITY_MASK;
else
tmp |= DC_HPD5_INT_CONTROL__DC_HPD5_INT_POLARITY_MASK;
WREG32(mmDC_HPD5_INT_CONTROL, tmp);
break;
case AMDGPU_HPD_6:
tmp = RREG32(mmDC_HPD6_INT_CONTROL);
if (connected)
tmp &= ~DC_HPD6_INT_CONTROL__DC_HPD6_INT_POLARITY_MASK;
else
tmp |= DC_HPD6_INT_CONTROL__DC_HPD6_INT_POLARITY_MASK;
WREG32(mmDC_HPD6_INT_CONTROL, tmp);
break;
default:
break;
}
}
/**
* dce_v8_0_hpd_init - hpd setup callback.
*
* @adev: amdgpu_device pointer
*
* Setup the hpd pins used by the card (evergreen+).
* Enable the pin, set the polarity, and enable the hpd interrupts.
*/
static void dce_v8_0_hpd_init(struct amdgpu_device *adev)
{
struct drm_device *dev = adev->ddev;
struct drm_connector *connector;
u32 tmp = (0x9c4 << DC_HPD1_CONTROL__DC_HPD1_CONNECTION_TIMER__SHIFT) |
(0xfa << DC_HPD1_CONTROL__DC_HPD1_RX_INT_TIMER__SHIFT) |
DC_HPD1_CONTROL__DC_HPD1_EN_MASK;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP ||
connector->connector_type == DRM_MODE_CONNECTOR_LVDS) {
/* don't try to enable hpd on eDP or LVDS avoid breaking the
* aux dp channel on imac and help (but not completely fix)
* https://bugzilla.redhat.com/show_bug.cgi?id=726143
* also avoid interrupt storms during dpms.
*/
continue;
}
switch (amdgpu_connector->hpd.hpd) {
case AMDGPU_HPD_1:
WREG32(mmDC_HPD1_CONTROL, tmp);
break;
case AMDGPU_HPD_2:
WREG32(mmDC_HPD2_CONTROL, tmp);
break;
case AMDGPU_HPD_3:
WREG32(mmDC_HPD3_CONTROL, tmp);
break;
case AMDGPU_HPD_4:
WREG32(mmDC_HPD4_CONTROL, tmp);
break;
case AMDGPU_HPD_5:
WREG32(mmDC_HPD5_CONTROL, tmp);
break;
case AMDGPU_HPD_6:
WREG32(mmDC_HPD6_CONTROL, tmp);
break;
default:
break;
}
dce_v8_0_hpd_set_polarity(adev, amdgpu_connector->hpd.hpd);
amdgpu_irq_get(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd);
}
}
/**
* dce_v8_0_hpd_fini - hpd tear down callback.
*
* @adev: amdgpu_device pointer
*
* Tear down the hpd pins used by the card (evergreen+).
* Disable the hpd interrupts.
*/
static void dce_v8_0_hpd_fini(struct amdgpu_device *adev)
{
struct drm_device *dev = adev->ddev;
struct drm_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
switch (amdgpu_connector->hpd.hpd) {
case AMDGPU_HPD_1:
WREG32(mmDC_HPD1_CONTROL, 0);
break;
case AMDGPU_HPD_2:
WREG32(mmDC_HPD2_CONTROL, 0);
break;
case AMDGPU_HPD_3:
WREG32(mmDC_HPD3_CONTROL, 0);
break;
case AMDGPU_HPD_4:
WREG32(mmDC_HPD4_CONTROL, 0);
break;
case AMDGPU_HPD_5:
WREG32(mmDC_HPD5_CONTROL, 0);
break;
case AMDGPU_HPD_6:
WREG32(mmDC_HPD6_CONTROL, 0);
break;
default:
break;
}
amdgpu_irq_put(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd);
}
}
static u32 dce_v8_0_hpd_get_gpio_reg(struct amdgpu_device *adev)
{
return mmDC_GPIO_HPD_A;
}
static bool dce_v8_0_is_display_hung(struct amdgpu_device *adev)
{
u32 crtc_hung = 0;
u32 crtc_status[6];
u32 i, j, tmp;
for (i = 0; i < adev->mode_info.num_crtc; i++) {
if (RREG32(mmCRTC_CONTROL + crtc_offsets[i]) & CRTC_CONTROL__CRTC_MASTER_EN_MASK) {
crtc_status[i] = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]);
crtc_hung |= (1 << i);
}
}
for (j = 0; j < 10; j++) {
for (i = 0; i < adev->mode_info.num_crtc; i++) {
if (crtc_hung & (1 << i)) {
tmp = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]);
if (tmp != crtc_status[i])
crtc_hung &= ~(1 << i);
}
}
if (crtc_hung == 0)
return false;
udelay(100);
}
return true;
}
static void dce_v8_0_stop_mc_access(struct amdgpu_device *adev,
struct amdgpu_mode_mc_save *save)
{
u32 crtc_enabled, tmp;
int i;
save->vga_render_control = RREG32(mmVGA_RENDER_CONTROL);
save->vga_hdp_control = RREG32(mmVGA_HDP_CONTROL);
/* disable VGA render */
tmp = RREG32(mmVGA_RENDER_CONTROL);
tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0);
WREG32(mmVGA_RENDER_CONTROL, tmp);
/* blank the display controllers */
for (i = 0; i < adev->mode_info.num_crtc; i++) {
crtc_enabled = REG_GET_FIELD(RREG32(mmCRTC_CONTROL + crtc_offsets[i]),
CRTC_CONTROL, CRTC_MASTER_EN);
if (crtc_enabled) {
#if 0
u32 frame_count;
int j;
save->crtc_enabled[i] = true;
tmp = RREG32(mmCRTC_BLANK_CONTROL + crtc_offsets[i]);
if (REG_GET_FIELD(tmp, CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN) == 0) {
amdgpu_display_vblank_wait(adev, i);
WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 1);
tmp = REG_SET_FIELD(tmp, CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 1);
WREG32(mmCRTC_BLANK_CONTROL + crtc_offsets[i], tmp);
WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 0);
}
/* wait for the next frame */
frame_count = amdgpu_display_vblank_get_counter(adev, i);
for (j = 0; j < adev->usec_timeout; j++) {
if (amdgpu_display_vblank_get_counter(adev, i) != frame_count)
break;
udelay(1);
}
tmp = RREG32(mmGRPH_UPDATE + crtc_offsets[i]);
if (REG_GET_FIELD(tmp, GRPH_UPDATE, GRPH_UPDATE_LOCK) == 0) {
tmp = REG_SET_FIELD(tmp, GRPH_UPDATE, GRPH_UPDATE_LOCK, 1);
WREG32(mmGRPH_UPDATE + crtc_offsets[i], tmp);
}
tmp = RREG32(mmMASTER_UPDATE_LOCK + crtc_offsets[i]);
if (REG_GET_FIELD(tmp, MASTER_UPDATE_LOCK, MASTER_UPDATE_LOCK) == 0) {
tmp = REG_SET_FIELD(tmp, MASTER_UPDATE_LOCK, MASTER_UPDATE_LOCK, 1);
WREG32(mmMASTER_UPDATE_LOCK + crtc_offsets[i], tmp);
}
#else
/* XXX this is a hack to avoid strange behavior with EFI on certain systems */
WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 1);
tmp = RREG32(mmCRTC_CONTROL + crtc_offsets[i]);
tmp = REG_SET_FIELD(tmp, CRTC_CONTROL, CRTC_MASTER_EN, 0);
WREG32(mmCRTC_CONTROL + crtc_offsets[i], tmp);
WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 0);
save->crtc_enabled[i] = false;
/* ***** */
#endif
} else {
save->crtc_enabled[i] = false;
}
}
}
static void dce_v8_0_resume_mc_access(struct amdgpu_device *adev,
struct amdgpu_mode_mc_save *save)
{
u32 tmp, frame_count;
int i, j;
/* update crtc base addresses */
for (i = 0; i < adev->mode_info.num_crtc; i++) {
WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + crtc_offsets[i],
upper_32_bits(adev->mc.vram_start));
WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS_HIGH + crtc_offsets[i],
upper_32_bits(adev->mc.vram_start));
WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + crtc_offsets[i],
(u32)adev->mc.vram_start);
WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS + crtc_offsets[i],
(u32)adev->mc.vram_start);
if (save->crtc_enabled[i]) {
tmp = RREG32(mmMASTER_UPDATE_MODE + crtc_offsets[i]);
if (REG_GET_FIELD(tmp, MASTER_UPDATE_MODE, MASTER_UPDATE_MODE) != 3) {
tmp = REG_SET_FIELD(tmp, MASTER_UPDATE_MODE, MASTER_UPDATE_MODE, 3);
WREG32(mmMASTER_UPDATE_MODE + crtc_offsets[i], tmp);
}
tmp = RREG32(mmGRPH_UPDATE + crtc_offsets[i]);
if (REG_GET_FIELD(tmp, GRPH_UPDATE, GRPH_UPDATE_LOCK)) {
tmp = REG_SET_FIELD(tmp, GRPH_UPDATE, GRPH_UPDATE_LOCK, 0);
WREG32(mmGRPH_UPDATE + crtc_offsets[i], tmp);
}
tmp = RREG32(mmMASTER_UPDATE_LOCK + crtc_offsets[i]);
if (REG_GET_FIELD(tmp, MASTER_UPDATE_LOCK, MASTER_UPDATE_LOCK)) {
tmp = REG_SET_FIELD(tmp, MASTER_UPDATE_LOCK, MASTER_UPDATE_LOCK, 0);
WREG32(mmMASTER_UPDATE_LOCK + crtc_offsets[i], tmp);
}
for (j = 0; j < adev->usec_timeout; j++) {
tmp = RREG32(mmGRPH_UPDATE + crtc_offsets[i]);
if (REG_GET_FIELD(tmp, GRPH_UPDATE, GRPH_SURFACE_UPDATE_PENDING) == 0)
break;
udelay(1);
}
tmp = RREG32(mmCRTC_BLANK_CONTROL + crtc_offsets[i]);
tmp = REG_SET_FIELD(tmp, CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 0);
WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 1);
WREG32(mmCRTC_BLANK_CONTROL + crtc_offsets[i], tmp);
WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 0);
/* wait for the next frame */
frame_count = amdgpu_display_vblank_get_counter(adev, i);
for (j = 0; j < adev->usec_timeout; j++) {
if (amdgpu_display_vblank_get_counter(adev, i) != frame_count)
break;
udelay(1);
}
}
}
WREG32(mmVGA_MEMORY_BASE_ADDRESS_HIGH, upper_32_bits(adev->mc.vram_start));
WREG32(mmVGA_MEMORY_BASE_ADDRESS, lower_32_bits(adev->mc.vram_start));
/* Unlock vga access */
WREG32(mmVGA_HDP_CONTROL, save->vga_hdp_control);
mdelay(1);
WREG32(mmVGA_RENDER_CONTROL, save->vga_render_control);
}
static void dce_v8_0_set_vga_render_state(struct amdgpu_device *adev,
bool render)
{
u32 tmp;
/* Lockout access through VGA aperture*/
tmp = RREG32(mmVGA_HDP_CONTROL);
if (render)
tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 0);
else
tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1);
WREG32(mmVGA_HDP_CONTROL, tmp);
/* disable VGA render */
tmp = RREG32(mmVGA_RENDER_CONTROL);
if (render)
tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 1);
else
tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0);
WREG32(mmVGA_RENDER_CONTROL, tmp);
}
static void dce_v8_0_program_fmt(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc);
struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
int bpc = 0;
u32 tmp = 0;
enum amdgpu_connector_dither dither = AMDGPU_FMT_DITHER_DISABLE;
if (connector) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
bpc = amdgpu_connector_get_monitor_bpc(connector);
dither = amdgpu_connector->dither;
}
/* LVDS/eDP FMT is set up by atom */
if (amdgpu_encoder->devices & ATOM_DEVICE_LCD_SUPPORT)
return;
/* not needed for analog */
if ((amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1) ||
(amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2))
return;
if (bpc == 0)
return;
switch (bpc) {
case 6:
if (dither == AMDGPU_FMT_DITHER_ENABLE)
/* XXX sort out optimal dither settings */
tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK |
FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK |
FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK |
(0 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT));
else
tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK |
(0 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT));
break;
case 8:
if (dither == AMDGPU_FMT_DITHER_ENABLE)
/* XXX sort out optimal dither settings */
tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK |
FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK |
FMT_BIT_DEPTH_CONTROL__FMT_RGB_RANDOM_ENABLE_MASK |
FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK |
(1 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT));
else
tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK |
(1 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT));
break;
case 10:
if (dither == AMDGPU_FMT_DITHER_ENABLE)
/* XXX sort out optimal dither settings */
tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK |
FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK |
FMT_BIT_DEPTH_CONTROL__FMT_RGB_RANDOM_ENABLE_MASK |
FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK |
(2 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT));
else
tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK |
(2 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT));
break;
default:
/* not needed */
break;
}
WREG32(mmFMT_BIT_DEPTH_CONTROL + amdgpu_crtc->crtc_offset, tmp);
}
/* display watermark setup */
/**
* dce_v8_0_line_buffer_adjust - Set up the line buffer
*
* @adev: amdgpu_device pointer
* @amdgpu_crtc: the selected display controller
* @mode: the current display mode on the selected display
* controller
*
* Setup up the line buffer allocation for
* the selected display controller (CIK).
* Returns the line buffer size in pixels.
*/
static u32 dce_v8_0_line_buffer_adjust(struct amdgpu_device *adev,
struct amdgpu_crtc *amdgpu_crtc,
struct drm_display_mode *mode)
{
u32 tmp, buffer_alloc, i;
u32 pipe_offset = amdgpu_crtc->crtc_id * 0x8;
/*
* Line Buffer Setup
* There are 6 line buffers, one for each display controllers.
* There are 3 partitions per LB. Select the number of partitions
* to enable based on the display width. For display widths larger
* than 4096, you need use to use 2 display controllers and combine
* them using the stereo blender.
