linux/drivers/net/ethernet/intel/igb/igb_main.c
Arika Chen d99e366fc9 Revert "igb: Fix a deadlock in igb_sriov_reinit"
This reverts commit 3eb14ea8d9 ("igb: Fix a deadlock in
igb_sriov_reinit")
It is the same as commit f468adc944 ("igb: missing rtnl_unlock in
igb_sriov_reinit()")
There is no rtnl_lock() in igb_resume before, rtnl_unlock will cause a
deadlock.

Signed-off-by: Arika Chen <arika.chen@huawei.com>
Tested-by: Aaron Brown <aaron.f.brown@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2016-04-06 21:02:11 -07:00

8255 lines
220 KiB
C

/* Intel(R) Gigabit Ethernet Linux driver
* Copyright(c) 2007-2014 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, see <http://www.gnu.org/licenses/>.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Contact Information:
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/net_tstamp.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
#include <linux/pci-aspm.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
#include <linux/if_ether.h>
#include <linux/aer.h>
#include <linux/prefetch.h>
#include <linux/pm_runtime.h>
#include <linux/etherdevice.h>
#ifdef CONFIG_IGB_DCA
#include <linux/dca.h>
#endif
#include <linux/i2c.h>
#include "igb.h"
#define MAJ 5
#define MIN 3
#define BUILD 0
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
__stringify(BUILD) "-k"
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
"Intel(R) Gigabit Ethernet Network Driver";
static const char igb_copyright[] =
"Copyright (c) 2007-2014 Intel Corporation.";
static const struct e1000_info *igb_info_tbl[] = {
[board_82575] = &e1000_82575_info,
};
static const struct pci_device_id igb_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
static void igb_setup_mrqc(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
int igb_open(struct net_device *);
int igb_close(struct net_device *);
static void igb_configure(struct igb_adapter *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
static void igb_set_rx_mode(struct net_device *);
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
static void igb_set_uta(struct igb_adapter *adapter, bool set);
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
static irqreturn_t igb_msix_ring(int irq, void *);
#ifdef CONFIG_IGB_DCA
static void igb_update_dca(struct igb_q_vector *);
static void igb_setup_dca(struct igb_adapter *);
#endif /* CONFIG_IGB_DCA */
static int igb_poll(struct napi_struct *, int);
static bool igb_clean_tx_irq(struct igb_q_vector *, int);
static int igb_clean_rx_irq(struct igb_q_vector *, int);
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_mode(struct net_device *netdev,
netdev_features_t features);
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
static void igb_restore_vlan(struct igb_adapter *);
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
bool setting);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
struct ifla_vf_info *ivi);
static void igb_check_vf_rate_limit(struct igb_adapter *);
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
static int igb_disable_sriov(struct pci_dev *dev);
static int igb_pci_disable_sriov(struct pci_dev *dev);
#endif
#ifdef CONFIG_PM
#ifdef CONFIG_PM_SLEEP
static int igb_suspend(struct device *);
#endif
static int igb_resume(struct device *);
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
static const struct dev_pm_ops igb_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
igb_runtime_idle)
};
#endif
static void igb_shutdown(struct pci_dev *);
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
#ifdef CONFIG_IGB_DCA
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
.notifier_call = igb_notify_dca,
.next = NULL,
.priority = 0
};
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
#ifdef CONFIG_PCI_IOV
static unsigned int max_vfs;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
#endif /* CONFIG_PCI_IOV */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);
static const struct pci_error_handlers igb_err_handler = {
.error_detected = igb_io_error_detected,
.slot_reset = igb_io_slot_reset,
.resume = igb_io_resume,
};
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
static struct pci_driver igb_driver = {
.name = igb_driver_name,
.id_table = igb_pci_tbl,
.probe = igb_probe,
.remove = igb_remove,
#ifdef CONFIG_PM
.driver.pm = &igb_pm_ops,
#endif
.shutdown = igb_shutdown,
.sriov_configure = igb_pci_sriov_configure,
.err_handler = &igb_err_handler
};
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
struct igb_reg_info {
u32 ofs;
char *name;
};
static const struct igb_reg_info igb_reg_info_tbl[] = {
/* General Registers */
{E1000_CTRL, "CTRL"},
{E1000_STATUS, "STATUS"},
{E1000_CTRL_EXT, "CTRL_EXT"},
/* Interrupt Registers */
{E1000_ICR, "ICR"},
/* RX Registers */
{E1000_RCTL, "RCTL"},
{E1000_RDLEN(0), "RDLEN"},
{E1000_RDH(0), "RDH"},
{E1000_RDT(0), "RDT"},
{E1000_RXDCTL(0), "RXDCTL"},
{E1000_RDBAL(0), "RDBAL"},
{E1000_RDBAH(0), "RDBAH"},
/* TX Registers */
{E1000_TCTL, "TCTL"},
{E1000_TDBAL(0), "TDBAL"},
{E1000_TDBAH(0), "TDBAH"},
{E1000_TDLEN(0), "TDLEN"},
{E1000_TDH(0), "TDH"},
{E1000_TDT(0), "TDT"},
{E1000_TXDCTL(0), "TXDCTL"},
{E1000_TDFH, "TDFH"},
{E1000_TDFT, "TDFT"},
{E1000_TDFHS, "TDFHS"},
{E1000_TDFPC, "TDFPC"},
/* List Terminator */
{}
};
/* igb_regdump - register printout routine */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
int n = 0;
char rname[16];
u32 regs[8];
switch (reginfo->ofs) {
case E1000_RDLEN(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDLEN(n));
break;
case E1000_RDH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDH(n));
break;
case E1000_RDT(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDT(n));
break;
case E1000_RXDCTL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RXDCTL(n));
break;
case E1000_RDBAL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDBAL(n));
break;
case E1000_RDBAH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDBAH(n));
break;
case E1000_TDBAL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDBAL(n));
break;
case E1000_TDBAH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDBAH(n));
break;
case E1000_TDLEN(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDLEN(n));
break;
case E1000_TDH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDH(n));
break;
case E1000_TDT(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDT(n));
break;
case E1000_TXDCTL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TXDCTL(n));
break;
default:
pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
return;
}
snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
regs[2], regs[3]);
}
/* igb_dump - Print registers, Tx-rings and Rx-rings */
static void igb_dump(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct igb_reg_info *reginfo;
struct igb_ring *tx_ring;
union e1000_adv_tx_desc *tx_desc;
struct my_u0 { u64 a; u64 b; } *u0;
struct igb_ring *rx_ring;
union e1000_adv_rx_desc *rx_desc;
u32 staterr;
u16 i, n;
if (!netif_msg_hw(adapter))
return;
/* Print netdevice Info */
if (netdev) {
dev_info(&adapter->pdev->dev, "Net device Info\n");
pr_info("Device Name state trans_start last_rx\n");
pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
netdev->state, netdev->trans_start, netdev->last_rx);
}
/* Print Registers */
dev_info(&adapter->pdev->dev, "Register Dump\n");
pr_info(" Register Name Value\n");
for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
reginfo->name; reginfo++) {
igb_regdump(hw, reginfo);
}
/* Print TX Ring Summary */
if (!netdev || !netif_running(netdev))
goto exit;
dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
for (n = 0; n < adapter->num_tx_queues; n++) {
struct igb_tx_buffer *buffer_info;
tx_ring = adapter->tx_ring[n];
buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
n, tx_ring->next_to_use, tx_ring->next_to_clean,
(u64)dma_unmap_addr(buffer_info, dma),
dma_unmap_len(buffer_info, len),
buffer_info->next_to_watch,
(u64)buffer_info->time_stamp);
}
/* Print TX Rings */
if (!netif_msg_tx_done(adapter))
goto rx_ring_summary;
dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
/* Transmit Descriptor Formats
*
* Advanced Transmit Descriptor
* +--------------------------------------------------------------+
* 0 | Buffer Address [63:0] |
* +--------------------------------------------------------------+
* 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
* +--------------------------------------------------------------+
* 63 46 45 40 39 38 36 35 32 31 24 15 0
*/
for (n = 0; n < adapter->num_tx_queues; n++) {
tx_ring = adapter->tx_ring[n];
pr_info("------------------------------------\n");
pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
pr_info("------------------------------------\n");
pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
const char *next_desc;
struct igb_tx_buffer *buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, i);
