linux/drivers/input/keyboard/cros_ec_keyb.c
Philip Chen 820c872795 Input: cros-ec-keyb - expose function row physical map to userspace
The top-row keys in a keyboard usually have dual functionalities.
E.g. A function key "F1" is also an action key "Browser back".

Therefore, when an application receives an action key code from
a top-row key press, the application needs to know how to correlate
the action key code with the function key code and do the conversion
whenever necessary.

Since the userpace already knows the key scanlines (row/column)
associated with a received key code. Essentially, the userspace only
needs a mapping between the key row/column and the matching physical
location in the top row.

So, enhance the cros-ec-keyb driver to create such a mapping
and expose it to userspace in the form of a function_row_physmap
attribute. The attribute would be a space separated ordered list of
row/column codes for the keys in the function row, in a left-to-right
order.

The attribute will only be present when the device has a custom design
for the top-row keys.

Signed-off-by: Philip Chen <philipchen@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20210115122412.v7.2.I6542d7d9d0b246e7079bb16b41e697b2ac4b4e39@changeid
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
2021-02-22 21:22:15 -08:00

746 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
// ChromeOS EC keyboard driver
//
// Copyright (C) 2012 Google, Inc.
//
// This driver uses the ChromeOS EC byte-level message-based protocol for
// communicating the keyboard state (which keys are pressed) from a keyboard EC
// to the AP over some bus (such as i2c, lpc, spi). The EC does debouncing,
// but everything else (including deghosting) is done here. The main
// motivation for this is to keep the EC firmware as simple as possible, since
// it cannot be easily upgraded and EC flash/IRAM space is relatively
// expensive.
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/notifier.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/sysrq.h>
#include <linux/input/matrix_keypad.h>
#include <linux/platform_data/cros_ec_commands.h>
#include <linux/platform_data/cros_ec_proto.h>
#include <asm/unaligned.h>
#define MAX_NUM_TOP_ROW_KEYS 15
/**
* struct cros_ec_keyb - Structure representing EC keyboard device
*
* @rows: Number of rows in the keypad
* @cols: Number of columns in the keypad
* @row_shift: log2 or number of rows, rounded up
* @keymap_data: Matrix keymap data used to convert to keyscan values
* @ghost_filter: true to enable the matrix key-ghosting filter
* @valid_keys: bitmap of existing keys for each matrix column
* @old_kb_state: bitmap of keys pressed last scan
* @dev: Device pointer
* @ec: Top level ChromeOS device to use to talk to EC
* @idev: The input device for the matrix keys.
* @bs_idev: The input device for non-matrix buttons and switches (or NULL).
* @notifier: interrupt event notifier for transport devices
* @function_row_physmap: An array of the encoded rows/columns for the top
* row function keys, in an order from left to right
* @num_function_row_keys: The number of top row keys in a custom keyboard
*/
struct cros_ec_keyb {
unsigned int rows;
unsigned int cols;
int row_shift;
const struct matrix_keymap_data *keymap_data;
bool ghost_filter;
uint8_t *valid_keys;
uint8_t *old_kb_state;
struct device *dev;
struct cros_ec_device *ec;
struct input_dev *idev;
struct input_dev *bs_idev;
struct notifier_block notifier;
u16 function_row_physmap[MAX_NUM_TOP_ROW_KEYS];
size_t num_function_row_keys;
};
/**
* struct cros_ec_bs_map - Mapping between Linux keycodes and EC button/switch
* bitmap #defines
*
* @ev_type: The type of the input event to generate (e.g., EV_KEY).
* @code: A linux keycode
* @bit: A #define like EC_MKBP_POWER_BUTTON or EC_MKBP_LID_OPEN
* @inverted: If the #define and EV_SW have opposite meanings, this is true.
* Only applicable to switches.
