linux/arch/x86/kernel/tsc_sync.c
Thomas Gleixner 76d3b85158 x86/tsc: Prepare warp test for TSC adjustment
To allow TSC compensation cross nodes its necessary to know in which
direction the TSC warp was observed. Return the maximum observed value on
the calling CPU so the caller can determine the direction later.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.970859287@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-29 19:23:18 +01:00

368 lines
9.2 KiB
C

/*
* check TSC synchronization.
*
* Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
*
* We check whether all boot CPUs have their TSC's synchronized,
* print a warning if not and turn off the TSC clock-source.
*
* The warp-check is point-to-point between two CPUs, the CPU
* initiating the bootup is the 'source CPU', the freshly booting
* CPU is the 'target CPU'.
*
* Only two CPUs may participate - they can enter in any order.
* ( The serial nature of the boot logic and the CPU hotplug lock
* protects against more than 2 CPUs entering this code. )
*/
#include <linux/topology.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/nmi.h>
#include <asm/tsc.h>
struct tsc_adjust {
s64 bootval;
s64 adjusted;
unsigned long nextcheck;
bool warned;
};
static DEFINE_PER_CPU(struct tsc_adjust, tsc_adjust);
void tsc_verify_tsc_adjust(void)
{
struct tsc_adjust *adj = this_cpu_ptr(&tsc_adjust);
s64 curval;
if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
return;
/* Rate limit the MSR check */
if (time_before(jiffies, adj->nextcheck))
return;
adj->nextcheck = jiffies + HZ;
rdmsrl(MSR_IA32_TSC_ADJUST, curval);
if (adj->adjusted == curval)
return;
/* Restore the original value */
wrmsrl(MSR_IA32_TSC_ADJUST, adj->adjusted);
if (!adj->warned) {
pr_warn(FW_BUG "TSC ADJUST differs: CPU%u %lld --> %lld. Restoring\n",
smp_processor_id(), adj->adjusted, curval);
adj->warned = true;
}
}
#ifndef CONFIG_SMP
bool __init tsc_store_and_check_tsc_adjust(void)
{
struct tsc_adjust *ref, *cur = this_cpu_ptr(&tsc_adjust);
s64 bootval;
if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
return false;
rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
cur->bootval = bootval;
cur->adjusted = bootval;
cur->nextcheck = jiffies + HZ;
pr_info("TSC ADJUST: Boot CPU0: %lld\n", bootval);
return false;
}
#else /* !CONFIG_SMP */
/*
* Store and check the TSC ADJUST MSR if available
*/
bool tsc_store_and_check_tsc_adjust(void)
{
struct tsc_adjust *ref, *cur = this_cpu_ptr(&tsc_adjust);
unsigned int refcpu, cpu = smp_processor_id();
s64 bootval;
if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
return false;
rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
cur->bootval = bootval;
cur->nextcheck = jiffies + HZ;
cur->warned = false;
/*
* Check whether this CPU is the first in a package to come up. In
* this case do not check the boot value against another package
* because the package might have been physically hotplugged, where
* TSC_ADJUST is expected to be different.
*/
refcpu = cpumask_any_but(topology_core_cpumask(cpu), cpu);
if (refcpu >= nr_cpu_ids) {
/*
* First online CPU in a package stores the boot value in
* the adjustment value. This value might change later via
* the sync mechanism. If that fails we still can yell
* about boot values not being consistent.
*/
cur->adjusted = bootval;
pr_info_once("TSC ADJUST: Boot CPU%u: %lld\n", cpu, bootval);
return false;
}
ref = per_cpu_ptr(&tsc_adjust, refcpu);
/*
* Compare the boot value and complain if it differs in the
* package.
*/
if (bootval != ref->bootval) {
pr_warn("TSC ADJUST differs: Reference CPU%u: %lld CPU%u: %lld\n",
refcpu, ref->bootval, cpu, bootval);
}
/*
* The TSC_ADJUST values in a package must be the same. If the boot
* value on this newly upcoming CPU differs from the adjustment
* value of the already online CPU in this package, set it to that
* adjusted value.
*/
if (bootval != ref->adjusted) {
pr_warn("TSC ADJUST synchronize: Reference CPU%u: %lld CPU%u: %lld\n",
refcpu, ref->adjusted, cpu, bootval);
cur->adjusted = ref->adjusted;
wrmsrl(MSR_IA32_TSC_ADJUST, ref->adjusted);
}
/*
* We have the TSCs forced to be in sync on this package. Skip sync
* test:
*/
return true;
}
/*
* Entry/exit counters that make sure that both CPUs
* run the measurement code at once:
*/
static atomic_t start_count;
static atomic_t stop_count;
static atomic_t skip_test;
/*
* We use a raw spinlock in this exceptional case, because
* we want to have the fastest, inlined, non-debug version
* of a critical section, to be able to prove TSC time-warps:
*/
static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static cycles_t last_tsc;
static cycles_t max_warp;
static int nr_warps;
static int random_warps;
/*
* TSC-warp measurement loop running on both CPUs. This is not called
* if there is no TSC.