buffer_info = &tx_ring->tx_buffer_info[i];
u0 = (struct my_u0 *)tx_desc;
if (i == tx_ring->next_to_use &&
i == tx_ring->next_to_clean)
next_desc = " NTC/U";
else if (i == tx_ring->next_to_use)
next_desc = " NTU";
else if (i == tx_ring->next_to_clean)
next_desc = " NTC";
else
next_desc = "";
pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
i, le64_to_cpu(u0->a),
le64_to_cpu(u0->b),
(u64)dma_unmap_addr(buffer_info, dma),
dma_unmap_len(buffer_info, len),
buffer_info->next_to_watch,
(u64)buffer_info->time_stamp,
buffer_info->skb, next_desc);
if (netif_msg_pktdata(adapter) && buffer_info->skb)
print_hex_dump(KERN_INFO, "",
DUMP_PREFIX_ADDRESS,
16, 1, buffer_info->skb->data,
dma_unmap_len(buffer_info, len),
true);
}
}
/* Print RX Rings Summary */
rx_ring_summary:
dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
pr_info("Queue [NTU] [NTC]\n");
for (n = 0; n < adapter->num_rx_queues; n++) {
rx_ring = adapter->rx_ring[n];
pr_info(" %5d %5X %5X\n",
n, rx_ring->next_to_use, rx_ring->next_to_clean);
}
/* Print RX Rings */
if (!netif_msg_rx_status(adapter))
goto exit;
dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
/* Advanced Receive Descriptor (Read) Format
* 63 1 0
* +-----------------------------------------------------+
* 0 | Packet Buffer Address [63:1] |A0/NSE|
* +----------------------------------------------+------+
* 8 | Header Buffer Address [63:1] | DD |
* +-----------------------------------------------------+
*
*
* Advanced Receive Descriptor (Write-Back) Format
*
* 63 48 47 32 31 30 21 20 17 16 4 3 0
* +------------------------------------------------------+
* 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
* | Checksum Ident | | | | Type | Type |
* +------------------------------------------------------+
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
* +------------------------------------------------------+
* 63 48 47 32 31 20 19 0
*/
for (n = 0; n < adapter->num_rx_queues; n++) {
rx_ring = adapter->rx_ring[n];
pr_info("------------------------------------\n");
pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
pr_info("------------------------------------\n");
pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
for (i = 0; i < rx_ring->count; i++) {
const char *next_desc;
struct igb_rx_buffer *buffer_info;
buffer_info = &rx_ring->rx_buffer_info[i];
rx_desc = IGB_RX_DESC(rx_ring, i);
u0 = (struct my_u0 *)rx_desc;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
if (i == rx_ring->next_to_use)
next_desc = " NTU";
else if (i == rx_ring->next_to_clean)
next_desc = " NTC";
else
next_desc = "";
if (staterr & E1000_RXD_STAT_DD) {
/* Descriptor Done */
pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
"RWB", i,
le64_to_cpu(u0->a),
le64_to_cpu(u0->b),
next_desc);
} else {
pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
"R ", i,
le64_to_cpu(u0->a),
le64_to_cpu(u0->b),
(u64)buffer_info->dma,
next_desc);
if (netif_msg_pktdata(adapter) &&
buffer_info->dma && buffer_info->page) {
print_hex_dump(KERN_INFO, "",
DUMP_PREFIX_ADDRESS,
16, 1,
page_address(buffer_info->page) +
buffer_info->page_offset,
IGB_RX_BUFSZ, true);
}
}
}
}
exit:
return;
}
/**
* igb_get_i2c_data - Reads the I2C SDA data bit
* @hw: pointer to hardware structure
* @i2cctl: Current value of I2CCTL register
*
* Returns the I2C data bit value
**/
static int igb_get_i2c_data(void *data)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
return !!(i2cctl & E1000_I2C_DATA_IN);
}
/**
* igb_set_i2c_data - Sets the I2C data bit
* @data: pointer to hardware structure
* @state: I2C data value (0 or 1) to set
*
* Sets the I2C data bit
**/
static void igb_set_i2c_data(void *data, int state)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
if (state)
i2cctl |= E1000_I2C_DATA_OUT;
else
i2cctl &= ~E1000_I2C_DATA_OUT;
i2cctl &= ~E1000_I2C_DATA_OE_N;
i2cctl |= E1000_I2C_CLK_OE_N;
wr32(E1000_I2CPARAMS, i2cctl);
wrfl();
}
/**
* igb_set_i2c_clk - Sets the I2C SCL clock
* @data: pointer to hardware structure
* @state: state to set clock
*
* Sets the I2C clock line to state
**/
static void igb_set_i2c_clk(void *data, int state)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
if (state) {
i2cctl |= E1000_I2C_CLK_OUT;
i2cctl &= ~E1000_I2C_CLK_OE_N;
} else {
i2cctl &= ~E1000_I2C_CLK_OUT;
i2cctl &= ~E1000_I2C_CLK_OE_N;
}
wr32(E1000_I2CPARAMS, i2cctl);
wrfl();
}
/**
* igb_get_i2c_clk - Gets the I2C SCL clock state
* @data: pointer to hardware structure
*
* Gets the I2C clock state
**/
static int igb_get_i2c_clk(void *data)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
return !!(i2cctl & E1000_I2C_CLK_IN);
}
static const struct i2c_algo_bit_data igb_i2c_algo = {
.setsda = igb_set_i2c_data,
.setscl = igb_set_i2c_clk,
.getsda = igb_get_i2c_data,
.getscl = igb_get_i2c_clk,
.udelay = 5,
.timeout = 20,
};
/**
* igb_get_hw_dev - return device
* @hw: pointer to hardware structure
*
* used by hardware layer to print debugging information
**/
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
{
struct igb_adapter *adapter = hw->back;
return adapter->netdev;
}
/**
* igb_init_module - Driver Registration Routine
*
* igb_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init igb_init_module(void)
{
int ret;
pr_info("%s - version %s\n",
igb_driver_string, igb_driver_version);
pr_info("%s\n", igb_copyright);
#ifdef CONFIG_IGB_DCA
dca_register_notify(&dca_notifier);
#endif
ret = pci_register_driver(&igb_driver);
return ret;
}
module_init(igb_init_module);
/**
* igb_exit_module - Driver Exit Cleanup Routine
*
* igb_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit igb_exit_module(void)
{
#ifdef CONFIG_IGB_DCA
dca_unregister_notify(&dca_notifier);
#endif
pci_unregister_driver(&igb_driver);
}
module_exit(igb_exit_module);
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
* igb_cache_ring_register - Descriptor ring to register mapping
* @adapter: board private structure to initialize
*
* Once we know the feature-set enabled for the device, we'll cache
* the register offset the descriptor ring is assigned to.
**/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
int i = 0, j = 0;
u32 rbase_offset = adapter->vfs_allocated_count;
switch (adapter->hw.mac.type) {
case e1000_82576:
/* The queues are allocated for virtualization such that VF 0
* is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
* In order to avoid collision we start at the first free queue
* and continue consuming queues in the same sequence
*/
if (adapter->vfs_allocated_count) {
for (; i < adapter->rss_queues; i++)
adapter->rx_ring[i]->reg_idx = rbase_offset +
Q_IDX_82576(i);
}
/* Fall through */
case e1000_82575:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
/* Fall through */
default:
for (; i < adapter->num_rx_queues; i++)
adapter->rx_ring[i]->reg_idx = rbase_offset + i;
for (; j < adapter->num_tx_queues; j++)
adapter->tx_ring[j]->reg_idx = rbase_offset + j;
break;
}
}
u32 igb_rd32(struct e1000_hw *hw, u32 reg)
{
struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
u32 value = 0;
if (E1000_REMOVED(hw_addr))
return ~value;
value = readl(&hw_addr[reg]);
/* reads should not return all F's */
if (!(~value) && (!reg || !(~readl(hw_addr)))) {
struct net_device *netdev = igb->netdev;
hw->hw_addr = NULL;
netif_device_detach(netdev);
netdev_err(netdev, "PCIe link lost, device now detached\n");
}
return value;
}
/**
* igb_write_ivar - configure ivar for given MSI-X vector
* @hw: pointer to the HW structure
* @msix_vector: vector number we are allocating to a given ring
* @index: row index of IVAR register to write within IVAR table
* @offset: column offset of in IVAR, should be multiple of 8
*
* This function is intended to handle the writing of the IVAR register
* for adapters 82576 and newer. The IVAR table consists of 2 columns,
* each containing an cause allocation for an Rx and Tx ring, and a
* variable number of rows depending on the number of queues supported.
**/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
int index, int offset)
{
u32 ivar = array_rd32(E1000_IVAR0, index);
/* clear any bits that are currently set */
ivar &= ~((u32)0xFF << offset);
/* write vector and valid bit */
ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
array_wr32(E1000_IVAR0, index, ivar);
}
#define IGB_N0_QUEUE -1
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
int rx_queue = IGB_N0_QUEUE;
int tx_queue = IGB_N0_QUEUE;
u32 msixbm = 0;
if (q_vector->rx.ring)
rx_queue = q_vector->rx.ring->reg_idx;
if (q_vector->tx.ring)
tx_queue = q_vector->tx.ring->reg_idx;
switch (hw->mac.type) {
case e1000_82575:
/* The 82575 assigns vectors using a bitmask, which matches the
* bitmask for the EICR/EIMS/EIMC registers. To assign one
* or more queues to a vector, we write the appropriate bits
* into the MSIXBM register for that vector.