*/
struct cros_ec_bs_map {
unsigned int ev_type;
unsigned int code;
u8 bit;
bool inverted;
};
/* cros_ec_keyb_bs - Map EC button/switch #defines into kernel ones */
static const struct cros_ec_bs_map cros_ec_keyb_bs[] = {
/* Buttons */
{
.ev_type = EV_KEY,
.code = KEY_POWER,
.bit = EC_MKBP_POWER_BUTTON,
},
{
.ev_type = EV_KEY,
.code = KEY_VOLUMEUP,
.bit = EC_MKBP_VOL_UP,
},
{
.ev_type = EV_KEY,
.code = KEY_VOLUMEDOWN,
.bit = EC_MKBP_VOL_DOWN,
},
/* Switches */
{
.ev_type = EV_SW,
.code = SW_LID,
.bit = EC_MKBP_LID_OPEN,
.inverted = true,
},
{
.ev_type = EV_SW,
.code = SW_TABLET_MODE,
.bit = EC_MKBP_TABLET_MODE,
},
};
/*
* Returns true when there is at least one combination of pressed keys that
* results in ghosting.
*/
static bool cros_ec_keyb_has_ghosting(struct cros_ec_keyb *ckdev, uint8_t *buf)
{
int col1, col2, buf1, buf2;
struct device *dev = ckdev->dev;
uint8_t *valid_keys = ckdev->valid_keys;
/*
* Ghosting happens if for any pressed key X there are other keys
* pressed both in the same row and column of X as, for instance,
* in the following diagram:
*
* . . Y . g .
* . . . . . .
* . . . . . .
* . . X . Z .
*
* In this case only X, Y, and Z are pressed, but g appears to be
* pressed too (see Wikipedia).
*/
for (col1 = 0; col1 < ckdev->cols; col1++) {
buf1 = buf[col1] & valid_keys[col1];
for (col2 = col1 + 1; col2 < ckdev->cols; col2++) {
buf2 = buf[col2] & valid_keys[col2];
if (hweight8(buf1 & buf2) > 1) {
dev_dbg(dev, "ghost found at: B[%02d]:0x%02x & B[%02d]:0x%02x",
col1, buf1, col2, buf2);
return true;
}
}
}
return false;
}
/*
* Compares the new keyboard state to the old one and produces key
* press/release events accordingly. The keyboard state is 13 bytes (one byte
* per column)
*/
static void cros_ec_keyb_process(struct cros_ec_keyb *ckdev,
uint8_t *kb_state, int len)
{
struct input_dev *idev = ckdev->idev;
int col, row;
int new_state;
int old_state;
if (ckdev->ghost_filter && cros_ec_keyb_has_ghosting(ckdev, kb_state)) {
/*
* Simple-minded solution: ignore this state. The obvious
* improvement is to only ignore changes to keys involved in
* the ghosting, but process the other changes.
*/
dev_dbg(ckdev->dev, "ghosting found\n");
return;
}
for (col = 0; col < ckdev->cols; col++) {
for (row = 0; row < ckdev->rows; row++) {
int pos = MATRIX_SCAN_CODE(row, col, ckdev->row_shift);
const unsigned short *keycodes = idev->keycode;
new_state = kb_state[col] & (1 << row);
old_state = ckdev->old_kb_state[col] & (1 << row);
if (new_state != old_state) {
dev_dbg(ckdev->dev,
"changed: [r%d c%d]: byte %02x\n",
row, col, new_state);
input_event(idev, EV_MSC, MSC_SCAN, pos);
input_report_key(idev, keycodes[pos],
new_state);
}
}
ckdev->old_kb_state[col] = kb_state[col];
}
input_sync(ckdev->idev);
}
/**
* cros_ec_keyb_report_bs - Report non-matrixed buttons or switches
*
* This takes a bitmap of buttons or switches from the EC and reports events,
* syncing at the end.
*
* @ckdev: The keyboard device.
* @ev_type: The input event type (e.g., EV_KEY).
* @mask: A bitmap of buttons from the EC.