*/
if (amdgpu_crtc->base.enabled && mode) {
if (mode->crtc_hdisplay < 1920) {
tmp = 1;
buffer_alloc = 2;
} else if (mode->crtc_hdisplay < 2560) {
tmp = 2;
buffer_alloc = 2;
} else if (mode->crtc_hdisplay < 4096) {
tmp = 0;
buffer_alloc = (adev->flags & AMDGPU_IS_APU) ? 2 : 4;
} else {
DRM_DEBUG_KMS("Mode too big for LB!\n");
tmp = 0;
buffer_alloc = (adev->flags & AMDGPU_IS_APU) ? 2 : 4;
}
} else {
tmp = 1;
buffer_alloc = 0;
}
WREG32(mmLB_MEMORY_CTRL + amdgpu_crtc->crtc_offset,
(tmp << LB_MEMORY_CTRL__LB_MEMORY_CONFIG__SHIFT) |
(0x6B0 << LB_MEMORY_CTRL__LB_MEMORY_SIZE__SHIFT));
WREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset,
(buffer_alloc << PIPE0_DMIF_BUFFER_CONTROL__DMIF_BUFFERS_ALLOCATED__SHIFT));
for (i = 0; i < adev->usec_timeout; i++) {
if (RREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset) &
PIPE0_DMIF_BUFFER_CONTROL__DMIF_BUFFERS_ALLOCATION_COMPLETED_MASK)
break;
udelay(1);
}
if (amdgpu_crtc->base.enabled && mode) {
switch (tmp) {
case 0:
default:
return 4096 * 2;
case 1:
return 1920 * 2;
case 2:
return 2560 * 2;
}
}
/* controller not enabled, so no lb used */
return 0;
}
/**
* cik_get_number_of_dram_channels - get the number of dram channels
*
* @adev: amdgpu_device pointer
*
* Look up the number of video ram channels (CIK).
* Used for display watermark bandwidth calculations
* Returns the number of dram channels
*/
static u32 cik_get_number_of_dram_channels(struct amdgpu_device *adev)
{
u32 tmp = RREG32(mmMC_SHARED_CHMAP);
switch ((tmp & MC_SHARED_CHMAP__NOOFCHAN_MASK) >> MC_SHARED_CHMAP__NOOFCHAN__SHIFT) {
case 0:
default:
return 1;
case 1:
return 2;
case 2:
return 4;
case 3:
return 8;
case 4:
return 3;
case 5:
return 6;
case 6:
return 10;
case 7:
return 12;
case 8:
return 16;
}
}
struct dce8_wm_params {
u32 dram_channels; /* number of dram channels */
u32 yclk; /* bandwidth per dram data pin in kHz */
u32 sclk; /* engine clock in kHz */
u32 disp_clk; /* display clock in kHz */
u32 src_width; /* viewport width */
u32 active_time; /* active display time in ns */
u32 blank_time; /* blank time in ns */
bool interlaced; /* mode is interlaced */
fixed20_12 vsc; /* vertical scale ratio */
u32 num_heads; /* number of active crtcs */
u32 bytes_per_pixel; /* bytes per pixel display + overlay */
u32 lb_size; /* line buffer allocated to pipe */
u32 vtaps; /* vertical scaler taps */
};
/**
* dce_v8_0_dram_bandwidth - get the dram bandwidth
*
* @wm: watermark calculation data
*
* Calculate the raw dram bandwidth (CIK).
* Used for display watermark bandwidth calculations
* Returns the dram bandwidth in MBytes/s
*/
static u32 dce_v8_0_dram_bandwidth(struct dce8_wm_params *wm)
{
/* Calculate raw DRAM Bandwidth */
fixed20_12 dram_efficiency; /* 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
dram_efficiency.full = dfixed_const(7);
dram_efficiency.full = dfixed_div(dram_efficiency, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, dram_efficiency);
return dfixed_trunc(bandwidth);
}
/**
* dce_v8_0_dram_bandwidth_for_display - get the dram bandwidth for display
*
* @wm: watermark calculation data
*
* Calculate the dram bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the dram bandwidth for display in MBytes/s
*/
static u32 dce_v8_0_dram_bandwidth_for_display(struct dce8_wm_params *wm)
{
/* Calculate DRAM Bandwidth and the part allocated to display. */
fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */
disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation);
return dfixed_trunc(bandwidth);
}
/**
* dce_v8_0_data_return_bandwidth - get the data return bandwidth
*
* @wm: watermark calculation data
*
* Calculate the data return bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the data return bandwidth in MBytes/s
*/
static u32 dce_v8_0_data_return_bandwidth(struct dce8_wm_params *wm)
{
/* Calculate the display Data return Bandwidth */
fixed20_12 return_efficiency; /* 0.8 */
fixed20_12 sclk, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
sclk.full = dfixed_const(wm->sclk);
sclk.full = dfixed_div(sclk, a);
a.full = dfixed_const(10);
return_efficiency.full = dfixed_const(8);
return_efficiency.full = dfixed_div(return_efficiency, a);
a.full = dfixed_const(32);
bandwidth.full = dfixed_mul(a, sclk);
bandwidth.full = dfixed_mul(bandwidth, return_efficiency);
return dfixed_trunc(bandwidth);
}
/**
* dce_v8_0_dmif_request_bandwidth - get the dmif bandwidth
*
* @wm: watermark calculation data
*
* Calculate the dmif bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the dmif bandwidth in MBytes/s
*/
static u32 dce_v8_0_dmif_request_bandwidth(struct dce8_wm_params *wm)
{
/* Calculate the DMIF Request Bandwidth */
fixed20_12 disp_clk_request_efficiency; /* 0.8 */
fixed20_12 disp_clk, bandwidth;
fixed20_12 a, b;
a.full = dfixed_const(1000);
disp_clk.full = dfixed_const(wm->disp_clk);
disp_clk.full = dfixed_div(disp_clk, a);
a.full = dfixed_const(32);
b.full = dfixed_mul(a, disp_clk);
a.full = dfixed_const(10);
disp_clk_request_efficiency.full = dfixed_const(8);
disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a);
bandwidth.full = dfixed_mul(b, disp_clk_request_efficiency);
return dfixed_trunc(bandwidth);
}
/**
* dce_v8_0_available_bandwidth - get the min available bandwidth
*
* @wm: watermark calculation data
*
* Calculate the min available bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the min available bandwidth in MBytes/s
*/
static u32 dce_v8_0_available_bandwidth(struct dce8_wm_params *wm)
{
/* Calculate the Available bandwidth. Display can use this temporarily but not in average. */
u32 dram_bandwidth = dce_v8_0_dram_bandwidth(wm);
u32 data_return_bandwidth = dce_v8_0_data_return_bandwidth(wm);
u32 dmif_req_bandwidth = dce_v8_0_dmif_request_bandwidth(wm);
return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth));
}
/**
* dce_v8_0_average_bandwidth - get the average available bandwidth
*
* @wm: watermark calculation data
*
* Calculate the average available bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the average available bandwidth in MBytes/s
*/
static u32 dce_v8_0_average_bandwidth(struct dce8_wm_params *wm)
{
/* Calculate the display mode Average Bandwidth
* DisplayMode should contain the source and destination dimensions,
* timing, etc.
*/
fixed20_12 bpp;
fixed20_12 line_time;
fixed20_12 src_width;
fixed20_12 bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
line_time.full = dfixed_const(wm->active_time + wm->blank_time);
line_time.full = dfixed_div(line_time, a);
bpp.full = dfixed_const(wm->bytes_per_pixel);
src_width.full = dfixed_const(wm->src_width);
bandwidth.full = dfixed_mul(src_width, bpp);
bandwidth.full = dfixed_mul(bandwidth, wm->vsc);
bandwidth.full = dfixed_div(bandwidth, line_time);
return dfixed_trunc(bandwidth);
}
/**
* dce_v8_0_latency_watermark - get the latency watermark
*
* @wm: watermark calculation data
*
* Calculate the latency watermark (CIK).
* Used for display watermark bandwidth calculations
* Returns the latency watermark in ns
*/
static u32 dce_v8_0_latency_watermark(struct dce8_wm_params *wm)
{
/* First calculate the latency in ns */
u32 mc_latency = 2000; /* 2000 ns. */
u32 available_bandwidth = dce_v8_0_available_bandwidth(wm);
u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth;
u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth;
u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */
u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) +
(wm->num_heads * cursor_line_pair_return_time);
u32 latency = mc_latency + other_heads_data_return_time + dc_latency;
u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time;
u32 tmp, dmif_size = 12288;
fixed20_12 a, b, c;
if (wm->num_heads == 0)
return 0;
a.full = dfixed_const(2);
b.full = dfixed_const(1);
if ((wm->vsc.full > a.full) ||
((wm->vsc.full > b.full) && (wm->vtaps >= 3)) ||
(wm->vtaps >= 5) ||
((wm->vsc.full >= a.full) && wm->interlaced))
max_src_lines_per_dst_line = 4;
else
max_src_lines_per_dst_line = 2;
a.full = dfixed_const(available_bandwidth);
b.full = dfixed_const(wm->num_heads);
a.full = dfixed_div(a, b);
b.full = dfixed_const(mc_latency + 512);
c.full = dfixed_const(wm->disp_clk);
b.full = dfixed_div(b, c);
c.full = dfixed_const(dmif_size);
b.full = dfixed_div(c, b);
tmp = min(dfixed_trunc(a), dfixed_trunc(b));
b.full = dfixed_const(1000);
c.full = dfixed_const(wm->disp_clk);
b.full = dfixed_div(c, b);
c.full = dfixed_const(wm->bytes_per_pixel);
b.full = dfixed_mul(b, c);
lb_fill_bw = min(tmp, dfixed_trunc(b));
a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel);
b.full = dfixed_const(1000);
c.full = dfixed_const(lb_fill_bw);
b.full = dfixed_div(c, b);
a.full = dfixed_div(a, b);
line_fill_time = dfixed_trunc(a);
if (line_fill_time < wm->active_time)
return latency;
else
return latency + (line_fill_time - wm->active_time);
}
/**
* dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display - check
* average and available dram bandwidth
*
* @wm: watermark calculation data
*
* Check if the display average bandwidth fits in the display
* dram bandwidth (CIK).
* Used for display watermark bandwidth calculations
* Returns true if the display fits, false if not.
*/
static bool dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(struct dce8_wm_params *wm)
{
if (dce_v8_0_average_bandwidth(wm) <=
(dce_v8_0_dram_bandwidth_for_display(wm) / wm->num_heads))
return true;
else
return false;
}
/**
* dce_v8_0_average_bandwidth_vs_available_bandwidth - check
* average and available bandwidth
*
* @wm: watermark calculation data
*
* Check if the display average bandwidth fits in the display
* available bandwidth (CIK).
* Used for display watermark bandwidth calculations
* Returns true if the display fits, false if not.
*/
static bool dce_v8_0_average_bandwidth_vs_available_bandwidth(struct dce8_wm_params *wm)
{
if (dce_v8_0_average_bandwidth(wm) <=
(dce_v8_0_available_bandwidth(wm) / wm->num_heads))
return true;
else
return false;
}
/**
* dce_v8_0_check_latency_hiding - check latency hiding
*
* @wm: watermark calculation data
*
* Check latency hiding (CIK).
* Used for display watermark bandwidth calculations
* Returns true if the display fits, false if not.
*/
static bool dce_v8_0_check_latency_hiding(struct dce8_wm_params *wm)
{
u32 lb_partitions = wm->lb_size / wm->src_width;
u32 line_time = wm->active_time + wm->blank_time;
u32 latency_tolerant_lines;
u32 latency_hiding;
fixed20_12 a;
a.full = dfixed_const(1);
if (wm->vsc.full > a.full)
latency_tolerant_lines = 1;
else {
if (lb_partitions <= (wm->vtaps + 1))
latency_tolerant_lines = 1;
else
latency_tolerant_lines = 2;
}
latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time);
if (dce_v8_0_latency_watermark(wm) <= latency_hiding)
return true;
else
return false;
}
/**
* dce_v8_0_program_watermarks - program display watermarks
*
* @adev: amdgpu_device pointer
* @amdgpu_crtc: the selected display controller
* @lb_size: line buffer size
* @num_heads: number of display controllers in use
*
* Calculate and program the display watermarks for the
* selected display controller (CIK).
*/
static void dce_v8_0_program_watermarks(struct amdgpu_device *adev,
struct amdgpu_crtc *amdgpu_crtc,
u32 lb_size, u32 num_heads)
{
struct drm_display_mode *mode = &amdgpu_crtc->base.mode;
struct dce8_wm_params wm_low, wm_high;
u32 pixel_period;
u32 line_time = 0;
u32 latency_watermark_a = 0, latency_watermark_b = 0;
u32 tmp, wm_mask;
if (amdgpu_crtc->base.enabled && num_heads && mode) {
pixel_period = 1000000 / (u32)mode->clock;
line_time = min((u32)mode->crtc_htotal * pixel_period, (u32)65535);
/* watermark for high clocks */
if (adev->pm.dpm_enabled) {
wm_high.yclk =
amdgpu_dpm_get_mclk(adev, false) * 10;
wm_high.sclk =
amdgpu_dpm_get_sclk(adev, false) * 10;
} else {
wm_high.yclk = adev->pm.current_mclk * 10;
wm_high.sclk = adev->pm.current_sclk * 10;
}
wm_high.disp_clk = mode->clock;
wm_high.src_width = mode->crtc_hdisplay;
wm_high.active_time = mode->crtc_hdisplay * pixel_period;
wm_high.blank_time = line_time - wm_high.active_time;
wm_high.interlaced = false;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
wm_high.interlaced = true;
wm_high.vsc = amdgpu_crtc->vsc;
wm_high.vtaps = 1;
if (amdgpu_crtc->rmx_type != RMX_OFF)
wm_high.vtaps = 2;
wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */
wm_high.lb_size = lb_size;
wm_high.dram_channels = cik_get_number_of_dram_channels(adev);
wm_high.num_heads = num_heads;
/* set for high clocks */
latency_watermark_a = min(dce_v8_0_latency_watermark(&wm_high), (u32)65535);
/* possibly force display priority to high */
/* should really do this at mode validation time... */
if (!dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) ||
!dce_v8_0_average_bandwidth_vs_available_bandwidth(&wm_high) ||
!dce_v8_0_check_latency_hiding(&wm_high) ||
(adev->mode_info.disp_priority == 2)) {
DRM_DEBUG_KMS("force priority to high\n");
}
/* watermark for low clocks */
if (adev->pm.dpm_enabled) {
wm_low.yclk =
amdgpu_dpm_get_mclk(adev, true) * 10;
wm_low.sclk =
amdgpu_dpm_get_sclk(adev, true) * 10;
} else {
wm_low.yclk = adev->pm.current_mclk * 10;
wm_low.sclk = adev->pm.current_sclk * 10;
}
wm_low.disp_clk = mode->clock;
wm_low.src_width = mode->crtc_hdisplay;
wm_low.active_time = mode->crtc_hdisplay * pixel_period;
wm_low.blank_time = line_time - wm_low.active_time;
wm_low.interlaced = false;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
wm_low.interlaced = true;
wm_low.vsc = amdgpu_crtc->vsc;
wm_low.vtaps = 1;
if (amdgpu_crtc->rmx_type != RMX_OFF)
wm_low.vtaps = 2;
wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */
wm_low.lb_size = lb_size;
wm_low.dram_channels = cik_get_number_of_dram_channels(adev);
wm_low.num_heads = num_heads;
/* set for low clocks */
latency_watermark_b = min(dce_v8_0_latency_watermark(&wm_low), (u32)65535);
/* possibly force display priority to high */
/* should really do this at mode validation time... */
if (!dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) ||
!dce_v8_0_average_bandwidth_vs_available_bandwidth(&wm_low) ||
!dce_v8_0_check_latency_hiding(&wm_low) ||
(adev->mode_info.disp_priority == 2)) {
DRM_DEBUG_KMS("force priority to high\n");
}
}
/* select wm A */
wm_mask = RREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset);
tmp = wm_mask;
tmp &= ~(3 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT);
tmp |= (1 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT);
WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp);
WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset,
((latency_watermark_a << DPG_PIPE_URGENCY_CONTROL__URGENCY_LOW_WATERMARK__SHIFT) |
(line_time << DPG_PIPE_URGENCY_CONTROL__URGENCY_HIGH_WATERMARK__SHIFT)));
/* select wm B */
tmp = RREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset);
tmp &= ~(3 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT);
tmp |= (2 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT);
WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp);
WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset,
((latency_watermark_b << DPG_PIPE_URGENCY_CONTROL__URGENCY_LOW_WATERMARK__SHIFT) |
(line_time << DPG_PIPE_URGENCY_CONTROL__URGENCY_HIGH_WATERMARK__SHIFT)));
/* restore original selection */
WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, wm_mask);
/* save values for DPM */
amdgpu_crtc->line_time = line_time;
amdgpu_crtc->wm_high = latency_watermark_a;
amdgpu_crtc->wm_low = latency_watermark_b;
}
/**
* dce_v8_0_bandwidth_update - program display watermarks
*
* @adev: amdgpu_device pointer
*
* Calculate and program the display watermarks and line
* buffer allocation (CIK).