*/
if (rx_queue > IGB_N0_QUEUE)
msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
if (tx_queue > IGB_N0_QUEUE)
msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
msixbm |= E1000_EIMS_OTHER;
array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
q_vector->eims_value = msixbm;
break;
case e1000_82576:
/* 82576 uses a table that essentially consists of 2 columns
* with 8 rows. The ordering is column-major so we use the
* lower 3 bits as the row index, and the 4th bit as the
* column offset.
*/
if (rx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
rx_queue & 0x7,
(rx_queue & 0x8) << 1);
if (tx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
tx_queue & 0x7,
((tx_queue & 0x8) << 1) + 8);
q_vector->eims_value = 1 << msix_vector;
break;
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
/* On 82580 and newer adapters the scheme is similar to 82576
* however instead of ordering column-major we have things
* ordered row-major. So we traverse the table by using
* bit 0 as the column offset, and the remaining bits as the
* row index.
*/
if (rx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
rx_queue >> 1,
(rx_queue & 0x1) << 4);
if (tx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
tx_queue >> 1,
((tx_queue & 0x1) << 4) + 8);
q_vector->eims_value = 1 << msix_vector;
break;
default:
BUG();
break;
}
/* add q_vector eims value to global eims_enable_mask */
adapter->eims_enable_mask |= q_vector->eims_value;
/* configure q_vector to set itr on first interrupt */
q_vector->set_itr = 1;
}
/**
* igb_configure_msix - Configure MSI-X hardware
* @adapter: board private structure to initialize
*
* igb_configure_msix sets up the hardware to properly
* generate MSI-X interrupts.
**/
static void igb_configure_msix(struct igb_adapter *adapter)
{
u32 tmp;
int i, vector = 0;
struct e1000_hw *hw = &adapter->hw;
adapter->eims_enable_mask = 0;
/* set vector for other causes, i.e. link changes */
switch (hw->mac.type) {
case e1000_82575:
tmp = rd32(E1000_CTRL_EXT);
/* enable MSI-X PBA support*/
tmp |= E1000_CTRL_EXT_PBA_CLR;
/* Auto-Mask interrupts upon ICR read. */
tmp |= E1000_CTRL_EXT_EIAME;
tmp |= E1000_CTRL_EXT_IRCA;
wr32(E1000_CTRL_EXT, tmp);
/* enable msix_other interrupt */
array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
adapter->eims_other = E1000_EIMS_OTHER;
break;
case e1000_82576:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
/* Turn on MSI-X capability first, or our settings
* won't stick. And it will take days to debug.
*/
wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
E1000_GPIE_PBA | E1000_GPIE_EIAME |
E1000_GPIE_NSICR);
/* enable msix_other interrupt */
adapter->eims_other = 1 << vector;
tmp = (vector++ | E1000_IVAR_VALID) << 8;
wr32(E1000_IVAR_MISC, tmp);
break;
default:
/* do nothing, since nothing else supports MSI-X */
break;
} /* switch (hw->mac.type) */
adapter->eims_enable_mask |= adapter->eims_other;
for (i = 0; i < adapter->num_q_vectors; i++)
igb_assign_vector(adapter->q_vector[i], vector++);
wrfl();
}
/**
* igb_request_msix - Initialize MSI-X interrupts
* @adapter: board private structure to initialize
*
* igb_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
**/
static int igb_request_msix(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i, err = 0, vector = 0, free_vector = 0;
err = request_irq(adapter->msix_entries[vector].vector,
igb_msix_other, 0, netdev->name, adapter);
if (err)
goto err_out;
for (i = 0; i < adapter->num_q_vectors; i++) {
struct igb_q_vector *q_vector = adapter->q_vector[i];
vector++;
q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
if (q_vector->rx.ring && q_vector->tx.ring)
sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else if (q_vector->tx.ring)
sprintf(q_vector->name, "%s-tx-%u", netdev->name,
q_vector->tx.ring->queue_index);
else if (q_vector->rx.ring)
sprintf(q_vector->name, "%s-rx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else
sprintf(q_vector->name, "%s-unused", netdev->name);
err = request_irq(adapter->msix_entries[vector].vector,
igb_msix_ring, 0, q_vector->name,
q_vector);
if (err)
goto err_free;
}
igb_configure_msix(adapter);
return 0;
err_free:
/* free already assigned IRQs */
free_irq(adapter->msix_entries[free_vector++].vector, adapter);
vector--;
for (i = 0; i < vector; i++) {
free_irq(adapter->msix_entries[free_vector++].vector,
adapter->q_vector[i]);
}
err_out:
return err;
}
/**
* igb_free_q_vector - Free memory allocated for specific interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be freed
*
* This function frees the memory allocated to the q_vector.
**/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
adapter->q_vector[v_idx] = NULL;
/* igb_get_stats64() might access the rings on this vector,
* we must wait a grace period before freeing it.
*/
if (q_vector)
kfree_rcu(q_vector, rcu);
}
/**
* igb_reset_q_vector - Reset config for interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be reset
*
* If NAPI is enabled it will delete any references to the
* NAPI struct. This is preparation for igb_free_q_vector.
**/
static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
{
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
/* Coming from igb_set_interrupt_capability, the vectors are not yet
* allocated. So, q_vector is NULL so we should stop here.
*/
if (!q_vector)
return;
if (q_vector->tx.ring)
adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
if (q_vector->rx.ring)
adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
netif_napi_del(&q_vector->napi);
}
static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
if (adapter->flags & IGB_FLAG_HAS_MSIX)
pci_disable_msix(adapter->pdev);
else if (adapter->flags & IGB_FLAG_HAS_MSI)
pci_disable_msi(adapter->pdev);
while (v_idx--)
igb_reset_q_vector(adapter, v_idx);
}
/**
* igb_free_q_vectors - Free memory allocated for interrupt vectors
* @adapter: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--) {
igb_reset_q_vector(adapter, v_idx);
igb_free_q_vector(adapter, v_idx);
}
}
/**
* igb_clear_interrupt_scheme - reset the device to a state of no interrupts
* @adapter: board private structure to initialize
*
* This function resets the device so that it has 0 Rx queues, Tx queues, and
* MSI-X interrupts allocated.