*/
static void cros_ec_keyb_report_bs(struct cros_ec_keyb *ckdev,
unsigned int ev_type, u32 mask)
{
struct input_dev *idev = ckdev->bs_idev;
int i;
for (i = 0; i < ARRAY_SIZE(cros_ec_keyb_bs); i++) {
const struct cros_ec_bs_map *map = &cros_ec_keyb_bs[i];
if (map->ev_type != ev_type)
continue;
input_event(idev, ev_type, map->code,
!!(mask & BIT(map->bit)) ^ map->inverted);
}
input_sync(idev);
}
static int cros_ec_keyb_work(struct notifier_block *nb,
unsigned long queued_during_suspend, void *_notify)
{
struct cros_ec_keyb *ckdev = container_of(nb, struct cros_ec_keyb,
notifier);
u32 val;
unsigned int ev_type;
/*
* If not wake enabled, discard key state changes during
* suspend. Switches will be re-checked in
* cros_ec_keyb_resume() to be sure nothing is lost.
*/
if (queued_during_suspend && !device_may_wakeup(ckdev->dev))
return NOTIFY_OK;
switch (ckdev->ec->event_data.event_type) {
case EC_MKBP_EVENT_KEY_MATRIX:
pm_wakeup_event(ckdev->dev, 0);
if (ckdev->ec->event_size != ckdev->cols) {
dev_err(ckdev->dev,
"Discarded incomplete key matrix event.\n");
return NOTIFY_OK;
}
cros_ec_keyb_process(ckdev,
ckdev->ec->event_data.data.key_matrix,
ckdev->ec->event_size);
break;
case EC_MKBP_EVENT_SYSRQ:
pm_wakeup_event(ckdev->dev, 0);
val = get_unaligned_le32(&ckdev->ec->event_data.data.sysrq);
dev_dbg(ckdev->dev, "sysrq code from EC: %#x\n", val);
handle_sysrq(val);
break;
case EC_MKBP_EVENT_BUTTON:
case EC_MKBP_EVENT_SWITCH:
pm_wakeup_event(ckdev->dev, 0);
if (ckdev->ec->event_data.event_type == EC_MKBP_EVENT_BUTTON) {
val = get_unaligned_le32(
&ckdev->ec->event_data.data.buttons);
ev_type = EV_KEY;
} else {
val = get_unaligned_le32(
&ckdev->ec->event_data.data.switches);
ev_type = EV_SW;
}
cros_ec_keyb_report_bs(ckdev, ev_type, val);
break;
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
/*
* Walks keycodes flipping bit in buffer COLUMNS deep where bit is ROW. Used by
* ghosting logic to ignore NULL or virtual keys.
*/
static void cros_ec_keyb_compute_valid_keys(struct cros_ec_keyb *ckdev)
{
int row, col;
int row_shift = ckdev->row_shift;
unsigned short *keymap = ckdev->idev->keycode;
unsigned short code;
BUG_ON(ckdev->idev->keycodesize != sizeof(*keymap));
for (col = 0; col < ckdev->cols; col++) {
for (row = 0; row < ckdev->rows; row++) {
code = keymap[MATRIX_SCAN_CODE(row, col, row_shift)];
if (code && (code != KEY_BATTERY))
ckdev->valid_keys[col] |= 1 << row;
}
dev_dbg(ckdev->dev, "valid_keys[%02d] = 0x%02x\n",
col, ckdev->valid_keys[col]);
}
}
/**
* cros_ec_keyb_info - Wrap the EC command EC_CMD_MKBP_INFO
*
* This wraps the EC_CMD_MKBP_INFO, abstracting out all of the marshalling and
* unmarshalling and different version nonsense into something simple.
*
* @ec_dev: The EC device
* @info_type: Either EC_MKBP_INFO_SUPPORTED or EC_MKBP_INFO_CURRENT.
* @event_type: Either EC_MKBP_EVENT_BUTTON or EC_MKBP_EVENT_SWITCH. Actually
* in some cases this could be EC_MKBP_EVENT_KEY_MATRIX or
* EC_MKBP_EVENT_HOST_EVENT too but we don't use in this driver.
* @result: Where we'll store the result; a union
* @result_size: The size of the result. Expected to be the size of one of
* the elements in the union.
*
* Returns 0 if no error or -error upon error.