*/
static cycles_t check_tsc_warp(unsigned int timeout)
{
cycles_t start, now, prev, end, cur_max_warp = 0;
int i, cur_warps = 0;
start = rdtsc_ordered();
/*
* The measurement runs for 'timeout' msecs:
*/
end = start + (cycles_t) tsc_khz * timeout;
now = start;
for (i = 0; ; i++) {
/*
* We take the global lock, measure TSC, save the
* previous TSC that was measured (possibly on
* another CPU) and update the previous TSC timestamp.
*/
arch_spin_lock(&sync_lock);
prev = last_tsc;
now = rdtsc_ordered();
last_tsc = now;
arch_spin_unlock(&sync_lock);
/*
* Be nice every now and then (and also check whether
* measurement is done [we also insert a 10 million
* loops safety exit, so we dont lock up in case the
* TSC readout is totally broken]):
*/
if (unlikely(!(i & 7))) {
if (now > end || i > 10000000)
break;
cpu_relax();
touch_nmi_watchdog();
}
/*
* Outside the critical section we can now see whether
* we saw a time-warp of the TSC going backwards:
*/
if (unlikely(prev > now)) {
arch_spin_lock(&sync_lock);
max_warp = max(max_warp, prev - now);
cur_max_warp = max_warp;
/*
* Check whether this bounces back and forth. Only
* one CPU should observe time going backwards.
*/
if (cur_warps != nr_warps)
random_warps++;
nr_warps++;
cur_warps = nr_warps;
arch_spin_unlock(&sync_lock);
}
}
WARN(!(now-start),
"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
now-start, end-start);
return cur_max_warp;
}
/*
* If the target CPU coming online doesn't have any of its core-siblings
* online, a timeout of 20msec will be used for the TSC-warp measurement
* loop. Otherwise a smaller timeout of 2msec will be used, as we have some
* information about this socket already (and this information grows as we
* have more and more logical-siblings in that socket).
*
* Ideally we should be able to skip the TSC sync check on the other
* core-siblings, if the first logical CPU in a socket passed the sync test.
* But as the TSC is per-logical CPU and can potentially be modified wrongly
* by the bios, TSC sync test for smaller duration should be able
* to catch such errors. Also this will catch the condition where all the
* cores in the socket doesn't get reset at the same time.
*/
static inline unsigned int loop_timeout(int cpu)
{
return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20;
}
/*
* Source CPU calls into this - it waits for the freshly booted
* target CPU to arrive and then starts the measurement:
*/
void check_tsc_sync_source(int cpu)
{
int cpus = 2;
/*
* No need to check if we already know that the TSC is not
* synchronized or if we have no TSC.
*/
if (unsynchronized_tsc())
return;
if (tsc_clocksource_reliable) {
if (cpu == (nr_cpu_ids-1) || system_state != SYSTEM_BOOTING)
pr_info(
"Skipped synchronization checks as TSC is reliable.\n");
return;
}
/*
* Wait for the target to start or to skip the test:
*/
while (atomic_read(&start_count) != cpus - 1) {
if (atomic_read(&skip_test) > 0) {
atomic_set(&skip_test, 0);
return;
}
cpu_relax();
}
/*
* Trigger the target to continue into the measurement too:
*/
atomic_inc(&start_count);
check_tsc_warp(loop_timeout(cpu));
while (atomic_read(&stop_count) != cpus-1)
cpu_relax();
if (nr_warps) {
pr_warning("TSC synchronization [CPU#%d -> CPU#%d]:\n",
smp_processor_id(), cpu);
pr_warning("Measured %Ld cycles TSC warp between CPUs, "
"turning off TSC clock.\n", max_warp);
if (random_warps)
pr_warning("TSC warped randomly between CPUs\n");
mark_tsc_unstable("check_tsc_sync_source failed");
} else {
pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
smp_processor_id(), cpu);
}
/*
* Reset it - just in case we boot another CPU later:
*/
atomic_set(&start_count, 0);
random_warps = 0;
nr_warps = 0;
max_warp = 0;
last_tsc = 0;
/*
* Let the target continue with the bootup:
*/
atomic_inc(&stop_count);
}
/*
* Freshly booted CPUs call into this:
*/
void check_tsc_sync_target(void)
{
int cpus = 2;
/* Also aborts if there is no TSC. */
if (unsynchronized_tsc() || tsc_clocksource_reliable)
return;
/*
* Store, verify and sanitize the TSC adjust register. If
* successful skip the test.
*/
if (tsc_store_and_check_tsc_adjust()) {
atomic_inc(&skip_test);
return;
}
/*
* Register this CPU's participation and wait for the
* source CPU to start the measurement:
*/
atomic_inc(&start_count);
while (atomic_read(&start_count) != cpus)
cpu_relax();
check_tsc_warp(loop_timeout(smp_processor_id()));
/*
* Ok, we are done:
*/
atomic_inc(&stop_count);
/*
* Wait for the source CPU to print stuff:
*/
while (atomic_read(&stop_count) != cpus)
cpu_relax();
/*
* Reset it for the next sync test:
*/
atomic_set(&stop_count, 0);
}
#endif /* CONFIG_SMP */