*/
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
igb_free_q_vectors(adapter);
igb_reset_interrupt_capability(adapter);
}
/**
* igb_set_interrupt_capability - set MSI or MSI-X if supported
* @adapter: board private structure to initialize
* @msix: boolean value of MSIX capability
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
{
int err;
int numvecs, i;
if (!msix)
goto msi_only;
adapter->flags |= IGB_FLAG_HAS_MSIX;
/* Number of supported queues. */
adapter->num_rx_queues = adapter->rss_queues;
if (adapter->vfs_allocated_count)
adapter->num_tx_queues = 1;
else
adapter->num_tx_queues = adapter->rss_queues;
/* start with one vector for every Rx queue */
numvecs = adapter->num_rx_queues;
/* if Tx handler is separate add 1 for every Tx queue */
if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
numvecs += adapter->num_tx_queues;
/* store the number of vectors reserved for queues */
adapter->num_q_vectors = numvecs;
/* add 1 vector for link status interrupts */
numvecs++;
for (i = 0; i < numvecs; i++)
adapter->msix_entries[i].entry = i;
err = pci_enable_msix_range(adapter->pdev,
adapter->msix_entries,
numvecs,
numvecs);
if (err > 0)
return;
igb_reset_interrupt_capability(adapter);
/* If we can't do MSI-X, try MSI */
msi_only:
adapter->flags &= ~IGB_FLAG_HAS_MSIX;
#ifdef CONFIG_PCI_IOV
/* disable SR-IOV for non MSI-X configurations */
if (adapter->vf_data) {
struct e1000_hw *hw = &adapter->hw;
/* disable iov and allow time for transactions to clear */
pci_disable_sriov(adapter->pdev);
msleep(500);
kfree(adapter->vf_data);
adapter->vf_data = NULL;
wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
wrfl();
msleep(100);
dev_info(&adapter->pdev->dev, "IOV Disabled\n");
}
#endif
adapter->vfs_allocated_count = 0;
adapter->rss_queues = 1;
adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
adapter->num_rx_queues = 1;
adapter->num_tx_queues = 1;
adapter->num_q_vectors = 1;
if (!pci_enable_msi(adapter->pdev))
adapter->flags |= IGB_FLAG_HAS_MSI;
}
static void igb_add_ring(struct igb_ring *ring,
struct igb_ring_container *head)
{
head->ring = ring;
head->count++;
}
/**
* igb_alloc_q_vector - Allocate memory for a single interrupt vector
* @adapter: board private structure to initialize
* @v_count: q_vectors allocated on adapter, used for ring interleaving
* @v_idx: index of vector in adapter struct
* @txr_count: total number of Tx rings to allocate
* @txr_idx: index of first Tx ring to allocate
* @rxr_count: total number of Rx rings to allocate
* @rxr_idx: index of first Rx ring to allocate
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
**/
static int igb_alloc_q_vector(struct igb_adapter *adapter,
int v_count, int v_idx,
int txr_count, int txr_idx,
int rxr_count, int rxr_idx)
{
struct igb_q_vector *q_vector;
struct igb_ring *ring;
int ring_count, size;
/* igb only supports 1 Tx and/or 1 Rx queue per vector */
if (txr_count > 1 || rxr_count > 1)
return -ENOMEM;
ring_count = txr_count + rxr_count;
size = sizeof(struct igb_q_vector) +
(sizeof(struct igb_ring) * ring_count);
/* allocate q_vector and rings */
q_vector = adapter->q_vector[v_idx];
if (!q_vector) {
q_vector = kzalloc(size, GFP_KERNEL);
} else if (size > ksize(q_vector)) {
kfree_rcu(q_vector, rcu);
q_vector = kzalloc(size, GFP_KERNEL);
} else {
memset(q_vector, 0, size);
}
if (!q_vector)
return -ENOMEM;
/* initialize NAPI */
netif_napi_add(adapter->netdev, &q_vector->napi,
igb_poll, 64);
/* tie q_vector and adapter together */
adapter->q_vector[v_idx] = q_vector;
q_vector->adapter = adapter;
/* initialize work limits */
q_vector->tx.work_limit = adapter->tx_work_limit;
/* initialize ITR configuration */
q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
q_vector->itr_val = IGB_START_ITR;
/* initialize pointer to rings */
ring = q_vector->ring;
/* intialize ITR */
if (rxr_count) {
/* rx or rx/tx vector */
if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
q_vector->itr_val = adapter->rx_itr_setting;
} else {
/* tx only vector */
if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
q_vector->itr_val = adapter->tx_itr_setting;
}
if (txr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Tx values */
igb_add_ring(ring, &q_vector->tx);
/* For 82575, context index must be unique per ring. */
if (adapter->hw.mac.type == e1000_82575)
set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
/* apply Tx specific ring traits */
ring->count = adapter->tx_ring_count;
ring->queue_index = txr_idx;
u64_stats_init(&ring->tx_syncp);
u64_stats_init(&ring->tx_syncp2);
/* assign ring to adapter */
adapter->tx_ring[txr_idx] = ring;
/* push pointer to next ring */
ring++;
}
if (rxr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Rx values */
igb_add_ring(ring, &q_vector->rx);
/* set flag indicating ring supports SCTP checksum offload */
if (adapter->hw.mac.type >= e1000_82576)
set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
/* On i350, i354, i210, and i211, loopback VLAN packets
* have the tag byte-swapped.
*/
if (adapter->hw.mac.type >= e1000_i350)
set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
/* apply Rx specific ring traits */
ring->count = adapter->rx_ring_count;
ring->queue_index = rxr_idx;
u64_stats_init(&ring->rx_syncp);
/* assign ring to adapter */
adapter->rx_ring[rxr_idx] = ring;
}
return 0;
}
/**
* igb_alloc_q_vectors - Allocate memory for interrupt vectors
* @adapter: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
int q_vectors = adapter->num_q_vectors;
int rxr_remaining = adapter->num_rx_queues;
int txr_remaining = adapter->num_tx_queues;
int rxr_idx = 0, txr_idx = 0, v_idx = 0;
int err;
if (q_vectors >= (rxr_remaining + txr_remaining)) {
for (; rxr_remaining; v_idx++) {
err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
0, 0, 1, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining--;
rxr_idx++;
}
}
for (; v_idx < q_vectors; v_idx++) {
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
tqpv, txr_idx, rqpv, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining -= rqpv;
txr_remaining -= tqpv;
rxr_idx++;
txr_idx++;
}
return 0;
err_out:
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--)
igb_free_q_vector(adapter, v_idx);
return -ENOMEM;
}
/**
* igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
* @adapter: board private structure to initialize
* @msix: boolean value of MSIX capability
*
* This function initializes the interrupts and allocates all of the queues.
**/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
{
struct pci_dev *pdev = adapter->pdev;
int err;
igb_set_interrupt_capability(adapter, msix);
err = igb_alloc_q_vectors(adapter);
if (err) {
dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
goto err_alloc_q_vectors;
}
igb_cache_ring_register(adapter);
return 0;
err_alloc_q_vectors:
igb_reset_interrupt_capability(adapter);
return err;
}
/**
* igb_request_irq - initialize interrupts
* @adapter: board private structure to initialize
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static int igb_request_irq(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
int err = 0;
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
err = igb_request_msix(adapter);
if (!err)
goto request_done;
/* fall back to MSI */
igb_free_all_tx_resources(adapter);
igb_free_all_rx_resources(adapter);
igb_clear_interrupt_scheme(adapter);
err = igb_init_interrupt_scheme(adapter, false);
if (err)
goto request_done;
igb_setup_all_tx_resources(adapter);
igb_setup_all_rx_resources(adapter);
igb_configure(adapter);
}
igb_assign_vector(adapter->q_vector[0], 0);
if (adapter->flags & IGB_FLAG_HAS_MSI) {
err = request_irq(pdev->irq, igb_intr_msi, 0,
netdev->name, adapter);
if (!err)
goto request_done;
/* fall back to legacy interrupts */
igb_reset_interrupt_capability(adapter);
adapter->flags &= ~IGB_FLAG_HAS_MSI;
}
err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
netdev->name, adapter);
if (err)
dev_err(&pdev->dev, "Error %d getting interrupt\n",
err);
request_done:
return err;
}
static void igb_free_irq(struct igb_adapter *adapter)
{
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
int vector = 0, i;
free_irq(adapter->msix_entries[vector++].vector, adapter);
for (i = 0; i < adapter->num_q_vectors; i++)
free_irq(adapter->msix_entries[vector++].vector,
adapter->q_vector[i]);
} else {
free_irq(adapter->pdev->irq, adapter);
}
}
/**
* igb_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static void igb_irq_disable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* we need to be careful when disabling interrupts. The VFs are also
* mapped into these registers and so clearing the bits can cause
* issues on the VF drivers so we only need to clear what we set
*/
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
u32 regval = rd32(E1000_EIAM);
wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
wr32(E1000_EIMC, adapter->eims_enable_mask);
regval = rd32(E1000_EIAC);
wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
}
wr32(E1000_IAM, 0);
wr32(E1000_IMC, ~0);
wrfl();
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
int i;
for (i = 0; i < adapter->num_q_vectors; i++)
synchronize_irq(adapter->msix_entries[i].vector);
} else {
synchronize_irq(adapter->pdev->irq);
}
}
/**
* igb_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
**/
static void igb_irq_enable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
u32 regval = rd32(E1000_EIAC);
wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
regval = rd32(E1000_EIAM);
wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
wr32(E1000_EIMS, adapter->eims_enable_mask);
if (adapter->vfs_allocated_count) {
wr32(E1000_MBVFIMR, 0xFF);
ims |= E1000_IMS_VMMB;
}
wr32(E1000_IMS, ims);
} else {
wr32(E1000_IMS, IMS_ENABLE_MASK |
E1000_IMS_DRSTA);
wr32(E1000_IAM, IMS_ENABLE_MASK |
E1000_IMS_DRSTA);
}
}
static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 pf_id = adapter->vfs_allocated_count;
u16 vid = adapter->hw.mng_cookie.vlan_id;
u16 old_vid = adapter->mng_vlan_id;
if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
/* add VID to filter table */
igb_vfta_set(hw, vid, pf_id, true, true);
adapter->mng_vlan_id = vid;
} else {
adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
}
if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
(vid != old_vid) &&
!test_bit(old_vid, adapter->active_vlans)) {
/* remove VID from filter table */
igb_vfta_set(hw, vid, pf_id, false, true);
}
}
/**
* igb_release_hw_control - release control of the h/w to f/w
* @adapter: address of board private structure
*
* igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded.