*/
static int cros_ec_keyb_info(struct cros_ec_device *ec_dev,
enum ec_mkbp_info_type info_type,
enum ec_mkbp_event event_type,
union ec_response_get_next_data *result,
size_t result_size)
{
struct ec_params_mkbp_info *params;
struct cros_ec_command *msg;
int ret;
msg = kzalloc(sizeof(*msg) + max_t(size_t, result_size,
sizeof(*params)), GFP_KERNEL);
if (!msg)
return -ENOMEM;
msg->command = EC_CMD_MKBP_INFO;
msg->version = 1;
msg->outsize = sizeof(*params);
msg->insize = result_size;
params = (struct ec_params_mkbp_info *)msg->data;
params->info_type = info_type;
params->event_type = event_type;
ret = cros_ec_cmd_xfer_status(ec_dev, msg);
if (ret == -ENOPROTOOPT) {
/* With older ECs we just return 0 for everything */
memset(result, 0, result_size);
ret = 0;
} else if (ret < 0) {
dev_warn(ec_dev->dev, "Transfer error %d/%d: %d\n",
(int)info_type, (int)event_type, ret);
} else if (ret != result_size) {
dev_warn(ec_dev->dev, "Wrong size %d/%d: %d != %zu\n",
(int)info_type, (int)event_type,
ret, result_size);
ret = -EPROTO;
} else {
memcpy(result, msg->data, result_size);
ret = 0;
}
kfree(msg);
return ret;
}
/**
* cros_ec_keyb_query_switches - Query the state of switches and report
*
* This will ask the EC about the current state of switches and report to the
* kernel. Note that we don't query for buttons because they are more
* transitory and we'll get an update on the next release / press.
*
* @ckdev: The keyboard device
*
* Returns 0 if no error or -error upon error.
*/
static int cros_ec_keyb_query_switches(struct cros_ec_keyb *ckdev)
{
struct cros_ec_device *ec_dev = ckdev->ec;
union ec_response_get_next_data event_data = {};
int ret;
ret = cros_ec_keyb_info(ec_dev, EC_MKBP_INFO_CURRENT,
EC_MKBP_EVENT_SWITCH, &event_data,
sizeof(event_data.switches));
if (ret)
return ret;
cros_ec_keyb_report_bs(ckdev, EV_SW,
get_unaligned_le32(&event_data.switches));
return 0;
}
/**
* cros_ec_keyb_resume - Resume the keyboard
*
* We use the resume notification as a chance to query the EC for switches.
*
* @dev: The keyboard device
*
* Returns 0 if no error or -error upon error.
*/
static __maybe_unused int cros_ec_keyb_resume(struct device *dev)
{
struct cros_ec_keyb *ckdev = dev_get_drvdata(dev);
if (ckdev->bs_idev)
return cros_ec_keyb_query_switches(ckdev);
return 0;
}
/**
* cros_ec_keyb_register_bs - Register non-matrix buttons/switches
*
* Handles all the bits of the keyboard driver related to non-matrix buttons
* and switches, including asking the EC about which are present and telling
* the kernel to expect them.
*
* If this device has no support for buttons and switches we'll return no error
* but the ckdev->bs_idev will remain NULL when this function exits.
*
* @ckdev: The keyboard device
*
* Returns 0 if no error or -error upon error.
*/
static int cros_ec_keyb_register_bs(struct cros_ec_keyb *ckdev)
{
struct cros_ec_device *ec_dev = ckdev->ec;
struct device *dev = ckdev->dev;
struct input_dev *idev;
union ec_response_get_next_data event_data = {};
const char *phys;
u32 buttons;
u32 switches;
int ret;
int i;
ret = cros_ec_keyb_info(ec_dev, EC_MKBP_INFO_SUPPORTED,
EC_MKBP_EVENT_BUTTON, &event_data,
sizeof(event_data.buttons));
if (ret)
return ret;
buttons = get_unaligned_le32(&event_data.buttons);
ret = cros_ec_keyb_info(ec_dev, EC_MKBP_INFO_SUPPORTED,
EC_MKBP_EVENT_SWITCH, &event_data,
sizeof(event_data.switches));
if (ret)
return ret;
switches = get_unaligned_le32(&event_data.switches);
if (!buttons && !switches)
return 0;
/*
* We call the non-matrix buttons/switches 'input1', if present.