*/
static void dce_v8_0_bandwidth_update(struct amdgpu_device *adev)
{
struct drm_display_mode *mode = NULL;
u32 num_heads = 0, lb_size;
int i;
amdgpu_update_display_priority(adev);
for (i = 0; i < adev->mode_info.num_crtc; i++) {
if (adev->mode_info.crtcs[i]->base.enabled)
num_heads++;
}
for (i = 0; i < adev->mode_info.num_crtc; i++) {
mode = &adev->mode_info.crtcs[i]->base.mode;
lb_size = dce_v8_0_line_buffer_adjust(adev, adev->mode_info.crtcs[i], mode);
dce_v8_0_program_watermarks(adev, adev->mode_info.crtcs[i],
lb_size, num_heads);
}
}
static void dce_v8_0_audio_get_connected_pins(struct amdgpu_device *adev)
{
int i;
u32 offset, tmp;
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
offset = adev->mode_info.audio.pin[i].offset;
tmp = RREG32_AUDIO_ENDPT(offset,
ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT);
if (((tmp &
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY_MASK) >>
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY__SHIFT) == 1)
adev->mode_info.audio.pin[i].connected = false;
else
adev->mode_info.audio.pin[i].connected = true;
}
}
static struct amdgpu_audio_pin *dce_v8_0_audio_get_pin(struct amdgpu_device *adev)
{
int i;
dce_v8_0_audio_get_connected_pins(adev);
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
if (adev->mode_info.audio.pin[i].connected)
return &adev->mode_info.audio.pin[i];
}
DRM_ERROR("No connected audio pins found!\n");
return NULL;
}
static void dce_v8_0_afmt_audio_select_pin(struct drm_encoder *encoder)
{
struct amdgpu_device *adev = encoder->dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
u32 offset;
if (!dig || !dig->afmt || !dig->afmt->pin)
return;
offset = dig->afmt->offset;
WREG32(mmAFMT_AUDIO_SRC_CONTROL + offset,
(dig->afmt->pin->id << AFMT_AUDIO_SRC_CONTROL__AFMT_AUDIO_SRC_SELECT__SHIFT));
}
static void dce_v8_0_audio_write_latency_fields(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
struct amdgpu_device *adev = encoder->dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
struct drm_connector *connector;
struct amdgpu_connector *amdgpu_connector = NULL;
u32 tmp = 0, offset;
if (!dig || !dig->afmt || !dig->afmt->pin)
return;
offset = dig->afmt->pin->offset;
list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) {
if (connector->encoder == encoder) {
amdgpu_connector = to_amdgpu_connector(connector);
break;
}
}
if (!amdgpu_connector) {
DRM_ERROR("Couldn't find encoder's connector\n");
return;
}
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
if (connector->latency_present[1])
tmp =
(connector->video_latency[1] <<
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) |
(connector->audio_latency[1] <<
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT);
else
tmp =
(0 <<
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) |
(0 <<
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT);
} else {
if (connector->latency_present[0])
tmp =
(connector->video_latency[0] <<
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) |
(connector->audio_latency[0] <<
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT);
else
tmp =
(0 <<
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) |
(0 <<
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT);
}
WREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC, tmp);
}
static void dce_v8_0_audio_write_speaker_allocation(struct drm_encoder *encoder)
{
struct amdgpu_device *adev = encoder->dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
struct drm_connector *connector;
struct amdgpu_connector *amdgpu_connector = NULL;
u32 offset, tmp;
u8 *sadb = NULL;
int sad_count;
if (!dig || !dig->afmt || !dig->afmt->pin)
return;
offset = dig->afmt->pin->offset;
list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) {
if (connector->encoder == encoder) {
amdgpu_connector = to_amdgpu_connector(connector);
break;
}
}
if (!amdgpu_connector) {
DRM_ERROR("Couldn't find encoder's connector\n");
return;
}
sad_count = drm_edid_to_speaker_allocation(amdgpu_connector_edid(connector), &sadb);
if (sad_count < 0) {
DRM_ERROR("Couldn't read Speaker Allocation Data Block: %d\n", sad_count);
sad_count = 0;
}
/* program the speaker allocation */
tmp = RREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER);
tmp &= ~(AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__DP_CONNECTION_MASK |
AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION_MASK);
/* set HDMI mode */
tmp |= AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__HDMI_CONNECTION_MASK;
if (sad_count)
tmp |= (sadb[0] << AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION__SHIFT);
else
tmp |= (5 << AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION__SHIFT); /* stereo */
WREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER, tmp);
kfree(sadb);
}
static void dce_v8_0_audio_write_sad_regs(struct drm_encoder *encoder)
{
struct amdgpu_device *adev = encoder->dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
u32 offset;
struct drm_connector *connector;
struct amdgpu_connector *amdgpu_connector = NULL;
struct cea_sad *sads;
int i, sad_count;
static const u16 eld_reg_to_type[][2] = {
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0, HDMI_AUDIO_CODING_TYPE_PCM },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR1, HDMI_AUDIO_CODING_TYPE_AC3 },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR2, HDMI_AUDIO_CODING_TYPE_MPEG1 },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR3, HDMI_AUDIO_CODING_TYPE_MP3 },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR4, HDMI_AUDIO_CODING_TYPE_MPEG2 },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR5, HDMI_AUDIO_CODING_TYPE_AAC_LC },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR6, HDMI_AUDIO_CODING_TYPE_DTS },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR7, HDMI_AUDIO_CODING_TYPE_ATRAC },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR9, HDMI_AUDIO_CODING_TYPE_EAC3 },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR10, HDMI_AUDIO_CODING_TYPE_DTS_HD },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR11, HDMI_AUDIO_CODING_TYPE_MLP },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR13, HDMI_AUDIO_CODING_TYPE_WMA_PRO },
};
if (!dig || !dig->afmt || !dig->afmt->pin)
return;
offset = dig->afmt->pin->offset;
list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) {
if (connector->encoder == encoder) {
amdgpu_connector = to_amdgpu_connector(connector);
break;
}
}
if (!amdgpu_connector) {
DRM_ERROR("Couldn't find encoder's connector\n");
return;
}
sad_count = drm_edid_to_sad(amdgpu_connector_edid(connector), &sads);
if (sad_count <= 0) {
DRM_ERROR("Couldn't read SADs: %d\n", sad_count);
return;
}
BUG_ON(!sads);
for (i = 0; i < ARRAY_SIZE(eld_reg_to_type); i++) {
u32 value = 0;
u8 stereo_freqs = 0;
int max_channels = -1;
int j;
for (j = 0; j < sad_count; j++) {
struct cea_sad *sad = &sads[j];
if (sad->format == eld_reg_to_type[i][1]) {
if (sad->channels > max_channels) {
value = (sad->channels <<
AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__MAX_CHANNELS__SHIFT) |
(sad->byte2 <<
AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__DESCRIPTOR_BYTE_2__SHIFT) |
(sad->freq <<
AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__SUPPORTED_FREQUENCIES__SHIFT);
max_channels = sad->channels;
}
if (sad->format == HDMI_AUDIO_CODING_TYPE_PCM)
stereo_freqs |= sad->freq;
else
break;
}
}
value |= (stereo_freqs <<
AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__SUPPORTED_FREQUENCIES_STEREO__SHIFT);
WREG32_AUDIO_ENDPT(offset, eld_reg_to_type[i][0], value);
}
kfree(sads);
}
static void dce_v8_0_audio_enable(struct amdgpu_device *adev,
struct amdgpu_audio_pin *pin,
bool enable)
{
if (!pin)
return;
WREG32_AUDIO_ENDPT(pin->offset, ixAZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL,
enable ? AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL__AUDIO_ENABLED_MASK : 0);
}
static const u32 pin_offsets[7] =
{
(0x1780 - 0x1780),
(0x1786 - 0x1780),
(0x178c - 0x1780),
(0x1792 - 0x1780),
(0x1798 - 0x1780),
(0x179d - 0x1780),
(0x17a4 - 0x1780),
};
static int dce_v8_0_audio_init(struct amdgpu_device *adev)
{
int i;
if (!amdgpu_audio)
return 0;
adev->mode_info.audio.enabled = true;
if (adev->asic_type == CHIP_KAVERI) /* KV: 4 streams, 7 endpoints */
adev->mode_info.audio.num_pins = 7;
else if ((adev->asic_type == CHIP_KABINI) ||
(adev->asic_type == CHIP_MULLINS)) /* KB/ML: 2 streams, 3 endpoints */
adev->mode_info.audio.num_pins = 3;
else if ((adev->asic_type == CHIP_BONAIRE) ||
(adev->asic_type == CHIP_HAWAII))/* BN/HW: 6 streams, 7 endpoints */
adev->mode_info.audio.num_pins = 7;
else
adev->mode_info.audio.num_pins = 3;
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
adev->mode_info.audio.pin[i].channels = -1;
adev->mode_info.audio.pin[i].rate = -1;
adev->mode_info.audio.pin[i].bits_per_sample = -1;
adev->mode_info.audio.pin[i].status_bits = 0;
adev->mode_info.audio.pin[i].category_code = 0;
adev->mode_info.audio.pin[i].connected = false;
adev->mode_info.audio.pin[i].offset = pin_offsets[i];
adev->mode_info.audio.pin[i].id = i;
/* disable audio. it will be set up later */
/* XXX remove once we switch to ip funcs */
dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
}
return 0;
}
static void dce_v8_0_audio_fini(struct amdgpu_device *adev)
{
int i;
if (!adev->mode_info.audio.enabled)
return;
for (i = 0; i < adev->mode_info.audio.num_pins; i++)
dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
adev->mode_info.audio.enabled = false;
}
/*
* update the N and CTS parameters for a given pixel clock rate
*/
static void dce_v8_0_afmt_update_ACR(struct drm_encoder *encoder, uint32_t clock)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_afmt_acr acr = amdgpu_afmt_acr(clock);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
uint32_t offset = dig->afmt->offset;
WREG32(mmHDMI_ACR_32_0 + offset, (acr.cts_32khz << HDMI_ACR_44_0__HDMI_ACR_CTS_44__SHIFT));
WREG32(mmHDMI_ACR_32_1 + offset, acr.n_32khz);
WREG32(mmHDMI_ACR_44_0 + offset, (acr.cts_44_1khz << HDMI_ACR_44_0__HDMI_ACR_CTS_44__SHIFT));
WREG32(mmHDMI_ACR_44_1 + offset, acr.n_44_1khz);
WREG32(mmHDMI_ACR_48_0 + offset, (acr.cts_48khz << HDMI_ACR_48_0__HDMI_ACR_CTS_48__SHIFT));
WREG32(mmHDMI_ACR_48_1 + offset, acr.n_48khz);
}
/*
* build a HDMI Video Info Frame
*/
static void dce_v8_0_afmt_update_avi_infoframe(struct drm_encoder *encoder,
void *buffer, size_t size)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
uint32_t offset = dig->afmt->offset;
uint8_t *frame = buffer + 3;
uint8_t *header = buffer;
WREG32(mmAFMT_AVI_INFO0 + offset,
frame[0x0] | (frame[0x1] << 8) | (frame[0x2] << 16) | (frame[0x3] << 24));
WREG32(mmAFMT_AVI_INFO1 + offset,
frame[0x4] | (frame[0x5] << 8) | (frame[0x6] << 16) | (frame[0x7] << 24));
WREG32(mmAFMT_AVI_INFO2 + offset,
frame[0x8] | (frame[0x9] << 8) | (frame[0xA] << 16) | (frame[0xB] << 24));
WREG32(mmAFMT_AVI_INFO3 + offset,
frame[0xC] | (frame[0xD] << 8) | (header[1] << 24));
}
static void dce_v8_0_audio_set_dto(struct drm_encoder *encoder, u32 clock)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc);
u32 dto_phase = 24 * 1000;
u32 dto_modulo = clock;
if (!dig || !dig->afmt)
return;
/* XXX two dtos; generally use dto0 for hdmi */
/* Express [24MHz / target pixel clock] as an exact rational
* number (coefficient of two integer numbers. DCCG_AUDIO_DTOx_PHASE
* is the numerator, DCCG_AUDIO_DTOx_MODULE is the denominator
*/
WREG32(mmDCCG_AUDIO_DTO_SOURCE, (amdgpu_crtc->crtc_id << DCCG_AUDIO_DTO_SOURCE__DCCG_AUDIO_DTO0_SOURCE_SEL__SHIFT));
WREG32(mmDCCG_AUDIO_DTO0_PHASE, dto_phase);
WREG32(mmDCCG_AUDIO_DTO0_MODULE, dto_modulo);
}
/*
* update the info frames with the data from the current display mode
*/
static void dce_v8_0_afmt_setmode(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
u8 buffer[HDMI_INFOFRAME_HEADER_SIZE + HDMI_AVI_INFOFRAME_SIZE];
struct hdmi_avi_infoframe frame;
uint32_t offset, val;
ssize_t err;
int bpc = 8;
if (!dig || !dig->afmt)
return;
/* Silent, r600_hdmi_enable will raise WARN for us */
if (!dig->afmt->enabled)
return;
offset = dig->afmt->offset;
/* hdmi deep color mode general control packets setup, if bpc > 8 */
if (encoder->crtc) {
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc);
bpc = amdgpu_crtc->bpc;
}
/* disable audio prior to setting up hw */
dig->afmt->pin = dce_v8_0_audio_get_pin(adev);
dce_v8_0_audio_enable(adev, dig->afmt->pin, false);
dce_v8_0_audio_set_dto(encoder, mode->clock);
WREG32(mmHDMI_VBI_PACKET_CONTROL + offset,
HDMI_VBI_PACKET_CONTROL__HDMI_NULL_SEND_MASK); /* send null packets when required */
WREG32(mmAFMT_AUDIO_CRC_CONTROL + offset, 0x1000);
val = RREG32(mmHDMI_CONTROL + offset);
val &= ~HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK;
val &= ~HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH_MASK;
switch (bpc) {
case 0:
case 6:
case 8:
case 16:
default:
DRM_DEBUG("%s: Disabling hdmi deep color for %d bpc.\n",
connector->name, bpc);
break;
case 10:
val |= HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK;
val |= 1 << HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH__SHIFT;
DRM_DEBUG("%s: Enabling hdmi deep color 30 for 10 bpc.\n",
connector->name);
break;
case 12:
val |= HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK;
val |= 2 << HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH__SHIFT;
DRM_DEBUG("%s: Enabling hdmi deep color 36 for 12 bpc.\n",
connector->name);
break;
}
WREG32(mmHDMI_CONTROL + offset, val);
WREG32(mmHDMI_VBI_PACKET_CONTROL + offset,
HDMI_VBI_PACKET_CONTROL__HDMI_NULL_SEND_MASK | /* send null packets when required */
HDMI_VBI_PACKET_CONTROL__HDMI_GC_SEND_MASK | /* send general control packets */
HDMI_VBI_PACKET_CONTROL__HDMI_GC_CONT_MASK); /* send general control packets every frame */
WREG32(mmHDMI_INFOFRAME_CONTROL0 + offset,
HDMI_INFOFRAME_CONTROL0__HDMI_AUDIO_INFO_SEND_MASK | /* enable audio info frames (frames won't be set until audio is enabled) */
HDMI_INFOFRAME_CONTROL0__HDMI_AUDIO_INFO_CONT_MASK); /* required for audio info values to be updated */
WREG32(mmAFMT_INFOFRAME_CONTROL0 + offset,
AFMT_INFOFRAME_CONTROL0__AFMT_AUDIO_INFO_UPDATE_MASK); /* required for audio info values to be updated */
WREG32(mmHDMI_INFOFRAME_CONTROL1 + offset,
(2 << HDMI_INFOFRAME_CONTROL1__HDMI_AUDIO_INFO_LINE__SHIFT)); /* anything other than 0 */
WREG32(mmHDMI_GC + offset, 0); /* unset HDMI_GC_AVMUTE */
WREG32(mmHDMI_AUDIO_PACKET_CONTROL + offset,
(1 << HDMI_AUDIO_PACKET_CONTROL__HDMI_AUDIO_DELAY_EN__SHIFT) | /* set the default audio delay */
(3 << HDMI_AUDIO_PACKET_CONTROL__HDMI_AUDIO_PACKETS_PER_LINE__SHIFT)); /* should be suffient for all audio modes and small enough for all hblanks */
WREG32(mmAFMT_AUDIO_PACKET_CONTROL + offset,
AFMT_AUDIO_PACKET_CONTROL__AFMT_60958_CS_UPDATE_MASK); /* allow 60958 channel status fields to be updated */
/* fglrx clears sth in AFMT_AUDIO_PACKET_CONTROL2 here */
if (bpc > 8)
WREG32(mmHDMI_ACR_PACKET_CONTROL + offset,
HDMI_ACR_PACKET_CONTROL__HDMI_ACR_AUTO_SEND_MASK); /* allow hw to sent ACR packets when required */
else
WREG32(mmHDMI_ACR_PACKET_CONTROL + offset,
HDMI_ACR_PACKET_CONTROL__HDMI_ACR_SOURCE_MASK | /* select SW CTS value */
HDMI_ACR_PACKET_CONTROL__HDMI_ACR_AUTO_SEND_MASK); /* allow hw to sent ACR packets when required */
dce_v8_0_afmt_update_ACR(encoder, mode->clock);
WREG32(mmAFMT_60958_0 + offset,
(1 << AFMT_60958_0__AFMT_60958_CS_CHANNEL_NUMBER_L__SHIFT));
WREG32(mmAFMT_60958_1 + offset,
(2 << AFMT_60958_1__AFMT_60958_CS_CHANNEL_NUMBER_R__SHIFT));
WREG32(mmAFMT_60958_2 + offset,
(3 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_2__SHIFT) |
(4 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_3__SHIFT) |
(5 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_4__SHIFT) |
(6 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_5__SHIFT) |
(7 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_6__SHIFT) |
(8 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_7__SHIFT));
dce_v8_0_audio_write_speaker_allocation(encoder);
WREG32(mmAFMT_AUDIO_PACKET_CONTROL2 + offset,
(0xff << AFMT_AUDIO_PACKET_CONTROL2__AFMT_AUDIO_CHANNEL_ENABLE__SHIFT));
dce_v8_0_afmt_audio_select_pin(encoder);
dce_v8_0_audio_write_sad_regs(encoder);
dce_v8_0_audio_write_latency_fields(encoder, mode);
err = drm_hdmi_avi_infoframe_from_display_mode(&frame, mode);
if (err < 0) {
DRM_ERROR("failed to setup AVI infoframe: %zd\n", err);
return;
}
err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
if (err < 0) {
DRM_ERROR("failed to pack AVI infoframe: %zd\n", err);
return;
}
dce_v8_0_afmt_update_avi_infoframe(encoder, buffer, sizeof(buffer));
WREG32_OR(mmHDMI_INFOFRAME_CONTROL0 + offset,
HDMI_INFOFRAME_CONTROL0__HDMI_AVI_INFO_SEND_MASK | /* enable AVI info frames */
HDMI_INFOFRAME_CONTROL0__HDMI_AVI_INFO_SEND_MASK); /* required for audio info values to be updated */
WREG32_P(mmHDMI_INFOFRAME_CONTROL1 + offset,
(2 << HDMI_INFOFRAME_CONTROL1__HDMI_AVI_INFO_LINE__SHIFT), /* anything other than 0 */
~HDMI_INFOFRAME_CONTROL1__HDMI_AVI_INFO_LINE_MASK);
WREG32_OR(mmAFMT_AUDIO_PACKET_CONTROL + offset,
AFMT_AUDIO_PACKET_CONTROL__AFMT_AUDIO_SAMPLE_SEND_MASK); /* send audio packets */
/* it's unknown what these bits do excatly, but it's indeed quite useful for debugging */
WREG32(mmAFMT_RAMP_CONTROL0 + offset, 0x00FFFFFF);
WREG32(mmAFMT_RAMP_CONTROL1 + offset, 0x007FFFFF);
WREG32(mmAFMT_RAMP_CONTROL2 + offset, 0x00000001);
WREG32(mmAFMT_RAMP_CONTROL3 + offset, 0x00000001);
/* enable audio after to setting up hw */
dce_v8_0_audio_enable(adev, dig->afmt->pin, true);
}
static void dce_v8_0_afmt_enable(struct drm_encoder *encoder, bool enable)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
if (!dig || !dig->afmt)
return;
/* Silent, r600_hdmi_enable will raise WARN for us */
if (enable && dig->afmt->enabled)
return;
if (!enable && !dig->afmt->enabled)
return;
if (!enable && dig->afmt->pin) {
dce_v8_0_audio_enable(adev, dig->afmt->pin, false);
dig->afmt->pin = NULL;
}
dig->afmt->enabled = enable;
DRM_DEBUG("%sabling AFMT interface @ 0x%04X for encoder 0x%x\n",
enable ? "En" : "Dis", dig->afmt->offset, amdgpu_encoder->encoder_id);
}
static void dce_v8_0_afmt_init(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->mode_info.num_dig; i++)
adev->mode_info.afmt[i] = NULL;
/* DCE8 has audio blocks tied to DIG encoders */
for (i = 0; i < adev->mode_info.num_dig; i++) {
adev->mode_info.afmt[i] = kzalloc(sizeof(struct amdgpu_afmt), GFP_KERNEL);
if (adev->mode_info.afmt[i]) {
adev->mode_info.afmt[i]->offset = dig_offsets[i];
adev->mode_info.afmt[i]->id = i;
}
}
}
static void dce_v8_0_afmt_fini(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->mode_info.num_dig; i++) {
kfree(adev->mode_info.afmt[i]);
adev->mode_info.afmt[i] = NULL;
}
}
static const u32 vga_control_regs[6] =
{
mmD1VGA_CONTROL,
mmD2VGA_CONTROL,
mmD3VGA_CONTROL,
mmD4VGA_CONTROL,
mmD5VGA_CONTROL,
mmD6VGA_CONTROL,
};
static void dce_v8_0_vga_enable(struct drm_crtc *crtc, bool enable)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
u32 vga_control;
vga_control = RREG32(vga_control_regs[amdgpu_crtc->crtc_id]) & ~1;
if (enable)
WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control | 1);
else
WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control);
}
static void dce_v8_0_grph_enable(struct drm_crtc *crtc, bool enable)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
if (enable)
WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 1);
else
WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 0);
}
static void dce_v8_0_tiling_fields(uint64_t tiling_flags, unsigned *bankw,
unsigned *bankh, unsigned *mtaspect,
unsigned *tile_split)
{
*bankw = (tiling_flags >> AMDGPU_TILING_EG_BANKW_SHIFT) & AMDGPU_TILING_EG_BANKW_MASK;
*bankh = (tiling_flags >> AMDGPU_TILING_EG_BANKH_SHIFT) & AMDGPU_TILING_EG_BANKH_MASK;
*mtaspect = (tiling_flags >> AMDGPU_TILING_EG_MACRO_TILE_ASPECT_SHIFT) & AMDGPU_TILING_EG_MACRO_TILE_ASPECT_MASK;
*tile_split = (tiling_flags >> AMDGPU_TILING_EG_TILE_SPLIT_SHIFT) & AMDGPU_TILING_EG_TILE_SPLIT_MASK;
switch (*bankw) {
default:
case 1:
*bankw = ADDR_SURF_BANK_WIDTH_1;
break;
case 2:
*bankw = ADDR_SURF_BANK_WIDTH_2;
break;
case 4:
*bankw = ADDR_SURF_BANK_WIDTH_4;
break;
case 8:
*bankw = ADDR_SURF_BANK_WIDTH_8;
break;
}
switch (*bankh) {
default:
case 1:
*bankh = ADDR_SURF_BANK_HEIGHT_1;
break;
case 2:
*bankh = ADDR_SURF_BANK_HEIGHT_2;
break;
case 4:
*bankh = ADDR_SURF_BANK_HEIGHT_4;
break;
case 8:
*bankh = ADDR_SURF_BANK_HEIGHT_8;
break;
}
switch (*mtaspect) {
default:
case 1:
*mtaspect = ADDR_SURF_MACRO_TILE_ASPECT_1;
break;
case 2:
*mtaspect = ADDR_SURF_MACRO_TILE_ASPECT_2;
break;
case 4:
*mtaspect = ADDR_SURF_MACRO_TILE_ASPECT_4;
break;
case 8:
*mtaspect = ADDR_SURF_MACRO_TILE_ASPECT_8;
break;
}
}
static int dce_v8_0_crtc_do_set_base(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y, int atomic)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_framebuffer *amdgpu_fb;
struct drm_framebuffer *target_fb;
struct drm_gem_object *obj;
struct amdgpu_bo *rbo;
uint64_t fb_location, tiling_flags;
uint32_t fb_format, fb_pitch_pixels;
unsigned bankw, bankh, mtaspect, tile_split;
u32 fb_swap = (GRPH_ENDIAN_NONE << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
u32 pipe_config = (adev->gfx.config.tile_mode_array[10] >> 6) & 0x1f;
u32 tmp, viewport_w, viewport_h;
int r;
bool bypass_lut = false;
/* no fb bound */
if (!atomic && !crtc->primary->fb) {
DRM_DEBUG_KMS("No FB bound\n");
return 0;
}
if (atomic) {
amdgpu_fb = to_amdgpu_framebuffer(fb);
target_fb = fb;
}
else {
amdgpu_fb = to_amdgpu_framebuffer(crtc->primary->fb);
target_fb = crtc->primary->fb;
}
/* If atomic, assume fb object is pinned & idle & fenced and
* just update base pointers
*/
obj = amdgpu_fb->obj;
rbo = gem_to_amdgpu_bo(obj);
r = amdgpu_bo_reserve(rbo, false);
if (unlikely(r != 0))
return r;
if (atomic)
fb_location = amdgpu_bo_gpu_offset(rbo);
else {
r = amdgpu_bo_pin(rbo, AMDGPU_GEM_DOMAIN_VRAM, &fb_location);
if (unlikely(r != 0)) {
amdgpu_bo_unreserve(rbo);
return -EINVAL;
}
}
amdgpu_bo_get_tiling_flags(rbo, &tiling_flags);
amdgpu_bo_unreserve(rbo);
switch (target_fb->pixel_format) {
case DRM_FORMAT_C8:
fb_format = ((GRPH_DEPTH_8BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
(GRPH_FORMAT_INDEXED << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
break;
case DRM_FORMAT_XRGB4444:
case DRM_FORMAT_ARGB4444:
fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
(GRPH_FORMAT_ARGB1555 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
#ifdef __BIG_ENDIAN
fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
#endif
break;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_ARGB1555:
fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
(GRPH_FORMAT_ARGB1555 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
#ifdef __BIG_ENDIAN
fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
#endif
break;
case DRM_FORMAT_BGRX5551:
case DRM_FORMAT_BGRA5551:
fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
(GRPH_FORMAT_BGRA5551 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
#ifdef __BIG_ENDIAN
fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
#endif
break;
case DRM_FORMAT_RGB565:
fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
(GRPH_FORMAT_ARGB565 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
#ifdef __BIG_ENDIAN
fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
#endif
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
(GRPH_FORMAT_ARGB8888 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
#ifdef __BIG_ENDIAN
fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
#endif
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
(GRPH_FORMAT_ARGB2101010 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
#ifdef __BIG_ENDIAN
fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
#endif
/* Greater 8 bpc fb needs to bypass hw-lut to retain precision */
bypass_lut = true;
break;
case DRM_FORMAT_BGRX1010102:
case DRM_FORMAT_BGRA1010102:
fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
(GRPH_FORMAT_BGRA1010102 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
#ifdef __BIG_ENDIAN
fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
#endif
/* Greater 8 bpc fb needs to bypass hw-lut to retain precision */
bypass_lut = true;
break;
default:
DRM_ERROR("Unsupported screen format %s\n",
drm_get_format_name(target_fb->pixel_format));
return -EINVAL;
}
if (tiling_flags & AMDGPU_TILING_MACRO) {
unsigned tileb, index, num_banks, tile_split_bytes;
dce_v8_0_tiling_fields(tiling_flags, &bankw, &bankh, &mtaspect, &tile_split);
/* Set NUM_BANKS. */
/* Calculate the macrotile mode index. */
tile_split_bytes = 64 << tile_split;
tileb = 8 * 8 * target_fb->bits_per_pixel / 8;
tileb = min(tile_split_bytes, tileb);
for (index = 0; tileb > 64; index++) {
tileb >>= 1;
}
if (index >= 16) {
DRM_ERROR("Wrong screen bpp (%u) or tile split (%u)\n",
target_fb->bits_per_pixel, tile_split);
return -EINVAL;
}
num_banks = (adev->gfx.config.macrotile_mode_array[index] >> 6) & 0x3;
fb_format |= (num_banks << GRPH_CONTROL__GRPH_NUM_BANKS__SHIFT);
fb_format |= (GRPH_ARRAY_2D_TILED_THIN1 << GRPH_CONTROL__GRPH_ARRAY_MODE__SHIFT);
fb_format |= (tile_split << GRPH_CONTROL__GRPH_TILE_SPLIT__SHIFT);
fb_format |= (bankw << GRPH_CONTROL__GRPH_BANK_WIDTH__SHIFT);
fb_format |= (bankh << GRPH_CONTROL__GRPH_BANK_HEIGHT__SHIFT);
fb_format |= (mtaspect << GRPH_CONTROL__GRPH_MACRO_TILE_ASPECT__SHIFT);
fb_format |= (DISPLAY_MICRO_TILING << GRPH_CONTROL__GRPH_MICRO_TILE_MODE__SHIFT);
} else if (tiling_flags & AMDGPU_TILING_MICRO) {
fb_format |= (GRPH_ARRAY_1D_TILED_THIN1 << GRPH_CONTROL__GRPH_ARRAY_MODE__SHIFT);
}
/* Read the pipe config from the 2D TILED SCANOUT mode.