**/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
/* Let firmware take over control of h/w */
ctrl_ext = rd32(E1000_CTRL_EXT);
wr32(E1000_CTRL_EXT,
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}
/**
* igb_get_hw_control - get control of the h/w from f/w
* @adapter: address of board private structure
*
* igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded.
**/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
/* Let firmware know the driver has taken over */
ctrl_ext = rd32(E1000_CTRL_EXT);
wr32(E1000_CTRL_EXT,
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
/**
* igb_configure - configure the hardware for RX and TX
* @adapter: private board structure
**/
static void igb_configure(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i;
igb_get_hw_control(adapter);
igb_set_rx_mode(netdev);
igb_restore_vlan(adapter);
igb_setup_tctl(adapter);
igb_setup_mrqc(adapter);
igb_setup_rctl(adapter);
igb_configure_tx(adapter);
igb_configure_rx(adapter);
igb_rx_fifo_flush_82575(&adapter->hw);
/* call igb_desc_unused which always leaves
* at least 1 descriptor unused to make sure
* next_to_use != next_to_clean
*/
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = adapter->rx_ring[i];
igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
}
}
/**
* igb_power_up_link - Power up the phy/serdes link
* @adapter: address of board private structure
**/
void igb_power_up_link(struct igb_adapter *adapter)
{
igb_reset_phy(&adapter->hw);
if (adapter->hw.phy.media_type == e1000_media_type_copper)
igb_power_up_phy_copper(&adapter->hw);
else
igb_power_up_serdes_link_82575(&adapter->hw);
igb_setup_link(&adapter->hw);
}
/**
* igb_power_down_link - Power down the phy/serdes link
* @adapter: address of board private structure
*/
static void igb_power_down_link(struct igb_adapter *adapter)
{
if (adapter->hw.phy.media_type == e1000_media_type_copper)
igb_power_down_phy_copper_82575(&adapter->hw);
else
igb_shutdown_serdes_link_82575(&adapter->hw);
}
/**
* Detect and switch function for Media Auto Sense
* @adapter: address of the board private structure
**/
static void igb_check_swap_media(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext, connsw;
bool swap_now = false;
ctrl_ext = rd32(E1000_CTRL_EXT);
connsw = rd32(E1000_CONNSW);
/* need to live swap if current media is copper and we have fiber/serdes
* to go to.
*/
if ((hw->phy.media_type == e1000_media_type_copper) &&
(!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
swap_now = true;
} else if (!(connsw & E1000_CONNSW_SERDESD)) {
/* copper signal takes time to appear */
if (adapter->copper_tries < 4) {
adapter->copper_tries++;
connsw |= E1000_CONNSW_AUTOSENSE_CONF;
wr32(E1000_CONNSW, connsw);
return;
} else {
adapter->copper_tries = 0;
if ((connsw & E1000_CONNSW_PHYSD) &&
(!(connsw & E1000_CONNSW_PHY_PDN))) {
swap_now = true;
connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
wr32(E1000_CONNSW, connsw);
}
}
}
if (!swap_now)
return;
switch (hw->phy.media_type) {
case e1000_media_type_copper:
netdev_info(adapter->netdev,
"MAS: changing media to fiber/serdes\n");
ctrl_ext |=
E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
adapter->flags |= IGB_FLAG_MEDIA_RESET;
adapter->copper_tries = 0;
break;
case e1000_media_type_internal_serdes:
case e1000_media_type_fiber:
netdev_info(adapter->netdev,
"MAS: changing media to copper\n");
ctrl_ext &=
~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
adapter->flags |= IGB_FLAG_MEDIA_RESET;
break;
default:
/* shouldn't get here during regular operation */
netdev_err(adapter->netdev,
"AMS: Invalid media type found, returning\n");
break;
}
wr32(E1000_CTRL_EXT, ctrl_ext);
}
/**
* igb_up - Open the interface and prepare it to handle traffic
* @adapter: board private structure
**/
int igb_up(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
/* hardware has been reset, we need to reload some things */
igb_configure(adapter);
clear_bit(__IGB_DOWN, &adapter->state);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&(adapter->q_vector[i]->napi));
if (adapter->flags & IGB_FLAG_HAS_MSIX)
igb_configure_msix(adapter);
else
igb_assign_vector(adapter->q_vector[0], 0);
/* Clear any pending interrupts. */
rd32(E1000_ICR);
igb_irq_enable(adapter);
/* notify VFs that reset has been completed */
if (adapter->vfs_allocated_count) {
u32 reg_data = rd32(E1000_CTRL_EXT);
reg_data |= E1000_CTRL_EXT_PFRSTD;
wr32(E1000_CTRL_EXT, reg_data);
}
netif_tx_start_all_queues(adapter->netdev);
/* start the watchdog. */
hw->mac.get_link_status = 1;
schedule_work(&adapter->watchdog_task);
if ((adapter->flags & IGB_FLAG_EEE) &&
(!hw->dev_spec._82575.eee_disable))
adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
return 0;
}
void igb_down(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 tctl, rctl;
int i;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer
*/
set_bit(__IGB_DOWN, &adapter->state);
/* disable receives in the hardware */
rctl = rd32(E1000_RCTL);
wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
/* flush and sleep below */
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
/* disable transmits in the hardware */
tctl = rd32(E1000_TCTL);
tctl &= ~E1000_TCTL_EN;
wr32(E1000_TCTL, tctl);
/* flush both disables and wait for them to finish */
wrfl();
usleep_range(10000, 11000);
igb_irq_disable(adapter);
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
for (i = 0; i < adapter->num_q_vectors; i++) {
if (adapter->q_vector[i]) {
napi_synchronize(&adapter->q_vector[i]->napi);
napi_disable(&adapter->q_vector[i]->napi);
}
}
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
/* record the stats before reset*/
spin_lock(&adapter->stats64_lock);
igb_update_stats(adapter, &adapter->stats64);
spin_unlock(&adapter->stats64_lock);
adapter->link_speed = 0;
adapter->link_duplex = 0;
if (!pci_channel_offline(adapter->pdev))
igb_reset(adapter);
/* clear VLAN promisc flag so VFTA will be updated if necessary */
adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
igb_clean_all_tx_rings(adapter);
igb_clean_all_rx_rings(adapter);
#ifdef CONFIG_IGB_DCA
/* since we reset the hardware DCA settings were cleared */
igb_setup_dca(adapter);
#endif
}
void igb_reinit_locked(struct igb_adapter *adapter)
{
WARN_ON(in_interrupt());
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
igb_down(adapter);
igb_up(adapter);
clear_bit(__IGB_RESETTING, &adapter->state);
}
/** igb_enable_mas - Media Autosense re-enable after swap
*
* @adapter: adapter struct
**/
static void igb_enable_mas(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 connsw = rd32(E1000_CONNSW);
/* configure for SerDes media detect */
if ((hw->phy.media_type == e1000_media_type_copper) &&
(!(connsw & E1000_CONNSW_SERDESD))) {
connsw |= E1000_CONNSW_ENRGSRC;
connsw |= E1000_CONNSW_AUTOSENSE_EN;
wr32(E1000_CONNSW, connsw);
wrfl();
}
}
void igb_reset(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &hw->mac;
struct e1000_fc_info *fc = &hw->fc;
u32 pba, hwm;
/* Repartition Pba for greater than 9k mtu
* To take effect CTRL.RST is required.
*/
switch (mac->type) {
case e1000_i350:
case e1000_i354:
case e1000_82580:
pba = rd32(E1000_RXPBS);
pba = igb_rxpbs_adjust_82580(pba);
break;
case e1000_82576:
pba = rd32(E1000_RXPBS);
pba &= E1000_RXPBS_SIZE_MASK_82576;
break;
case e1000_82575:
case e1000_i210:
case e1000_i211:
default:
pba = E1000_PBA_34K;
break;
}
if (mac->type == e1000_82575) {
u32 min_rx_space, min_tx_space, needed_tx_space;
/* write Rx PBA so that hardware can report correct Tx PBA */
wr32(E1000_PBA, pba);
/* To maintain wire speed transmits, the Tx FIFO should be
* large enough to accommodate two full transmit packets,
* rounded up to the next 1KB and expressed in KB. Likewise,
* the Rx FIFO should be large enough to accommodate at least
* one full receive packet and is similarly rounded up and
* expressed in KB.
*/
min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
/* The Tx FIFO also stores 16 bytes of information about the Tx
* but don't include Ethernet FCS because hardware appends it.
* We only need to round down to the nearest 512 byte block
* count since the value we care about is 2 frames, not 1.
*/
min_tx_space = adapter->max_frame_size;
min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
/* upper 16 bits has Tx packet buffer allocation size in KB */
needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
/* If current Tx allocation is less than the min Tx FIFO size,
* and the min Tx FIFO size is less than the current Rx FIFO
* allocation, take space away from current Rx allocation.