* Allocate phys before input dev, to ensure correct tear-down
* ordering.
*/
phys = devm_kasprintf(dev, GFP_KERNEL, "%s/input1", ec_dev->phys_name);
if (!phys)
return -ENOMEM;
idev = devm_input_allocate_device(dev);
if (!idev)
return -ENOMEM;
idev->name = "cros_ec_buttons";
idev->phys = phys;
__set_bit(EV_REP, idev->evbit);
idev->id.bustype = BUS_VIRTUAL;
idev->id.version = 1;
idev->id.product = 0;
idev->dev.parent = dev;
input_set_drvdata(idev, ckdev);
ckdev->bs_idev = idev;
for (i = 0; i < ARRAY_SIZE(cros_ec_keyb_bs); i++) {
const struct cros_ec_bs_map *map = &cros_ec_keyb_bs[i];
if ((map->ev_type == EV_KEY && (buttons & BIT(map->bit))) ||
(map->ev_type == EV_SW && (switches & BIT(map->bit))))
input_set_capability(idev, map->ev_type, map->code);
}
ret = cros_ec_keyb_query_switches(ckdev);
if (ret) {
dev_err(dev, "cannot query switches\n");
return ret;
}
ret = input_register_device(ckdev->bs_idev);
if (ret) {
dev_err(dev, "cannot register input device\n");
return ret;
}
return 0;
}
/**
* cros_ec_keyb_register_bs - Register matrix keys
*
* Handles all the bits of the keyboard driver related to matrix keys.
*
* @ckdev: The keyboard device
*
* Returns 0 if no error or -error upon error.
*/
static int cros_ec_keyb_register_matrix(struct cros_ec_keyb *ckdev)
{
struct cros_ec_device *ec_dev = ckdev->ec;
struct device *dev = ckdev->dev;
struct input_dev *idev;
const char *phys;
int err;
struct property *prop;
const __be32 *p;
u16 *physmap;
u32 key_pos;
int row, col;
err = matrix_keypad_parse_properties(dev, &ckdev->rows, &ckdev->cols);
if (err)
return err;
ckdev->valid_keys = devm_kzalloc(dev, ckdev->cols, GFP_KERNEL);
if (!ckdev->valid_keys)
return -ENOMEM;
ckdev->old_kb_state = devm_kzalloc(dev, ckdev->cols, GFP_KERNEL);
if (!ckdev->old_kb_state)
return -ENOMEM;
/*
* We call the keyboard matrix 'input0'. Allocate phys before input
* dev, to ensure correct tear-down ordering.
*/
phys = devm_kasprintf(dev, GFP_KERNEL, "%s/input0", ec_dev->phys_name);
if (!phys)
return -ENOMEM;
idev = devm_input_allocate_device(dev);
if (!idev)
return -ENOMEM;
idev->name = CROS_EC_DEV_NAME;
idev->phys = phys;
__set_bit(EV_REP, idev->evbit);
idev->id.bustype = BUS_VIRTUAL;
idev->id.version = 1;
idev->id.product = 0;
idev->dev.parent = dev;
ckdev->ghost_filter = of_property_read_bool(dev->of_node,
"google,needs-ghost-filter");
err = matrix_keypad_build_keymap(NULL, NULL, ckdev->rows, ckdev->cols,
NULL, idev);
if (err) {
dev_err(dev, "cannot build key matrix\n");
return err;
}
ckdev->row_shift = get_count_order(ckdev->cols);
input_set_capability(idev, EV_MSC, MSC_SCAN);
input_set_drvdata(idev, ckdev);
ckdev->idev = idev;
cros_ec_keyb_compute_valid_keys(ckdev);
physmap = ckdev->function_row_physmap;
of_property_for_each_u32(dev->of_node, "function-row-physmap",
prop, p, key_pos) {
if (ckdev->num_function_row_keys == MAX_NUM_TOP_ROW_KEYS) {
dev_warn(dev, "Only support up to %d top row keys\n",
MAX_NUM_TOP_ROW_KEYS);
break;
}
row = KEY_ROW(key_pos);
col = KEY_COL(key_pos);
*physmap = MATRIX_SCAN_CODE(row, col, ckdev->row_shift);
physmap++;