* It should be the same for the other modes too, but not all
* modes set the pipe config field. */
fb_format |= (pipe_config << GRPH_CONTROL__GRPH_PIPE_CONFIG__SHIFT);
dce_v8_0_vga_enable(crtc, false);
WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(fb_location));
WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(fb_location));
WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
(u32)fb_location & GRPH_PRIMARY_SURFACE_ADDRESS__GRPH_PRIMARY_SURFACE_ADDRESS_MASK);
WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
(u32) fb_location & GRPH_SECONDARY_SURFACE_ADDRESS__GRPH_SECONDARY_SURFACE_ADDRESS_MASK);
WREG32(mmGRPH_CONTROL + amdgpu_crtc->crtc_offset, fb_format);
WREG32(mmGRPH_SWAP_CNTL + amdgpu_crtc->crtc_offset, fb_swap);
/*
* The LUT only has 256 slots for indexing by a 8 bpc fb. Bypass the LUT
* for > 8 bpc scanout to avoid truncation of fb indices to 8 msb's, to
* retain the full precision throughout the pipeline.
*/
WREG32_P(mmGRPH_LUT_10BIT_BYPASS_CONTROL + amdgpu_crtc->crtc_offset,
(bypass_lut ? LUT_10BIT_BYPASS_EN : 0),
~LUT_10BIT_BYPASS_EN);
if (bypass_lut)
DRM_DEBUG_KMS("Bypassing hardware LUT due to 10 bit fb scanout.\n");
WREG32(mmGRPH_SURFACE_OFFSET_X + amdgpu_crtc->crtc_offset, 0);
WREG32(mmGRPH_SURFACE_OFFSET_Y + amdgpu_crtc->crtc_offset, 0);
WREG32(mmGRPH_X_START + amdgpu_crtc->crtc_offset, 0);
WREG32(mmGRPH_Y_START + amdgpu_crtc->crtc_offset, 0);
WREG32(mmGRPH_X_END + amdgpu_crtc->crtc_offset, target_fb->width);
WREG32(mmGRPH_Y_END + amdgpu_crtc->crtc_offset, target_fb->height);
fb_pitch_pixels = target_fb->pitches[0] / (target_fb->bits_per_pixel / 8);
WREG32(mmGRPH_PITCH + amdgpu_crtc->crtc_offset, fb_pitch_pixels);
dce_v8_0_grph_enable(crtc, true);
WREG32(mmLB_DESKTOP_HEIGHT + amdgpu_crtc->crtc_offset,
target_fb->height);
x &= ~3;
y &= ~1;
WREG32(mmVIEWPORT_START + amdgpu_crtc->crtc_offset,
(x << 16) | y);
viewport_w = crtc->mode.hdisplay;
viewport_h = (crtc->mode.vdisplay + 1) & ~1;
WREG32(mmVIEWPORT_SIZE + amdgpu_crtc->crtc_offset,
(viewport_w << 16) | viewport_h);
/* pageflip setup */
/* make sure flip is at vb rather than hb */
tmp = RREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset);
tmp &= ~GRPH_FLIP_CONTROL__GRPH_SURFACE_UPDATE_H_RETRACE_EN_MASK;
WREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, tmp);
/* set pageflip to happen only at start of vblank interval (front porch) */
WREG32(mmMASTER_UPDATE_MODE + amdgpu_crtc->crtc_offset, 3);
if (!atomic && fb && fb != crtc->primary->fb) {
amdgpu_fb = to_amdgpu_framebuffer(fb);
rbo = gem_to_amdgpu_bo(amdgpu_fb->obj);
r = amdgpu_bo_reserve(rbo, false);
if (unlikely(r != 0))
return r;
amdgpu_bo_unpin(rbo);
amdgpu_bo_unreserve(rbo);
}
/* Bytes per pixel may have changed */
dce_v8_0_bandwidth_update(adev);
return 0;
}
static void dce_v8_0_set_interleave(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
WREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset,
LB_DATA_FORMAT__INTERLEAVE_EN__SHIFT);
else
WREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset, 0);
}
static void dce_v8_0_crtc_load_lut(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
int i;
DRM_DEBUG_KMS("%d\n", amdgpu_crtc->crtc_id);
WREG32(mmINPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset,
((INPUT_CSC_BYPASS << INPUT_CSC_CONTROL__INPUT_CSC_GRPH_MODE__SHIFT) |
(INPUT_CSC_BYPASS << INPUT_CSC_CONTROL__INPUT_CSC_OVL_MODE__SHIFT)));
WREG32(mmPRESCALE_GRPH_CONTROL + amdgpu_crtc->crtc_offset,
PRESCALE_GRPH_CONTROL__GRPH_PRESCALE_BYPASS_MASK);
WREG32(mmPRESCALE_OVL_CONTROL + amdgpu_crtc->crtc_offset,
PRESCALE_OVL_CONTROL__OVL_PRESCALE_BYPASS_MASK);
WREG32(mmINPUT_GAMMA_CONTROL + amdgpu_crtc->crtc_offset,
((INPUT_GAMMA_USE_LUT << INPUT_GAMMA_CONTROL__GRPH_INPUT_GAMMA_MODE__SHIFT) |
(INPUT_GAMMA_USE_LUT << INPUT_GAMMA_CONTROL__OVL_INPUT_GAMMA_MODE__SHIFT)));
WREG32(mmDC_LUT_CONTROL + amdgpu_crtc->crtc_offset, 0);
WREG32(mmDC_LUT_BLACK_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0);
WREG32(mmDC_LUT_BLACK_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0);
WREG32(mmDC_LUT_BLACK_OFFSET_RED + amdgpu_crtc->crtc_offset, 0);
WREG32(mmDC_LUT_WHITE_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0xffff);
WREG32(mmDC_LUT_WHITE_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0xffff);
WREG32(mmDC_LUT_WHITE_OFFSET_RED + amdgpu_crtc->crtc_offset, 0xffff);
WREG32(mmDC_LUT_RW_MODE + amdgpu_crtc->crtc_offset, 0);
WREG32(mmDC_LUT_WRITE_EN_MASK + amdgpu_crtc->crtc_offset, 0x00000007);
WREG32(mmDC_LUT_RW_INDEX + amdgpu_crtc->crtc_offset, 0);
for (i = 0; i < 256; i++) {
WREG32(mmDC_LUT_30_COLOR + amdgpu_crtc->crtc_offset,
(amdgpu_crtc->lut_r[i] << 20) |
(amdgpu_crtc->lut_g[i] << 10) |
(amdgpu_crtc->lut_b[i] << 0));
}
WREG32(mmDEGAMMA_CONTROL + amdgpu_crtc->crtc_offset,
((DEGAMMA_BYPASS << DEGAMMA_CONTROL__GRPH_DEGAMMA_MODE__SHIFT) |
(DEGAMMA_BYPASS << DEGAMMA_CONTROL__OVL_DEGAMMA_MODE__SHIFT) |
(DEGAMMA_BYPASS << DEGAMMA_CONTROL__CURSOR_DEGAMMA_MODE__SHIFT)));
WREG32(mmGAMUT_REMAP_CONTROL + amdgpu_crtc->crtc_offset,
((GAMUT_REMAP_BYPASS << GAMUT_REMAP_CONTROL__GRPH_GAMUT_REMAP_MODE__SHIFT) |
(GAMUT_REMAP_BYPASS << GAMUT_REMAP_CONTROL__OVL_GAMUT_REMAP_MODE__SHIFT)));
WREG32(mmREGAMMA_CONTROL + amdgpu_crtc->crtc_offset,
((REGAMMA_BYPASS << REGAMMA_CONTROL__GRPH_REGAMMA_MODE__SHIFT) |
(REGAMMA_BYPASS << REGAMMA_CONTROL__OVL_REGAMMA_MODE__SHIFT)));
WREG32(mmOUTPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset,
((OUTPUT_CSC_BYPASS << OUTPUT_CSC_CONTROL__OUTPUT_CSC_GRPH_MODE__SHIFT) |
(OUTPUT_CSC_BYPASS << OUTPUT_CSC_CONTROL__OUTPUT_CSC_OVL_MODE__SHIFT)));
/* XXX match this to the depth of the crtc fmt block, move to modeset? */
WREG32(0x1a50 + amdgpu_crtc->crtc_offset, 0);
/* XXX this only needs to be programmed once per crtc at startup,
* not sure where the best place for it is
*/
WREG32(mmALPHA_CONTROL + amdgpu_crtc->crtc_offset,
ALPHA_CONTROL__CURSOR_ALPHA_BLND_ENA_MASK);
}
static int dce_v8_0_pick_dig_encoder(struct drm_encoder *encoder)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
switch (amdgpu_encoder->encoder_id) {
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY:
if (dig->linkb)
return 1;
else
return 0;
break;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1:
if (dig->linkb)
return 3;
else
return 2;
break;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2:
if (dig->linkb)
return 5;
else
return 4;
break;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3:
return 6;
break;
default:
DRM_ERROR("invalid encoder_id: 0x%x\n", amdgpu_encoder->encoder_id);
return 0;
}
}
/**
* dce_v8_0_pick_pll - Allocate a PPLL for use by the crtc.
*
* @crtc: drm crtc
*
* Returns the PPLL (Pixel PLL) to be used by the crtc. For DP monitors
* a single PPLL can be used for all DP crtcs/encoders. For non-DP
* monitors a dedicated PPLL must be used. If a particular board has
* an external DP PLL, return ATOM_PPLL_INVALID to skip PLL programming
* as there is no need to program the PLL itself. If we are not able to
* allocate a PLL, return ATOM_PPLL_INVALID to skip PLL programming to
* avoid messing up an existing monitor.