*/
if (needed_tx_space < pba) {
pba -= needed_tx_space;
/* if short on Rx space, Rx wins and must trump Tx
* adjustment
*/
if (pba < min_rx_space)
pba = min_rx_space;
}
/* adjust PBA for jumbo frames */
wr32(E1000_PBA, pba);
}
/* flow control settings
* The high water mark must be low enough to fit one full frame
* after transmitting the pause frame. As such we must have enough
* space to allow for us to complete our current transmit and then
* receive the frame that is in progress from the link partner.
* Set it to:
* - the full Rx FIFO size minus one full Tx plus one full Rx frame
*/
hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
fc->low_water = fc->high_water - 16;
fc->pause_time = 0xFFFF;
fc->send_xon = 1;
fc->current_mode = fc->requested_mode;
/* disable receive for all VFs and wait one second */
if (adapter->vfs_allocated_count) {
int i;
for (i = 0 ; i < adapter->vfs_allocated_count; i++)
adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
/* ping all the active vfs to let them know we are going down */
igb_ping_all_vfs(adapter);
/* disable transmits and receives */
wr32(E1000_VFRE, 0);
wr32(E1000_VFTE, 0);
}
/* Allow time for pending master requests to run */
hw->mac.ops.reset_hw(hw);
wr32(E1000_WUC, 0);
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
/* need to resetup here after media swap */
adapter->ei.get_invariants(hw);
adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
}
if ((mac->type == e1000_82575) &&
(adapter->flags & IGB_FLAG_MAS_ENABLE)) {
igb_enable_mas(adapter);
}
if (hw->mac.ops.init_hw(hw))
dev_err(&pdev->dev, "Hardware Error\n");
/* Flow control settings reset on hardware reset, so guarantee flow
* control is off when forcing speed.
*/
if (!hw->mac.autoneg)
igb_force_mac_fc(hw);
igb_init_dmac(adapter, pba);
#ifdef CONFIG_IGB_HWMON
/* Re-initialize the thermal sensor on i350 devices. */
if (!test_bit(__IGB_DOWN, &adapter->state)) {
if (mac->type == e1000_i350 && hw->bus.func == 0) {
/* If present, re-initialize the external thermal sensor
* interface.
*/
if (adapter->ets)
mac->ops.init_thermal_sensor_thresh(hw);
}
}
#endif
/* Re-establish EEE setting */
if (hw->phy.media_type == e1000_media_type_copper) {
switch (mac->type) {
case e1000_i350:
case e1000_i210:
case e1000_i211:
igb_set_eee_i350(hw, true, true);
break;
case e1000_i354:
igb_set_eee_i354(hw, true, true);
break;
default:
break;
}
}
if (!netif_running(adapter->netdev))
igb_power_down_link(adapter);
igb_update_mng_vlan(adapter);
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
/* Re-enable PTP, where applicable. */
igb_ptp_reset(adapter);
igb_get_phy_info(hw);
}
static netdev_features_t igb_fix_features(struct net_device *netdev,
netdev_features_t features)
{
/* Since there is no support for separate Rx/Tx vlan accel
* enable/disable make sure Tx flag is always in same state as Rx.
*/
if (features & NETIF_F_HW_VLAN_CTAG_RX)
features |= NETIF_F_HW_VLAN_CTAG_TX;
else
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
return features;
}
static int igb_set_features(struct net_device *netdev,
netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
struct igb_adapter *adapter = netdev_priv(netdev);
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
igb_vlan_mode(netdev, features);
if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
return 0;
netdev->features = features;
if (netif_running(netdev))
igb_reinit_locked(adapter);
else
igb_reset(adapter);
return 0;
}
static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid,
u16 flags)
{
/* guarantee we can provide a unique filter for the unicast address */
if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
struct igb_adapter *adapter = netdev_priv(dev);
struct e1000_hw *hw = &adapter->hw;
int vfn = adapter->vfs_allocated_count;
int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
if (netdev_uc_count(dev) >= rar_entries)
return -ENOMEM;
}
return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
}
static const struct net_device_ops igb_netdev_ops = {
.ndo_open = igb_open,
.ndo_stop = igb_close,
.ndo_start_xmit = igb_xmit_frame,
.ndo_get_stats64 = igb_get_stats64,
.ndo_set_rx_mode = igb_set_rx_mode,
.ndo_set_mac_address = igb_set_mac,
.ndo_change_mtu = igb_change_mtu,
.ndo_do_ioctl = igb_ioctl,
.ndo_tx_timeout = igb_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
.ndo_set_vf_mac = igb_ndo_set_vf_mac,
.ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
.ndo_set_vf_rate = igb_ndo_set_vf_bw,
.ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
.ndo_get_vf_config = igb_ndo_get_vf_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = igb_netpoll,
#endif
.ndo_fix_features = igb_fix_features,
.ndo_set_features = igb_set_features,
.ndo_fdb_add = igb_ndo_fdb_add,
.ndo_features_check = passthru_features_check,
};
/**
* igb_set_fw_version - Configure version string for ethtool
* @adapter: adapter struct
**/
void igb_set_fw_version(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_fw_version fw;
igb_get_fw_version(hw, &fw);
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
if (!(igb_get_flash_presence_i210(hw))) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%2d.%2d-%d",
fw.invm_major, fw.invm_minor,
fw.invm_img_type);
break;
}
/* fall through */
default:
/* if option is rom valid, display its version too */
if (fw.or_valid) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d, 0x%08x, %d.%d.%d",
fw.eep_major, fw.eep_minor, fw.etrack_id,
fw.or_major, fw.or_build, fw.or_patch);
/* no option rom */
} else if (fw.etrack_id != 0X0000) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d, 0x%08x",
fw.eep_major, fw.eep_minor, fw.etrack_id);
} else {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d.%d",
fw.eep_major, fw.eep_minor, fw.eep_build);
}
break;
}
}
/**
* igb_init_mas - init Media Autosense feature if enabled in the NVM
*
* @adapter: adapter struct
**/
static void igb_init_mas(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 eeprom_data;
hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
switch (hw->bus.func) {
case E1000_FUNC_0:
if (eeprom_data & IGB_MAS_ENABLE_0) {
adapter->flags |= IGB_FLAG_MAS_ENABLE;
netdev_info(adapter->netdev,
"MAS: Enabling Media Autosense for port %d\n",
hw->bus.func);
}
break;
case E1000_FUNC_1:
if (eeprom_data & IGB_MAS_ENABLE_1) {
adapter->flags |= IGB_FLAG_MAS_ENABLE;
netdev_info(adapter->netdev,
"MAS: Enabling Media Autosense for port %d\n",
hw->bus.func);
}
break;
case E1000_FUNC_2:
if (eeprom_data & IGB_MAS_ENABLE_2) {
adapter->flags |= IGB_FLAG_MAS_ENABLE;
netdev_info(adapter->netdev,
"MAS: Enabling Media Autosense for port %d\n",
hw->bus.func);
}
break;
case E1000_FUNC_3:
if (eeprom_data & IGB_MAS_ENABLE_3) {
adapter->flags |= IGB_FLAG_MAS_ENABLE;
netdev_info(adapter->netdev,
"MAS: Enabling Media Autosense for port %d\n",
hw->bus.func);
}
break;
default:
/* Shouldn't get here */
netdev_err(adapter->netdev,
"MAS: Invalid port configuration, returning\n");
break;
}
}
/**
* igb_init_i2c - Init I2C interface
* @adapter: pointer to adapter structure
**/
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
s32 status = 0;
/* I2C interface supported on i350 devices */
if (adapter->hw.mac.type != e1000_i350)
return 0;
/* Initialize the i2c bus which is controlled by the registers.
* This bus will use the i2c_algo_bit structue that implements
* the protocol through toggling of the 4 bits in the register.
*/
adapter->i2c_adap.owner = THIS_MODULE;
adapter->i2c_algo = igb_i2c_algo;
adapter->i2c_algo.data = adapter;
adapter->i2c_adap.algo_data = &adapter->i2c_algo;
adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
strlcpy(adapter->i2c_adap.name, "igb BB",
sizeof(adapter->i2c_adap.name));
status = i2c_bit_add_bus(&adapter->i2c_adap);
return status;
}
/**
* igb_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in igb_pci_tbl
*
* Returns 0 on success, negative on failure
*
* igb_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct igb_adapter *adapter;
struct e1000_hw *hw;
u16 eeprom_data = 0;
s32 ret_val;
static int global_quad_port_a; /* global quad port a indication */
const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
int err, pci_using_dac;
u8 part_str[E1000_PBANUM_LENGTH];
/* Catch broken hardware that put the wrong VF device ID in
* the PCIe SR-IOV capability.