ckdev->num_function_row_keys++;
}
err = input_register_device(ckdev->idev);
if (err) {
dev_err(dev, "cannot register input device\n");
return err;
}
return 0;
}
static ssize_t function_row_physmap_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t size = 0;
int i;
struct cros_ec_keyb *ckdev = dev_get_drvdata(dev);
u16 *physmap = ckdev->function_row_physmap;
for (i = 0; i < ckdev->num_function_row_keys; i++)
size += scnprintf(buf + size, PAGE_SIZE - size,
"%s%02X", size ? " " : "", physmap[i]);
if (size)
size += scnprintf(buf + size, PAGE_SIZE - size, "\n");
return size;
}
static DEVICE_ATTR_RO(function_row_physmap);
static struct attribute *cros_ec_keyb_attrs[] = {
&dev_attr_function_row_physmap.attr,
NULL,
};
static umode_t cros_ec_keyb_attr_is_visible(struct kobject *kobj,
struct attribute *attr,
int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct cros_ec_keyb *ckdev = dev_get_drvdata(dev);
if (attr == &dev_attr_function_row_physmap.attr &&
!ckdev->num_function_row_keys)
return 0;
return attr->mode;
}
static const struct attribute_group cros_ec_keyb_attr_group = {
.is_visible = cros_ec_keyb_attr_is_visible,
.attrs = cros_ec_keyb_attrs,
};
static int cros_ec_keyb_probe(struct platform_device *pdev)
{
struct cros_ec_device *ec = dev_get_drvdata(pdev->dev.parent);
struct device *dev = &pdev->dev;
struct cros_ec_keyb *ckdev;
int err;
if (!dev->of_node)
return -ENODEV;
ckdev = devm_kzalloc(dev, sizeof(*ckdev), GFP_KERNEL);
if (!ckdev)
return -ENOMEM;
ckdev->ec = ec;
ckdev->dev = dev;
dev_set_drvdata(dev, ckdev);
err = cros_ec_keyb_register_matrix(ckdev);
if (err) {
dev_err(dev, "cannot register matrix inputs: %d\n", err);
return err;
}
err = cros_ec_keyb_register_bs(ckdev);
if (err) {
dev_err(dev, "cannot register non-matrix inputs: %d\n", err);
return err;
}
err = devm_device_add_group(dev, &cros_ec_keyb_attr_group);
if (err) {
dev_err(dev, "failed to create attributes. err=%d\n", err);
return err;
}
ckdev->notifier.notifier_call = cros_ec_keyb_work;
err = blocking_notifier_chain_register(&ckdev->ec->event_notifier,
&ckdev->notifier);
if (err) {
dev_err(dev, "cannot register notifier: %d\n", err);
return err;
}
device_init_wakeup(ckdev->dev, true);
return 0;
}
static int cros_ec_keyb_remove(struct platform_device *pdev)
{
struct cros_ec_keyb *ckdev = dev_get_drvdata(&pdev->dev);
blocking_notifier_chain_unregister(&ckdev->ec->event_notifier,
&ckdev->notifier);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id cros_ec_keyb_of_match[] = {
{ .compatible = "google,cros-ec-keyb" },
{},
};
MODULE_DEVICE_TABLE(of, cros_ec_keyb_of_match);
#endif
static SIMPLE_DEV_PM_OPS(cros_ec_keyb_pm_ops, NULL, cros_ec_keyb_resume);
static struct platform_driver cros_ec_keyb_driver = {
.probe = cros_ec_keyb_probe,
.remove = cros_ec_keyb_remove,
.driver = {
.name = "cros-ec-keyb",
.of_match_table = of_match_ptr(cros_ec_keyb_of_match),
.pm = &cros_ec_keyb_pm_ops,
},
};
module_platform_driver(cros_ec_keyb_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("ChromeOS EC keyboard driver");
MODULE_ALIAS("platform:cros-ec-keyb");