*
* Asic specific PLL information
*
* DCE 8.x
* KB/KV
* - PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP)
* CI
* - PPLL0, PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) and DAC
*
*/
static u32 dce_v8_0_pick_pll(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
u32 pll_in_use;
int pll;
if (ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder))) {
if (adev->clock.dp_extclk)
/* skip PPLL programming if using ext clock */
return ATOM_PPLL_INVALID;
else {
/* use the same PPLL for all DP monitors */
pll = amdgpu_pll_get_shared_dp_ppll(crtc);
if (pll != ATOM_PPLL_INVALID)
return pll;
}
} else {
/* use the same PPLL for all monitors with the same clock */
pll = amdgpu_pll_get_shared_nondp_ppll(crtc);
if (pll != ATOM_PPLL_INVALID)
return pll;
}
/* otherwise, pick one of the plls */
if ((adev->asic_type == CHIP_KABINI) ||
(adev->asic_type == CHIP_MULLINS)) {
/* KB/ML has PPLL1 and PPLL2 */
pll_in_use = amdgpu_pll_get_use_mask(crtc);
if (!(pll_in_use & (1 << ATOM_PPLL2)))
return ATOM_PPLL2;
if (!(pll_in_use & (1 << ATOM_PPLL1)))
return ATOM_PPLL1;
DRM_ERROR("unable to allocate a PPLL\n");
return ATOM_PPLL_INVALID;
} else {
/* CI/KV has PPLL0, PPLL1, and PPLL2 */
pll_in_use = amdgpu_pll_get_use_mask(crtc);
if (!(pll_in_use & (1 << ATOM_PPLL2)))
return ATOM_PPLL2;
if (!(pll_in_use & (1 << ATOM_PPLL1)))
return ATOM_PPLL1;
if (!(pll_in_use & (1 << ATOM_PPLL0)))
return ATOM_PPLL0;
DRM_ERROR("unable to allocate a PPLL\n");
return ATOM_PPLL_INVALID;
}
return ATOM_PPLL_INVALID;
}
static void dce_v8_0_lock_cursor(struct drm_crtc *crtc, bool lock)
{
struct amdgpu_device *adev = crtc->dev->dev_private;
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
uint32_t cur_lock;
cur_lock = RREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset);
if (lock)
cur_lock |= CUR_UPDATE__CURSOR_UPDATE_LOCK_MASK;
else
cur_lock &= ~CUR_UPDATE__CURSOR_UPDATE_LOCK_MASK;
WREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset, cur_lock);
}
static void dce_v8_0_hide_cursor(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = crtc->dev->dev_private;
WREG32_IDX(mmCUR_CONTROL + amdgpu_crtc->crtc_offset,
(CURSOR_24_8_PRE_MULT << CUR_CONTROL__CURSOR_MODE__SHIFT) |
(CURSOR_URGENT_1_2 << CUR_CONTROL__CURSOR_URGENT_CONTROL__SHIFT));
}
static void dce_v8_0_show_cursor(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = crtc->dev->dev_private;
WREG32_IDX(mmCUR_CONTROL + amdgpu_crtc->crtc_offset,
CUR_CONTROL__CURSOR_EN_MASK |
(CURSOR_24_8_PRE_MULT << CUR_CONTROL__CURSOR_MODE__SHIFT) |
(CURSOR_URGENT_1_2 << CUR_CONTROL__CURSOR_URGENT_CONTROL__SHIFT));
}
static void dce_v8_0_set_cursor(struct drm_crtc *crtc, struct drm_gem_object *obj,
uint64_t gpu_addr)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = crtc->dev->dev_private;
WREG32(mmCUR_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(gpu_addr));
WREG32(mmCUR_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
gpu_addr & 0xffffffff);
}
static int dce_v8_0_crtc_cursor_move(struct drm_crtc *crtc,
int x, int y)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = crtc->dev->dev_private;
int xorigin = 0, yorigin = 0;
/* avivo cursor are offset into the total surface */
x += crtc->x;
y += crtc->y;
DRM_DEBUG("x %d y %d c->x %d c->y %d\n", x, y, crtc->x, crtc->y);
if (x < 0) {
xorigin = min(-x, amdgpu_crtc->max_cursor_width - 1);
x = 0;
}
if (y < 0) {
yorigin = min(-y, amdgpu_crtc->max_cursor_height - 1);
y = 0;
}
dce_v8_0_lock_cursor(crtc, true);
WREG32(mmCUR_POSITION + amdgpu_crtc->crtc_offset, (x << 16) | y);
WREG32(mmCUR_HOT_SPOT + amdgpu_crtc->crtc_offset, (xorigin << 16) | yorigin);
WREG32(mmCUR_SIZE + amdgpu_crtc->crtc_offset,
((amdgpu_crtc->cursor_width - 1) << 16) | (amdgpu_crtc->cursor_height - 1));
dce_v8_0_lock_cursor(crtc, false);
return 0;
}
static int dce_v8_0_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file_priv,
uint32_t handle,
uint32_t width,
uint32_t height)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_gem_object *obj;
struct amdgpu_bo *robj;
uint64_t gpu_addr;
int ret;
if (!handle) {
/* turn off cursor */
dce_v8_0_hide_cursor(crtc);
obj = NULL;
goto unpin;
}
if ((width > amdgpu_crtc->max_cursor_width) ||
(height > amdgpu_crtc->max_cursor_height)) {
DRM_ERROR("bad cursor width or height %d x %d\n", width, height);
return -EINVAL;
}
obj = drm_gem_object_lookup(crtc->dev, file_priv, handle);
if (!obj) {
DRM_ERROR("Cannot find cursor object %x for crtc %d\n", handle, amdgpu_crtc->crtc_id);
return -ENOENT;
}
robj = gem_to_amdgpu_bo(obj);
ret = amdgpu_bo_reserve(robj, false);
if (unlikely(ret != 0))
goto fail;
ret = amdgpu_bo_pin_restricted(robj, AMDGPU_GEM_DOMAIN_VRAM,
0, &gpu_addr);
amdgpu_bo_unreserve(robj);
if (ret)
goto fail;
amdgpu_crtc->cursor_width = width;
amdgpu_crtc->cursor_height = height;
dce_v8_0_lock_cursor(crtc, true);
dce_v8_0_set_cursor(crtc, obj, gpu_addr);
dce_v8_0_show_cursor(crtc);
dce_v8_0_lock_cursor(crtc, false);
unpin:
if (amdgpu_crtc->cursor_bo) {
robj = gem_to_amdgpu_bo(amdgpu_crtc->cursor_bo);
ret = amdgpu_bo_reserve(robj, false);
if (likely(ret == 0)) {
amdgpu_bo_unpin(robj);
amdgpu_bo_unreserve(robj);
}
drm_gem_object_unreference_unlocked(amdgpu_crtc->cursor_bo);
}
amdgpu_crtc->cursor_bo = obj;
return 0;
fail:
drm_gem_object_unreference_unlocked(obj);
return ret;
}
static void dce_v8_0_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t start, uint32_t size)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
int end = (start + size > 256) ? 256 : start + size, i;
/* userspace palettes are always correct as is */
for (i = start; i < end; i++) {
amdgpu_crtc->lut_r[i] = red[i] >> 6;
amdgpu_crtc->lut_g[i] = green[i] >> 6;
amdgpu_crtc->lut_b[i] = blue[i] >> 6;
}
dce_v8_0_crtc_load_lut(crtc);
}
static void dce_v8_0_crtc_destroy(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
drm_crtc_cleanup(crtc);
destroy_workqueue(amdgpu_crtc->pflip_queue);
kfree(amdgpu_crtc);
}
static const struct drm_crtc_funcs dce_v8_0_crtc_funcs = {
.cursor_set = dce_v8_0_crtc_cursor_set,
.cursor_move = dce_v8_0_crtc_cursor_move,
.gamma_set = dce_v8_0_crtc_gamma_set,
.set_config = amdgpu_crtc_set_config,
.destroy = dce_v8_0_crtc_destroy,
.page_flip = amdgpu_crtc_page_flip,
};
static void dce_v8_0_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
switch (mode) {
case DRM_MODE_DPMS_ON:
amdgpu_crtc->enabled = true;
amdgpu_atombios_crtc_enable(crtc, ATOM_ENABLE);
dce_v8_0_vga_enable(crtc, true);
amdgpu_atombios_crtc_blank(crtc, ATOM_DISABLE);
dce_v8_0_vga_enable(crtc, false);
drm_vblank_post_modeset(dev, amdgpu_crtc->crtc_id);
dce_v8_0_crtc_load_lut(crtc);
break;
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
case DRM_MODE_DPMS_OFF:
drm_vblank_pre_modeset(dev, amdgpu_crtc->crtc_id);
if (amdgpu_crtc->enabled) {
dce_v8_0_vga_enable(crtc, true);
amdgpu_atombios_crtc_blank(crtc, ATOM_ENABLE);
dce_v8_0_vga_enable(crtc, false);
}
amdgpu_atombios_crtc_enable(crtc, ATOM_DISABLE);
amdgpu_crtc->enabled = false;
break;
}
/* adjust pm to dpms */
amdgpu_pm_compute_clocks(adev);
}
static void dce_v8_0_crtc_prepare(struct drm_crtc *crtc)
{
/* disable crtc pair power gating before programming */
amdgpu_atombios_crtc_powergate(crtc, ATOM_DISABLE);
amdgpu_atombios_crtc_lock(crtc, ATOM_ENABLE);
dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
}
static void dce_v8_0_crtc_commit(struct drm_crtc *crtc)
{
dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_ON);
amdgpu_atombios_crtc_lock(crtc, ATOM_DISABLE);
}
static void dce_v8_0_crtc_disable(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_atom_ss ss;
int i;
dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
if (crtc->primary->fb) {
int r;
struct amdgpu_framebuffer *amdgpu_fb;
struct amdgpu_bo *rbo;
amdgpu_fb = to_amdgpu_framebuffer(crtc->primary->fb);
rbo = gem_to_amdgpu_bo(amdgpu_fb->obj);
r = amdgpu_bo_reserve(rbo, false);
if (unlikely(r))
DRM_ERROR("failed to reserve rbo before unpin\n");
else {
amdgpu_bo_unpin(rbo);
amdgpu_bo_unreserve(rbo);
}
}
/* disable the GRPH */
dce_v8_0_grph_enable(crtc, false);
amdgpu_atombios_crtc_powergate(crtc, ATOM_ENABLE);
for (i = 0; i < adev->mode_info.num_crtc; i++) {
if (adev->mode_info.crtcs[i] &&
adev->mode_info.crtcs[i]->enabled &&
i != amdgpu_crtc->crtc_id &&
amdgpu_crtc->pll_id == adev->mode_info.crtcs[i]->pll_id) {
/* one other crtc is using this pll don't turn
* off the pll
*/
goto done;
}
}
switch (amdgpu_crtc->pll_id) {
case ATOM_PPLL1:
case ATOM_PPLL2:
/* disable the ppll */
amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id,
0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss);
break;
case ATOM_PPLL0:
/* disable the ppll */
if ((adev->asic_type == CHIP_KAVERI) ||
(adev->asic_type == CHIP_BONAIRE) ||
(adev->asic_type == CHIP_HAWAII))
amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id,
0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss);
break;
default:
break;
}
done:
amdgpu_crtc->pll_id = ATOM_PPLL_INVALID;
amdgpu_crtc->adjusted_clock = 0;
amdgpu_crtc->encoder = NULL;
amdgpu_crtc->connector = NULL;
}
static int dce_v8_0_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y, struct drm_framebuffer *old_fb)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
if (!amdgpu_crtc->adjusted_clock)
return -EINVAL;
amdgpu_atombios_crtc_set_pll(crtc, adjusted_mode);
amdgpu_atombios_crtc_set_dtd_timing(crtc, adjusted_mode);
dce_v8_0_crtc_do_set_base(crtc, old_fb, x, y, 0);
amdgpu_atombios_crtc_overscan_setup(crtc, mode, adjusted_mode);
amdgpu_atombios_crtc_scaler_setup(crtc);
/* update the hw version fpr dpm */
amdgpu_crtc->hw_mode = *adjusted_mode;
return 0;
}
static bool dce_v8_0_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_encoder *encoder;
/* assign the encoder to the amdgpu crtc to avoid repeated lookups later */
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc == crtc) {
amdgpu_crtc->encoder = encoder;
amdgpu_crtc->connector = amdgpu_get_connector_for_encoder(encoder);
break;
}
}
if ((amdgpu_crtc->encoder == NULL) || (amdgpu_crtc->connector == NULL)) {
amdgpu_crtc->encoder = NULL;
amdgpu_crtc->connector = NULL;
return false;
}
if (!amdgpu_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode))
return false;
if (amdgpu_atombios_crtc_prepare_pll(crtc, adjusted_mode))
return false;
/* pick pll */
amdgpu_crtc->pll_id = dce_v8_0_pick_pll(crtc);
/* if we can't get a PPLL for a non-DP encoder, fail */
if ((amdgpu_crtc->pll_id == ATOM_PPLL_INVALID) &&
!ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder)))
return false;
return true;
}
static int dce_v8_0_crtc_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
return dce_v8_0_crtc_do_set_base(crtc, old_fb, x, y, 0);
}
static int dce_v8_0_crtc_set_base_atomic(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y, enum mode_set_atomic state)
{
return dce_v8_0_crtc_do_set_base(crtc, fb, x, y, 1);
}
static const struct drm_crtc_helper_funcs dce_v8_0_crtc_helper_funcs = {
.dpms = dce_v8_0_crtc_dpms,
.mode_fixup = dce_v8_0_crtc_mode_fixup,
.mode_set = dce_v8_0_crtc_mode_set,
.mode_set_base = dce_v8_0_crtc_set_base,
.mode_set_base_atomic = dce_v8_0_crtc_set_base_atomic,
.prepare = dce_v8_0_crtc_prepare,
.commit = dce_v8_0_crtc_commit,
.load_lut = dce_v8_0_crtc_load_lut,
.disable = dce_v8_0_crtc_disable,
};
static int dce_v8_0_crtc_init(struct amdgpu_device *adev, int index)
{
struct amdgpu_crtc *amdgpu_crtc;
int i;
amdgpu_crtc = kzalloc(sizeof(struct amdgpu_crtc) +
(AMDGPUFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (amdgpu_crtc == NULL)
return -ENOMEM;
drm_crtc_init(adev->ddev, &amdgpu_crtc->base, &dce_v8_0_crtc_funcs);
drm_mode_crtc_set_gamma_size(&amdgpu_crtc->base, 256);
amdgpu_crtc->crtc_id = index;
amdgpu_crtc->pflip_queue = create_singlethread_workqueue("amdgpu-pageflip-queue");
adev->mode_info.crtcs[index] = amdgpu_crtc;
amdgpu_crtc->max_cursor_width = CIK_CURSOR_WIDTH;
amdgpu_crtc->max_cursor_height = CIK_CURSOR_HEIGHT;
adev->ddev->mode_config.cursor_width = amdgpu_crtc->max_cursor_width;