*/
if (pdev->is_virtfn) {
WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
pci_name(pdev), pdev->vendor, pdev->device);
return -EINVAL;
}
err = pci_enable_device_mem(pdev);
if (err)
return err;
pci_using_dac = 0;
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (!err) {
pci_using_dac = 1;
} else {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev,
"No usable DMA configuration, aborting\n");
goto err_dma;
}
}
err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
IORESOURCE_MEM),
igb_driver_name);
if (err)
goto err_pci_reg;
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
pci_save_state(pdev);
err = -ENOMEM;
netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
IGB_MAX_TX_QUEUES);
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
hw = &adapter->hw;
hw->back = adapter;
adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
err = -EIO;
adapter->io_addr = pci_iomap(pdev, 0, 0);
if (!adapter->io_addr)
goto err_ioremap;
/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
hw->hw_addr = adapter->io_addr;
netdev->netdev_ops = &igb_netdev_ops;
igb_set_ethtool_ops(netdev);
netdev->watchdog_timeo = 5 * HZ;
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
netdev->mem_start = pci_resource_start(pdev, 0);
netdev->mem_end = pci_resource_end(pdev, 0);
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->revision_id = pdev->revision;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
/* Copy the default MAC, PHY and NVM function pointers */
memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
/* Initialize skew-specific constants */
err = ei->get_invariants(hw);
if (err)
goto err_sw_init;
/* setup the private structure */
err = igb_sw_init(adapter);
if (err)
goto err_sw_init;
igb_get_bus_info_pcie(hw);
hw->phy.autoneg_wait_to_complete = false;
/* Copper options */
if (hw->phy.media_type == e1000_media_type_copper) {
hw->phy.mdix = AUTO_ALL_MODES;
hw->phy.disable_polarity_correction = false;
hw->phy.ms_type = e1000_ms_hw_default;
}
if (igb_check_reset_block(hw))
dev_info(&pdev->dev,
"PHY reset is blocked due to SOL/IDER session.\n");
/* features is initialized to 0 in allocation, it might have bits
* set by igb_sw_init so we should use an or instead of an
* assignment.
*/
netdev->features |= NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_RXHASH |
NETIF_F_RXCSUM |
NETIF_F_HW_CSUM |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX;
if (hw->mac.type >= e1000_82576)
netdev->features |= NETIF_F_SCTP_CRC;
/* copy netdev features into list of user selectable features */
netdev->hw_features |= netdev->features;
netdev->hw_features |= NETIF_F_RXALL;
if (hw->mac.type >= e1000_i350)
netdev->hw_features |= NETIF_F_NTUPLE;
/* set this bit last since it cannot be part of hw_features */
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
netdev->vlan_features |= NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC;
netdev->mpls_features |= NETIF_F_HW_CSUM;
netdev->hw_enc_features |= NETIF_F_HW_CSUM;
netdev->priv_flags |= IFF_SUPP_NOFCS;
if (pci_using_dac) {
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= NETIF_F_HIGHDMA;
}
netdev->priv_flags |= IFF_UNICAST_FLT;
adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
/* before reading the NVM, reset the controller to put the device in a
* known good starting state
*/
hw->mac.ops.reset_hw(hw);
/* make sure the NVM is good , i211/i210 parts can have special NVM
* that doesn't contain a checksum
*/
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
if (igb_get_flash_presence_i210(hw)) {
if (hw->nvm.ops.validate(hw) < 0) {
dev_err(&pdev->dev,
"The NVM Checksum Is Not Valid\n");
err = -EIO;
goto err_eeprom;
}
}
break;
default:
if (hw->nvm.ops.validate(hw) < 0) {
dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
err = -EIO;
goto err_eeprom;
}
break;
}
if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
/* copy the MAC address out of the NVM */
if (hw->mac.ops.read_mac_addr(hw))
dev_err(&pdev->dev, "NVM Read Error\n");
}
memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->dev_addr)) {
dev_err(&pdev->dev, "Invalid MAC Address\n");
err = -EIO;
goto err_eeprom;
}
/* get firmware version for ethtool -i */
igb_set_fw_version(adapter);
/* configure RXPBSIZE and TXPBSIZE */
if (hw->mac.type == e1000_i210) {
wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
}
setup_timer(&adapter->watchdog_timer, igb_watchdog,
(unsigned long) adapter);
setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
(unsigned long) adapter);
INIT_WORK(&adapter->reset_task, igb_reset_task);
INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
/* Initialize link properties that are user-changeable */
adapter->fc_autoneg = true;
hw->mac.autoneg = true;
hw->phy.autoneg_advertised = 0x2f;
hw->fc.requested_mode = e1000_fc_default;
hw->fc.current_mode = e1000_fc_default;
igb_validate_mdi_setting(hw);
/* By default, support wake on port A */
if (hw->bus.func == 0)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
/* Check the NVM for wake support on non-port A ports */
if (hw->mac.type >= e1000_82580)
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
&eeprom_data);
else if (hw->bus.func == 1)
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
if (eeprom_data & IGB_EEPROM_APME)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
/* now that we have the eeprom settings, apply the special cases where
* the eeprom may be wrong or the board simply won't support wake on
* lan on a particular port
*/
switch (pdev->device) {
case E1000_DEV_ID_82575GB_QUAD_COPPER:
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
case E1000_DEV_ID_82575EB_FIBER_SERDES:
case E1000_DEV_ID_82576_FIBER:
case E1000_DEV_ID_82576_SERDES:
/* Wake events only supported on port A for dual fiber
* regardless of eeprom setting
*/
if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
case E1000_DEV_ID_82576_QUAD_COPPER:
case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
/* if quad port adapter, disable WoL on all but port A */
if (global_quad_port_a != 0)
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
else
adapter->flags |= IGB_FLAG_QUAD_PORT_A;
/* Reset for multiple quad port adapters */
if (++global_quad_port_a == 4)
global_quad_port_a = 0;
break;
default:
/* If the device can't wake, don't set software support */
if (!device_can_wakeup(&adapter->pdev->dev))
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
}
/* initialize the wol settings based on the eeprom settings */
if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
adapter->wol |= E1000_WUFC_MAG;
/* Some vendors want WoL disabled by default, but still supported */
if ((hw->mac.type == e1000_i350) &&
(pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
adapter->wol = 0;
}
/* Some vendors want the ability to Use the EEPROM setting as
* enable/disable only, and not for capability
*/
if (((hw->mac.type == e1000_i350) ||
(hw->mac.type == e1000_i354)) &&
(pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
adapter->wol = 0;
}
if (hw->mac.type == e1000_i350) {
if (((pdev->subsystem_device == 0x5001) ||
(pdev->subsystem_device == 0x5002)) &&
(hw->bus.func == 0)) {
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
adapter->wol = 0;
}
if (pdev->subsystem_device == 0x1F52)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
}
device_set_wakeup_enable(&adapter->pdev->dev,
adapter->flags & IGB_FLAG_WOL_SUPPORTED);
/* reset the hardware with the new settings */
igb_reset(adapter);
/* Init the I2C interface */
err = igb_init_i2c(adapter);
if (err) {
dev_err(&pdev->dev, "failed to init i2c interface\n");
goto err_eeprom;
}
/* let the f/w know that the h/w is now under the control of the
* driver.
*/
igb_get_hw_control(adapter);
strcpy(netdev->name, "eth%d");
err = register_netdev(netdev);
if (err)
goto err_register;
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
#ifdef CONFIG_IGB_DCA
if (dca_add_requester(&pdev->dev) == 0) {
adapter->flags |= IGB_FLAG_DCA_ENABLED;
dev_info(&pdev->dev, "DCA enabled\n");
igb_setup_dca(adapter);
}
#endif
#ifdef CONFIG_IGB_HWMON
/* Initialize the thermal sensor on i350 devices. */
if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
u16 ets_word;
/* Read the NVM to determine if this i350 device supports an
* external thermal sensor.
*/
hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
if (ets_word != 0x0000 && ets_word != 0xFFFF)
adapter->ets = true;
else
adapter->ets = false;
if (igb_sysfs_init(adapter))
dev_err(&pdev->dev,
"failed to allocate sysfs resources\n");
} else {
adapter->ets = false;
}
#endif
/* Check if Media Autosense is enabled */
adapter->ei = *ei;
if (hw->dev_spec._82575.mas_capable)
igb_init_mas(adapter);
/* do hw tstamp init after resetting */
igb_ptp_init(adapter);
dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
/* print bus type/speed/width info, not applicable to i354 */
if (hw->mac.type != e1000_i354) {
dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
netdev->name,
((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
(hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
"unknown"),
((hw->bus.width == e1000_bus_width_pcie_x4) ?
