forked from Minki/linux
afd0e5a876
If kernel image extends across alignment boundary, existing
code increases the KASLR offset by size of kernel image. The
offset is masked after resizing. There are cases, where after
masking, we may still have kernel image extending across
boundary. This eventually results in only 2MB block getting
mapped while creating the page tables. This results in data aborts
while accessing unmapped regions during second relocation (with
kaslr offset) in __primary_switch. To fix this problem, round up the
kernel image size, by swapper block size, before adding it for
correction.
For example consider below case, where kernel image still crosses
1GB alignment boundary, after masking the offset, which is fixed
by rounding up kernel image size.
SWAPPER_TABLE_SHIFT = 30
Swapper using section maps with section size 2MB.
CONFIG_PGTABLE_LEVELS = 3
VA_BITS = 39
_text : 0xffffff8008080000
_end : 0xffffff800aa1b000
offset : 0x1f35600000
mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1)
(_text + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7c
(_end + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
offset after existing correction (before mask) = 0x1f37f9b000
(_text + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
(_end + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
offset (after mask) = 0x1f37e00000
(_text + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7c
(_end + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
new offset w/ rounding up = 0x1f38000000
(_text + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
(_end + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
Fixes: f80fb3a3d5
("arm64: add support for kernel ASLR")
Cc: <stable@vger.kernel.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Srinivas Ramana <sramana@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
183 lines
5.2 KiB
C
183 lines
5.2 KiB
C
/*
|
|
* Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/cache.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/init.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/fixmap.h>
|
|
#include <asm/kernel-pgtable.h>
|
|
#include <asm/memory.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/sections.h>
|
|
|
|
u64 __ro_after_init module_alloc_base;
|
|
u16 __initdata memstart_offset_seed;
|
|
|
|
static __init u64 get_kaslr_seed(void *fdt)
|
|
{
|
|
int node, len;
|
|
u64 *prop;
|
|
u64 ret;
|
|
|
|
node = fdt_path_offset(fdt, "/chosen");
|
|
if (node < 0)
|
|
return 0;
|
|
|
|
prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
|
|
if (!prop || len != sizeof(u64))
|
|
return 0;
|
|
|
|
ret = fdt64_to_cpu(*prop);
|
|
*prop = 0;
|
|
return ret;
|
|
}
|
|
|
|
static __init const u8 *get_cmdline(void *fdt)
|
|
{
|
|
static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
|
|
|
|
if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
|
|
int node;
|
|
const u8 *prop;
|
|
|
|
node = fdt_path_offset(fdt, "/chosen");
|
|
if (node < 0)
|
|
goto out;
|
|
|
|
prop = fdt_getprop(fdt, node, "bootargs", NULL);
|
|
if (!prop)
|
|
goto out;
|
|
return prop;
|
|
}
|
|
out:
|
|
return default_cmdline;
|
|
}
|
|
|
|
extern void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size,
|
|
pgprot_t prot);
|
|
|
|
/*
|
|
* This routine will be executed with the kernel mapped at its default virtual
|
|
* address, and if it returns successfully, the kernel will be remapped, and
|
|
* start_kernel() will be executed from a randomized virtual offset. The
|
|
* relocation will result in all absolute references (e.g., static variables
|
|
* containing function pointers) to be reinitialized, and zero-initialized
|
|
* .bss variables will be reset to 0.
|
|
*/
|
|
u64 __init kaslr_early_init(u64 dt_phys, u64 modulo_offset)
|
|
{
|
|
void *fdt;
|
|
u64 seed, offset, mask, module_range;
|
|
const u8 *cmdline, *str;
|
|
int size;
|
|
|
|
/*
|
|
* Set a reasonable default for module_alloc_base in case
|
|
* we end up running with module randomization disabled.
|
|
*/
|
|
module_alloc_base = (u64)_etext - MODULES_VSIZE;
|
|
|
|
/*
|
|
* Try to map the FDT early. If this fails, we simply bail,
|
|
* and proceed with KASLR disabled. We will make another
|
|
* attempt at mapping the FDT in setup_machine()
|
|
*/
|
|
early_fixmap_init();
|
|
fdt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
|
|
if (!fdt)
|
|
return 0;
|
|
|
|
/*
|
|
* Retrieve (and wipe) the seed from the FDT
|
|
*/
|
|
seed = get_kaslr_seed(fdt);
|
|
if (!seed)
|
|
return 0;
|
|
|
|
/*
|
|
* Check if 'nokaslr' appears on the command line, and
|
|
* return 0 if that is the case.
|
|
*/
|
|
cmdline = get_cmdline(fdt);
|
|
str = strstr(cmdline, "nokaslr");
|
|
if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
|
|
return 0;
|
|
|
|
/*
|
|
* OK, so we are proceeding with KASLR enabled. Calculate a suitable
|
|
* kernel image offset from the seed. Let's place the kernel in the
|
|
* lower half of the VMALLOC area (VA_BITS - 2).
|
|
* Even if we could randomize at page granularity for 16k and 64k pages,
|
|
* let's always round to 2 MB so we don't interfere with the ability to
|
|
* map using contiguous PTEs
|
|
*/
|
|
mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1);
|
|
offset = seed & mask;
|
|
|
|
/* use the top 16 bits to randomize the linear region */
|
|
memstart_offset_seed = seed >> 48;
|
|
|
|
/*
|
|
* The kernel Image should not extend across a 1GB/32MB/512MB alignment
|
|
* boundary (for 4KB/16KB/64KB granule kernels, respectively). If this
|
|
* happens, increase the KASLR offset by the size of the kernel image
|
|
* rounded up by SWAPPER_BLOCK_SIZE.
|
|
*/
|
|
if ((((u64)_text + offset + modulo_offset) >> SWAPPER_TABLE_SHIFT) !=
|
|
(((u64)_end + offset + modulo_offset) >> SWAPPER_TABLE_SHIFT)) {
|
|
u64 kimg_sz = _end - _text;
|
|
offset = (offset + round_up(kimg_sz, SWAPPER_BLOCK_SIZE))
|
|
& mask;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_KASAN))
|
|
/*
|
|
* KASAN does not expect the module region to intersect the
|
|
* vmalloc region, since shadow memory is allocated for each
|
|
* module at load time, whereas the vmalloc region is shadowed
|
|
* by KASAN zero pages. So keep modules out of the vmalloc
|
|
* region if KASAN is enabled.
|
|
*/
|
|
return offset;
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
|
|
/*
|
|
* Randomize the module region independently from the core
|
|
* kernel. This prevents modules from leaking any information
|
|
* about the address of the kernel itself, but results in
|
|
* branches between modules and the core kernel that are
|
|
* resolved via PLTs. (Branches between modules will be
|
|
* resolved normally.)
|
|
*/
|
|
module_range = VMALLOC_END - VMALLOC_START - MODULES_VSIZE;
|
|
module_alloc_base = VMALLOC_START;
|
|
} else {
|
|
/*
|
|
* Randomize the module region by setting module_alloc_base to
|
|
* a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
|
|
* _stext) . This guarantees that the resulting region still
|
|
* covers [_stext, _etext], and that all relative branches can
|
|
* be resolved without veneers.
|
|
*/
|
|
module_range = MODULES_VSIZE - (u64)(_etext - _stext);
|
|
module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
|
|
}
|
|
|
|
/* use the lower 21 bits to randomize the base of the module region */
|
|
module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
|
|
module_alloc_base &= PAGE_MASK;
|
|
|
|
return offset;
|
|
}
|