adev->ddev->mode_config.cursor_height = amdgpu_crtc->max_cursor_height;
for (i = 0; i < 256; i++) {
amdgpu_crtc->lut_r[i] = i << 2;
amdgpu_crtc->lut_g[i] = i << 2;
amdgpu_crtc->lut_b[i] = i << 2;
}
amdgpu_crtc->crtc_offset = crtc_offsets[amdgpu_crtc->crtc_id];
amdgpu_crtc->pll_id = ATOM_PPLL_INVALID;
amdgpu_crtc->adjusted_clock = 0;
amdgpu_crtc->encoder = NULL;
amdgpu_crtc->connector = NULL;
drm_crtc_helper_add(&amdgpu_crtc->base, &dce_v8_0_crtc_helper_funcs);
return 0;
}
static int dce_v8_0_early_init(struct amdgpu_device *adev)
{
adev->audio_endpt_rreg = &dce_v8_0_audio_endpt_rreg;
adev->audio_endpt_wreg = &dce_v8_0_audio_endpt_wreg;
dce_v8_0_set_display_funcs(adev);
dce_v8_0_set_irq_funcs(adev);
switch (adev->asic_type) {
case CHIP_BONAIRE:
case CHIP_HAWAII:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
break;
case CHIP_KAVERI:
adev->mode_info.num_crtc = 4;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 7;
break;
case CHIP_KABINI:
case CHIP_MULLINS:
adev->mode_info.num_crtc = 2;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6; /* ? */
break;
default:
/* FIXME: not supported yet */
return -EINVAL;
}
return 0;
}
static int dce_v8_0_sw_init(struct amdgpu_device *adev)
{
int r, i;
for (i = 0; i < adev->mode_info.num_crtc; i++) {
r = amdgpu_irq_add_id(adev, i + 1, &adev->crtc_irq);
if (r)
return r;
}
for (i = 8; i < 20; i += 2) {
r = amdgpu_irq_add_id(adev, i, &adev->pageflip_irq);
if (r)
return r;
}
/* HPD hotplug */
r = amdgpu_irq_add_id(adev, 42, &adev->hpd_irq);
if (r)
return r;
adev->mode_info.mode_config_initialized = true;
adev->ddev->mode_config.funcs = &amdgpu_mode_funcs;
adev->ddev->mode_config.max_width = 16384;
adev->ddev->mode_config.max_height = 16384;
adev->ddev->mode_config.preferred_depth = 24;
adev->ddev->mode_config.prefer_shadow = 1;
adev->ddev->mode_config.fb_base = adev->mc.aper_base;
r = amdgpu_modeset_create_props(adev);
if (r)
return r;
adev->ddev->mode_config.max_width = 16384;
adev->ddev->mode_config.max_height = 16384;
/* allocate crtcs */
for (i = 0; i < adev->mode_info.num_crtc; i++) {
r = dce_v8_0_crtc_init(adev, i);
if (r)
return r;
}
if (amdgpu_atombios_get_connector_info_from_object_table(adev))
amdgpu_print_display_setup(adev->ddev);
else
return -EINVAL;
/* setup afmt */
dce_v8_0_afmt_init(adev);
r = dce_v8_0_audio_init(adev);
if (r)
return r;
drm_kms_helper_poll_init(adev->ddev);
return r;
}
static int dce_v8_0_sw_fini(struct amdgpu_device *adev)
{
kfree(adev->mode_info.bios_hardcoded_edid);
drm_kms_helper_poll_fini(adev->ddev);
dce_v8_0_audio_fini(adev);
dce_v8_0_afmt_fini(adev);
drm_mode_config_cleanup(adev->ddev);
adev->mode_info.mode_config_initialized = false;
return 0;
}
static int dce_v8_0_hw_init(struct amdgpu_device *adev)
{
int i;
/* init dig PHYs, disp eng pll */
amdgpu_atombios_encoder_init_dig(adev);
amdgpu_atombios_crtc_set_disp_eng_pll(adev, adev->clock.default_dispclk);
/* initialize hpd */
dce_v8_0_hpd_init(adev);
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
}
return 0;
}
static int dce_v8_0_hw_fini(struct amdgpu_device *adev)
{
int i;
dce_v8_0_hpd_fini(adev);
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
}
return 0;
}
static int dce_v8_0_suspend(struct amdgpu_device *adev)
{
struct drm_connector *connector;
drm_kms_helper_poll_disable(adev->ddev);
/* turn off display hw */
list_for_each_entry(connector, &adev->ddev->mode_config.connector_list, head) {
drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF);
}
amdgpu_atombios_scratch_regs_save(adev);
dce_v8_0_hpd_fini(adev);
return 0;
}
static int dce_v8_0_resume(struct amdgpu_device *adev)
{
struct drm_connector *connector;
amdgpu_atombios_scratch_regs_restore(adev);
/* init dig PHYs, disp eng pll */
amdgpu_atombios_encoder_init_dig(adev);
amdgpu_atombios_crtc_set_disp_eng_pll(adev, adev->clock.default_dispclk);
/* turn on the BL */
if (adev->mode_info.bl_encoder) {
u8 bl_level = amdgpu_display_backlight_get_level(adev,
adev->mode_info.bl_encoder);
amdgpu_display_backlight_set_level(adev, adev->mode_info.bl_encoder,
bl_level);
}
/* initialize hpd */
dce_v8_0_hpd_init(adev);
/* blat the mode back in */
drm_helper_resume_force_mode(adev->ddev);
/* turn on display hw */
list_for_each_entry(connector, &adev->ddev->mode_config.connector_list, head) {
drm_helper_connector_dpms(connector, DRM_MODE_DPMS_ON);
}
drm_kms_helper_poll_enable(adev->ddev);
return 0;
}
static bool dce_v8_0_is_idle(struct amdgpu_device *adev)
{
/* XXX todo */
return true;
}
static int dce_v8_0_wait_for_idle(struct amdgpu_device *adev)
{
/* XXX todo */
return 0;
}
static void dce_v8_0_print_status(struct amdgpu_device *adev)
{
dev_info(adev->dev, "DCE 8.x registers\n");
/* XXX todo */
}
static int dce_v8_0_soft_reset(struct amdgpu_device *adev)
{
u32 srbm_soft_reset = 0, tmp;
if (dce_v8_0_is_display_hung(adev))
srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_DC_MASK;
if (srbm_soft_reset) {
dce_v8_0_print_status(adev);
tmp = RREG32(mmSRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
/* Wait a little for things to settle down */
udelay(50);
dce_v8_0_print_status(adev);
}
return 0;
}
static void dce_v8_0_set_crtc_vblank_interrupt_state(struct amdgpu_device *adev,
int crtc,
enum amdgpu_interrupt_state state)
{
u32 reg_block, lb_interrupt_mask;
if (crtc >= adev->mode_info.num_crtc) {
DRM_DEBUG("invalid crtc %d\n", crtc);
return;
}
switch (crtc) {
case 0:
reg_block = CRTC0_REGISTER_OFFSET;
break;
case 1:
reg_block = CRTC1_REGISTER_OFFSET;
break;
case 2:
reg_block = CRTC2_REGISTER_OFFSET;
break;
case 3:
reg_block = CRTC3_REGISTER_OFFSET;
break;
case 4:
reg_block = CRTC4_REGISTER_OFFSET;
break;
case 5:
reg_block = CRTC5_REGISTER_OFFSET;
break;
default:
DRM_DEBUG("invalid crtc %d\n", crtc);
return;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block);
lb_interrupt_mask &= ~LB_INTERRUPT_MASK__VBLANK_INTERRUPT_MASK_MASK;
WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask);
break;
case AMDGPU_IRQ_STATE_ENABLE:
lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block);
lb_interrupt_mask |= LB_INTERRUPT_MASK__VBLANK_INTERRUPT_MASK_MASK;
WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask);
break;
default:
break;
}
}
static void dce_v8_0_set_crtc_vline_interrupt_state(struct amdgpu_device *adev,
int crtc,
enum amdgpu_interrupt_state state)
{
u32 reg_block, lb_interrupt_mask;
if (crtc >= adev->mode_info.num_crtc) {
DRM_DEBUG("invalid crtc %d\n", crtc);
return;
}
switch (crtc) {
case 0:
reg_block = CRTC0_REGISTER_OFFSET;
break;
case 1:
reg_block = CRTC1_REGISTER_OFFSET;
break;
case 2:
reg_block = CRTC2_REGISTER_OFFSET;
break;
case 3:
reg_block = CRTC3_REGISTER_OFFSET;
break;
case 4:
reg_block = CRTC4_REGISTER_OFFSET;
break;
case 5:
reg_block = CRTC5_REGISTER_OFFSET;
break;
default:
DRM_DEBUG("invalid crtc %d\n", crtc);
return;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block);
lb_interrupt_mask &= ~LB_INTERRUPT_MASK__VLINE_INTERRUPT_MASK_MASK;
WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask);
break;
case AMDGPU_IRQ_STATE_ENABLE:
lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block);
lb_interrupt_mask |= LB_INTERRUPT_MASK__VLINE_INTERRUPT_MASK_MASK;
WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask);
break;
default:
break;
}
}
static int dce_v8_0_set_hpd_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 dc_hpd_int_cntl_reg, dc_hpd_int_cntl;
switch (type) {
case AMDGPU_HPD_1:
dc_hpd_int_cntl_reg = mmDC_HPD1_INT_CONTROL;
break;
case AMDGPU_HPD_2:
dc_hpd_int_cntl_reg = mmDC_HPD2_INT_CONTROL;
break;
case AMDGPU_HPD_3:
dc_hpd_int_cntl_reg = mmDC_HPD3_INT_CONTROL;
break;
case AMDGPU_HPD_4:
dc_hpd_int_cntl_reg = mmDC_HPD4_INT_CONTROL;
break;
case AMDGPU_HPD_5:
dc_hpd_int_cntl_reg = mmDC_HPD5_INT_CONTROL;
break;
case AMDGPU_HPD_6:
dc_hpd_int_cntl_reg = mmDC_HPD6_INT_CONTROL;
break;
default:
DRM_DEBUG("invalid hdp %d\n", type);
return 0;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
dc_hpd_int_cntl = RREG32(dc_hpd_int_cntl_reg);
dc_hpd_int_cntl &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK;
WREG32(dc_hpd_int_cntl_reg, dc_hpd_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
dc_hpd_int_cntl = RREG32(dc_hpd_int_cntl_reg);
dc_hpd_int_cntl |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK;
WREG32(dc_hpd_int_cntl_reg, dc_hpd_int_cntl);
break;
default:
break;
}
return 0;
}
static int dce_v8_0_set_crtc_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
switch (type) {
case AMDGPU_CRTC_IRQ_VBLANK1:
dce_v8_0_set_crtc_vblank_interrupt_state(adev, 0, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK2:
dce_v8_0_set_crtc_vblank_interrupt_state(adev, 1, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK3:
dce_v8_0_set_crtc_vblank_interrupt_state(adev, 2, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK4:
dce_v8_0_set_crtc_vblank_interrupt_state(adev, 3, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK5:
dce_v8_0_set_crtc_vblank_interrupt_state(adev, 4, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK6:
dce_v8_0_set_crtc_vblank_interrupt_state(adev, 5, state);
break;
case AMDGPU_CRTC_IRQ_VLINE1:
dce_v8_0_set_crtc_vline_interrupt_state(adev, 0, state);
break;
case AMDGPU_CRTC_IRQ_VLINE2:
dce_v8_0_set_crtc_vline_interrupt_state(adev, 1, state);
break;
case AMDGPU_CRTC_IRQ_VLINE3:
dce_v8_0_set_crtc_vline_interrupt_state(adev, 2, state);
break;
case AMDGPU_CRTC_IRQ_VLINE4:
dce_v8_0_set_crtc_vline_interrupt_state(adev, 3, state);
break;
case AMDGPU_CRTC_IRQ_VLINE5:
dce_v8_0_set_crtc_vline_interrupt_state(adev, 4, state);
break;
case AMDGPU_CRTC_IRQ_VLINE6:
dce_v8_0_set_crtc_vline_interrupt_state(adev, 5, state);
break;
default:
break;
}
return 0;
}
static int dce_v8_0_crtc_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
unsigned crtc = entry->src_id - 1;
uint32_t disp_int = RREG32(interrupt_status_offsets[crtc].reg);
unsigned irq_type = amdgpu_crtc_idx_to_irq_type(adev, crtc);
switch (entry->src_data) {
case 0: /* vblank */
if (disp_int & interrupt_status_offsets[crtc].vblank) {
WREG32(mmLB_VBLANK_STATUS + crtc_offsets[crtc], LB_VBLANK_STATUS__VBLANK_ACK_MASK);
if (amdgpu_irq_enabled(adev, source, irq_type)) {
drm_handle_vblank(adev->ddev, crtc);
}
DRM_DEBUG("IH: D%d vblank\n", crtc + 1);
}
break;
case 1: /* vline */
if (disp_int & interrupt_status_offsets[crtc].vline) {
WREG32(mmLB_VLINE_STATUS + crtc_offsets[crtc], LB_VLINE_STATUS__VLINE_ACK_MASK);
DRM_DEBUG("IH: D%d vline\n", crtc + 1);
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data);
break;
}
return 0;
}
static int dce_v8_0_set_pageflip_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 reg, reg_block;
/* now deal with page flip IRQ */
switch (type) {
case AMDGPU_PAGEFLIP_IRQ_D1:
reg_block = CRTC0_REGISTER_OFFSET;
break;
case AMDGPU_PAGEFLIP_IRQ_D2:
reg_block = CRTC1_REGISTER_OFFSET;
break;
case AMDGPU_PAGEFLIP_IRQ_D3:
reg_block = CRTC2_REGISTER_OFFSET;
break;
case AMDGPU_PAGEFLIP_IRQ_D4:
reg_block = CRTC3_REGISTER_OFFSET;
break;
case AMDGPU_PAGEFLIP_IRQ_D5:
reg_block = CRTC4_REGISTER_OFFSET;
break;
case AMDGPU_PAGEFLIP_IRQ_D6:
reg_block = CRTC5_REGISTER_OFFSET;
break;
default:
DRM_ERROR("invalid pageflip crtc %d\n", type);
return -EINVAL;
}
reg = RREG32(mmGRPH_INTERRUPT_CONTROL + reg_block);
if (state == AMDGPU_IRQ_STATE_DISABLE)
WREG32(mmGRPH_INTERRUPT_CONTROL + reg_block, reg & ~GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK);
else
WREG32(mmGRPH_INTERRUPT_CONTROL + reg_block, reg | GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK);
return 0;
}
static int dce_v8_0_pageflip_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
int reg_block;
unsigned long flags;
unsigned crtc_id;
struct amdgpu_crtc *amdgpu_crtc;
struct amdgpu_flip_work *works;
crtc_id = (entry->src_id - 8) >> 1;
amdgpu_crtc = adev->mode_info.crtcs[crtc_id];
/* ack the interrupt */
switch(crtc_id){
case AMDGPU_PAGEFLIP_IRQ_D1:
reg_block = CRTC0_REGISTER_OFFSET;
break;
case AMDGPU_PAGEFLIP_IRQ_D2:
reg_block = CRTC1_REGISTER_OFFSET;
break;
case AMDGPU_PAGEFLIP_IRQ_D3:
reg_block = CRTC2_REGISTER_OFFSET;
break;
case AMDGPU_PAGEFLIP_IRQ_D4:
reg_block = CRTC3_REGISTER_OFFSET;
break;
case AMDGPU_PAGEFLIP_IRQ_D5:
reg_block = CRTC4_REGISTER_OFFSET;
break;
case AMDGPU_PAGEFLIP_IRQ_D6:
reg_block = CRTC5_REGISTER_OFFSET;
break;
default:
DRM_ERROR("invalid pageflip crtc %d\n", crtc_id);
return -EINVAL;
}
if (RREG32(mmGRPH_INTERRUPT_STATUS + reg_block) & GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_OCCURRED_MASK)
WREG32(mmGRPH_INTERRUPT_STATUS + reg_block, GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_CLEAR_MASK);
/* IRQ could occur when in initial stage */
if (amdgpu_crtc == NULL)
return 0;
spin_lock_irqsave(&adev->ddev->event_lock, flags);
works = amdgpu_crtc->pflip_works;
if (amdgpu_crtc->pflip_status != AMDGPU_FLIP_SUBMITTED){
DRM_DEBUG_DRIVER("amdgpu_crtc->pflip_status = %d != "
"AMDGPU_FLIP_SUBMITTED(%d)\n",
amdgpu_crtc->pflip_status,
AMDGPU_FLIP_SUBMITTED);
spin_unlock_irqrestore(&adev->ddev->event_lock, flags);
return 0;
}
/* page flip completed. clean up */
amdgpu_crtc->pflip_status = AMDGPU_FLIP_NONE;
amdgpu_crtc->pflip_works = NULL;
/* wakeup usersapce */
if (works->event)
drm_send_vblank_event(adev->ddev, crtc_id, works->event);
spin_unlock_irqrestore(&adev->ddev->event_lock, flags);
drm_vblank_put(adev->ddev, amdgpu_crtc->crtc_id);
amdgpu_irq_put(adev, &adev->pageflip_irq, crtc_id);
queue_work(amdgpu_crtc->pflip_queue, &works->unpin_work);
return 0;
}
static int dce_v8_0_hpd_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
uint32_t disp_int, mask, int_control, tmp;
unsigned hpd;
if (entry->src_data > 6) {
DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data);
return 0;
}
hpd = entry->src_data;
disp_int = RREG32(interrupt_status_offsets[hpd].reg);
mask = interrupt_status_offsets[hpd].hpd;
int_control = hpd_int_control_offsets[hpd];
if (disp_int & mask) {
tmp = RREG32(int_control);
tmp |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_ACK_MASK;
WREG32(int_control, tmp);
schedule_work(&adev->hotplug_work);
DRM_DEBUG("IH: HPD%d\n", hpd + 1);
}
return 0;
}
static int dce_v8_0_set_clockgating_state(struct amdgpu_device *adev,
enum amdgpu_clockgating_state state)
{
return 0;
}
static int dce_v8_0_set_powergating_state(struct amdgpu_device *adev,
enum amdgpu_powergating_state state)
{
return 0;
}
const struct amdgpu_ip_funcs dce_v8_0_ip_funcs = {
.early_init = dce_v8_0_early_init,
.late_init = NULL,
.sw_init = dce_v8_0_sw_init,
.sw_fini = dce_v8_0_sw_fini,
.hw_init = dce_v8_0_hw_init,
.hw_fini = dce_v8_0_hw_fini,
.suspend = dce_v8_0_suspend,
.resume = dce_v8_0_resume,
.is_idle = dce_v8_0_is_idle,
.wait_for_idle = dce_v8_0_wait_for_idle,
.soft_reset = dce_v8_0_soft_reset,
.print_status = dce_v8_0_print_status,
.set_clockgating_state = dce_v8_0_set_clockgating_state,
.set_powergating_state = dce_v8_0_set_powergating_state,
};
static void
dce_v8_0_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
amdgpu_encoder->pixel_clock = adjusted_mode->clock;
/* need to call this here rather than in prepare() since we need some crtc info */
amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
/* set scaler clears this on some chips */
dce_v8_0_set_interleave(encoder->crtc, mode);
if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI) {
dce_v8_0_afmt_enable(encoder, true);
dce_v8_0_afmt_setmode(encoder, adjusted_mode);
}
}
static void dce_v8_0_encoder_prepare(struct drm_encoder *encoder)
{
struct amdgpu_device *adev = encoder->dev->dev_private;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
if ((amdgpu_encoder->active_device &
(ATOM_DEVICE_DFP_SUPPORT | ATOM_DEVICE_LCD_SUPPORT)) ||
(amdgpu_encoder_get_dp_bridge_encoder_id(encoder) !=
ENCODER_OBJECT_ID_NONE)) {
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
if (dig) {
dig->dig_encoder = dce_v8_0_pick_dig_encoder(encoder);
if (amdgpu_encoder->active_device & ATOM_DEVICE_DFP_SUPPORT)
dig->afmt = adev->mode_info.afmt[dig->dig_encoder];
}
}
amdgpu_atombios_scratch_regs_lock(adev, true);
if (connector) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
/* select the clock/data port if it uses a router */
if (amdgpu_connector->router.cd_valid)
amdgpu_i2c_router_select_cd_port(amdgpu_connector);
/* turn eDP panel on for mode set */
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
amdgpu_atombios_encoder_set_edp_panel_power(connector,
ATOM_TRANSMITTER_ACTION_POWER_ON);
}
/* this is needed for the pll/ss setup to work correctly in some cases */
amdgpu_atombios_encoder_set_crtc_source(encoder);
/* set up the FMT blocks */
dce_v8_0_program_fmt(encoder);
}
static void dce_v8_0_encoder_commit(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = dev->dev_private;
/* need to call this here as we need the crtc set up */
amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_ON);
amdgpu_atombios_scratch_regs_lock(adev, false);
}
static void dce_v8_0_encoder_disable(struct drm_encoder *encoder)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig;
amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
if (amdgpu_atombios_encoder_is_digital(encoder)) {
if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI)
dce_v8_0_afmt_enable(encoder, false);
dig = amdgpu_encoder->enc_priv;
dig->dig_encoder = -1;
}
amdgpu_encoder->active_device = 0;
}
/* these are handled by the primary encoders */
static void dce_v8_0_ext_prepare(struct drm_encoder *encoder)
{
}
static void dce_v8_0_ext_commit(struct drm_encoder *encoder)
{
}
static void
dce_v8_0_ext_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
}
static void dce_v8_0_ext_disable(struct drm_encoder *encoder)
{
}
static void
dce_v8_0_ext_dpms(struct drm_encoder *encoder, int mode)
{
}
static bool dce_v8_0_ext_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static const struct drm_encoder_helper_funcs dce_v8_0_ext_helper_funcs = {
.dpms = dce_v8_0_ext_dpms,
.mode_fixup = dce_v8_0_ext_mode_fixup,
.prepare = dce_v8_0_ext_prepare,
.mode_set = dce_v8_0_ext_mode_set,
.commit = dce_v8_0_ext_commit,
.disable = dce_v8_0_ext_disable,
/* no detect for TMDS/LVDS yet */
};
static const struct drm_encoder_helper_funcs dce_v8_0_dig_helper_funcs = {
.dpms = amdgpu_atombios_encoder_dpms,
.mode_fixup = amdgpu_atombios_encoder_mode_fixup,
.prepare = dce_v8_0_encoder_prepare,
.mode_set = dce_v8_0_encoder_mode_set,
.commit = dce_v8_0_encoder_commit,
.disable = dce_v8_0_encoder_disable,
.detect = amdgpu_atombios_encoder_dig_detect,
};
static const struct drm_encoder_helper_funcs dce_v8_0_dac_helper_funcs = {
.dpms = amdgpu_atombios_encoder_dpms,
.mode_fixup = amdgpu_atombios_encoder_mode_fixup,
.prepare = dce_v8_0_encoder_prepare,
.mode_set = dce_v8_0_encoder_mode_set,
.commit = dce_v8_0_encoder_commit,
.detect = amdgpu_atombios_encoder_dac_detect,
};
static void dce_v8_0_encoder_destroy(struct drm_encoder *encoder)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT))
amdgpu_atombios_encoder_fini_backlight(amdgpu_encoder);
kfree(amdgpu_encoder->enc_priv);
drm_encoder_cleanup(encoder);
kfree(amdgpu_encoder);
}
static const struct drm_encoder_funcs dce_v8_0_encoder_funcs = {
.destroy = dce_v8_0_encoder_destroy,
};
static void dce_v8_0_encoder_add(struct amdgpu_device *adev,
uint32_t encoder_enum,
uint32_t supported_device,
u16 caps)
{
struct drm_device *dev = adev->ddev;
struct drm_encoder *encoder;
struct amdgpu_encoder *amdgpu_encoder;
/* see if we already added it */
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
amdgpu_encoder = to_amdgpu_encoder(encoder);
if (amdgpu_encoder->encoder_enum == encoder_enum) {
amdgpu_encoder->devices |= supported_device;
return;
}
}
/* add a new one */
amdgpu_encoder = kzalloc(sizeof(struct amdgpu_encoder), GFP_KERNEL);
if (!amdgpu_encoder)
return;
encoder = &amdgpu_encoder->base;
switch (adev->mode_info.num_crtc) {
case 1:
encoder->possible_crtcs = 0x1;
break;
case 2:
default:
encoder->possible_crtcs = 0x3;
break;
case 4:
encoder->possible_crtcs = 0xf;
break;
case 6:
encoder->possible_crtcs = 0x3f;
break;
}
amdgpu_encoder->enc_priv = NULL;
amdgpu_encoder->encoder_enum = encoder_enum;
amdgpu_encoder->encoder_id = (encoder_enum & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT;
amdgpu_encoder->devices = supported_device;
amdgpu_encoder->rmx_type = RMX_OFF;
amdgpu_encoder->underscan_type = UNDERSCAN_OFF;
amdgpu_encoder->is_ext_encoder = false;
amdgpu_encoder->caps = caps;
switch (amdgpu_encoder->encoder_id) {
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1:
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2:
drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
DRM_MODE_ENCODER_DAC);
drm_encoder_helper_add(encoder, &dce_v8_0_dac_helper_funcs);
break;
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3:
if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) {
amdgpu_encoder->rmx_type = RMX_FULL;
drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
DRM_MODE_ENCODER_LVDS);
amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_lcd_info(amdgpu_encoder);
} else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT)) {
drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
DRM_MODE_ENCODER_DAC);
amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder);
} else {
drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
DRM_MODE_ENCODER_TMDS);
amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder);
}
drm_encoder_helper_add(encoder, &dce_v8_0_dig_helper_funcs);
break;
case ENCODER_OBJECT_ID_SI170B:
case ENCODER_OBJECT_ID_CH7303:
case ENCODER_OBJECT_ID_EXTERNAL_SDVOA:
case ENCODER_OBJECT_ID_EXTERNAL_SDVOB:
case ENCODER_OBJECT_ID_TITFP513:
case ENCODER_OBJECT_ID_VT1623:
case ENCODER_OBJECT_ID_HDMI_SI1930:
case ENCODER_OBJECT_ID_TRAVIS:
case ENCODER_OBJECT_ID_NUTMEG:
/* these are handled by the primary encoders */
amdgpu_encoder->is_ext_encoder = true;
if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT))
drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
DRM_MODE_ENCODER_LVDS);
else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT))
drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
DRM_MODE_ENCODER_DAC);
else
drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(encoder, &dce_v8_0_ext_helper_funcs);
break;
}
}
static const struct amdgpu_display_funcs dce_v8_0_display_funcs = {
.set_vga_render_state = &dce_v8_0_set_vga_render_state,
.bandwidth_update = &dce_v8_0_bandwidth_update,
.vblank_get_counter = &dce_v8_0_vblank_get_counter,
.vblank_wait = &dce_v8_0_vblank_wait,
.is_display_hung = &dce_v8_0_is_display_hung,
.backlight_set_level = &amdgpu_atombios_encoder_set_backlight_level,
.backlight_get_level = &amdgpu_atombios_encoder_get_backlight_level,
.hpd_sense = &dce_v8_0_hpd_sense,
.hpd_set_polarity = &dce_v8_0_hpd_set_polarity,
.hpd_get_gpio_reg = &dce_v8_0_hpd_get_gpio_reg,
.page_flip = &dce_v8_0_page_flip,
.page_flip_get_scanoutpos = &dce_v8_0_crtc_get_scanoutpos,
.add_encoder = &dce_v8_0_encoder_add,
.add_connector = &amdgpu_connector_add,
.stop_mc_access = &dce_v8_0_stop_mc_access,
.resume_mc_access = &dce_v8_0_resume_mc_access,
};
static void dce_v8_0_set_display_funcs(struct amdgpu_device *adev)
{
if (adev->mode_info.funcs == NULL)
adev->mode_info.funcs = &dce_v8_0_display_funcs;
}
static const struct amdgpu_irq_src_funcs dce_v8_0_crtc_irq_funcs = {
.set = dce_v8_0_set_crtc_interrupt_state,
.process = dce_v8_0_crtc_irq,
};
static const struct amdgpu_irq_src_funcs dce_v8_0_pageflip_irq_funcs = {
.set = dce_v8_0_set_pageflip_interrupt_state,
.process = dce_v8_0_pageflip_irq,
};
static const struct amdgpu_irq_src_funcs dce_v8_0_hpd_irq_funcs = {
.set = dce_v8_0_set_hpd_interrupt_state,
.process = dce_v8_0_hpd_irq,
};
static void dce_v8_0_set_irq_funcs(struct amdgpu_device *adev)
{
adev->crtc_irq.num_types = AMDGPU_CRTC_IRQ_LAST;
adev->crtc_irq.funcs = &dce_v8_0_crtc_irq_funcs;
adev->pageflip_irq.num_types = AMDGPU_PAGEFLIP_IRQ_LAST;
adev->pageflip_irq.funcs = &dce_v8_0_pageflip_irq_funcs;
adev->hpd_irq.num_types = AMDGPU_HPD_LAST;
adev->hpd_irq.funcs = &dce_v8_0_hpd_irq_funcs;
}