"Width x4" :
(hw->bus.width == e1000_bus_width_pcie_x2) ?
"Width x2" :
(hw->bus.width == e1000_bus_width_pcie_x1) ?
"Width x1" : "unknown"), netdev->dev_addr);
}
if ((hw->mac.type >= e1000_i210 ||
igb_get_flash_presence_i210(hw))) {
ret_val = igb_read_part_string(hw, part_str,
E1000_PBANUM_LENGTH);
} else {
ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
}
if (ret_val)
strcpy(part_str, "Unknown");
dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
dev_info(&pdev->dev,
"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
adapter->num_rx_queues, adapter->num_tx_queues);
if (hw->phy.media_type == e1000_media_type_copper) {
switch (hw->mac.type) {
case e1000_i350:
case e1000_i210:
case e1000_i211:
/* Enable EEE for internal copper PHY devices */
err = igb_set_eee_i350(hw, true, true);
if ((!err) &&
(!hw->dev_spec._82575.eee_disable)) {
adapter->eee_advert =
MDIO_EEE_100TX | MDIO_EEE_1000T;
adapter->flags |= IGB_FLAG_EEE;
}
break;
case e1000_i354:
if ((rd32(E1000_CTRL_EXT) &
E1000_CTRL_EXT_LINK_MODE_SGMII)) {
err = igb_set_eee_i354(hw, true, true);
if ((!err) &&
(!hw->dev_spec._82575.eee_disable)) {
adapter->eee_advert =
MDIO_EEE_100TX | MDIO_EEE_1000T;
adapter->flags |= IGB_FLAG_EEE;
}
}
break;
default:
break;
}
}
pm_runtime_put_noidle(&pdev->dev);
return 0;
err_register:
igb_release_hw_control(adapter);
memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
err_eeprom:
if (!igb_check_reset_block(hw))
igb_reset_phy(hw);
if (hw->flash_address)
iounmap(hw->flash_address);
err_sw_init:
kfree(adapter->shadow_vfta);
igb_clear_interrupt_scheme(adapter);
#ifdef CONFIG_PCI_IOV
igb_disable_sriov(pdev);
#endif
pci_iounmap(pdev, adapter->io_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
#ifdef CONFIG_PCI_IOV
static int igb_disable_sriov(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
/* reclaim resources allocated to VFs */
if (adapter->vf_data) {
/* disable iov and allow time for transactions to clear */
if (pci_vfs_assigned(pdev)) {
dev_warn(&pdev->dev,
"Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
return -EPERM;
} else {
pci_disable_sriov(pdev);
msleep(500);
}
kfree(adapter->vf_data);
adapter->vf_data = NULL;
adapter->vfs_allocated_count = 0;
wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
wrfl();
msleep(100);
dev_info(&pdev->dev, "IOV Disabled\n");
/* Re-enable DMA Coalescing flag since IOV is turned off */
adapter->flags |= IGB_FLAG_DMAC;
}
return 0;
}
static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
int old_vfs = pci_num_vf(pdev);
int err = 0;
int i;
if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
err = -EPERM;
goto out;
}
if (!num_vfs)
goto out;
if (old_vfs) {
dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
old_vfs, max_vfs);
adapter->vfs_allocated_count = old_vfs;
} else
adapter->vfs_allocated_count = num_vfs;
adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
sizeof(struct vf_data_storage), GFP_KERNEL);
/* if allocation failed then we do not support SR-IOV */
if (!adapter->vf_data) {
adapter->vfs_allocated_count = 0;
dev_err(&pdev->dev,
"Unable to allocate memory for VF Data Storage\n");
err = -ENOMEM;
goto out;
}
/* only call pci_enable_sriov() if no VFs are allocated already */
if (!old_vfs) {
err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
if (err)
goto err_out;
}
dev_info(&pdev->dev, "%d VFs allocated\n",
adapter->vfs_allocated_count);
for (i = 0; i < adapter->vfs_allocated_count; i++)
igb_vf_configure(adapter, i);
/* DMA Coalescing is not supported in IOV mode. */
adapter->flags &= ~IGB_FLAG_DMAC;
goto out;
err_out:
kfree(adapter->vf_data);
adapter->vf_data = NULL;
adapter->vfs_allocated_count = 0;
out:
return err;
}
#endif
/**
* igb_remove_i2c - Cleanup I2C interface
* @adapter: pointer to adapter structure
**/
static void igb_remove_i2c(struct igb_adapter *adapter)
{
/* free the adapter bus structure */
i2c_del_adapter(&adapter->i2c_adap);
}
/**
* igb_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* igb_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void igb_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pm_runtime_get_noresume(&pdev->dev);
#ifdef CONFIG_IGB_HWMON
igb_sysfs_exit(adapter);
#endif
igb_remove_i2c(adapter);
igb_ptp_stop(adapter);
/* The watchdog timer may be rescheduled, so explicitly
* disable watchdog from being rescheduled.
*/
set_bit(__IGB_DOWN, &adapter->state);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
cancel_work_sync(&adapter->reset_task);
cancel_work_sync(&adapter->watchdog_task);
#ifdef CONFIG_IGB_DCA
if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
dev_info(&pdev->dev, "DCA disabled\n");
dca_remove_requester(&pdev->dev);
adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
}
#endif
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
igb_release_hw_control(adapter);
#ifdef CONFIG_PCI_IOV
igb_disable_sriov(pdev);
#endif
unregister_netdev(netdev);
igb_clear_interrupt_scheme(adapter);
pci_iounmap(pdev, adapter->io_addr);
if (hw->flash_address)
iounmap(hw->flash_address);
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
kfree(adapter->shadow_vfta);
free_netdev(netdev);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
/**
* igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
* @adapter: board private structure to initialize
*
* This function initializes the vf specific data storage and then attempts to
* allocate the VFs. The reason for ordering it this way is because it is much
* mor expensive time wise to disable SR-IOV than it is to allocate and free
* the memory for the VFs.
**/
static void igb_probe_vfs(struct igb_adapter *adapter)
{
#ifdef CONFIG_PCI_IOV
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
/* Virtualization features not supported on i210 family. */
if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
return;
/* Of the below we really only want the effect of getting
* IGB_FLAG_HAS_MSIX set (if available), without which
* igb_enable_sriov() has no effect.
*/
igb_set_interrupt_capability(adapter, true);
igb_reset_interrupt_capability(adapter);
pci_sriov_set_totalvfs(pdev, 7);
igb_enable_sriov(pdev, max_vfs);
#endif /* CONFIG_PCI_IOV */
}
static void igb_init_queue_configuration(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 max_rss_queues;
/* Determine the maximum number of RSS queues supported. */
switch (hw->mac.type) {
case e1000_i211:
max_rss_queues = IGB_MAX_RX_QUEUES_I211;
break;
case e1000_82575:
case e1000_i210:
max_rss_queues = IGB_MAX_RX_QUEUES_82575;
break;
case e1000_i350:
/* I350 cannot do RSS and SR-IOV at the same time */
if (!!adapter->vfs_allocated_count) {
max_rss_queues = 1;
break;
}
/* fall through */
case e1000_82576:
if (!!adapter->vfs_allocated_count) {
max_rss_queues = 2;
break;
}
/* fall through */
case e1000_82580:
case e1000_i354:
default:
max_rss_queues = IGB_MAX_RX_QUEUES;
break;
}
adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
igb_set_flag_queue_pairs(adapter, max_rss_queues);
}
void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
const u32 max_rss_queues)
{
struct e1000_hw *hw = &adapter->hw;
/* Determine if we need to pair queues. */
switch (hw->mac.type) {
case e1000_82575:
case e1000_i211:
/* Device supports enough interrupts without queue pairing. */
break;
case e1000_82576:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
default:
/* If rss_queues > half of max_rss_queues, pair the queues in
* order to conserve interrupts due to limited supply.
*/
if (adapter->rss_queues > (max_rss_queues / 2))
adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
else
adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
break;
}
}
/**
* igb_sw_init - Initialize general software structures (struct igb_adapter)
* @adapter: board private structure to initialize
*
* igb_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int igb_sw_init(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
/* set default ring sizes */
adapter->tx_ring_count = IGB_DEFAULT_TXD;
adapter->rx_ring_count = IGB_DEFAULT_RXD;
/* set default ITR values */
adapter->rx_itr_setting = IGB_DEFAULT_ITR;
adapter->tx_itr_setting = IGB_DEFAULT_ITR;
/* set default work limits */
adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
VLAN_HLEN;
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
switch (hw->mac.type) {
case e1000_82576:
case e1000_i350:
if (max_vfs > 7) {
dev_warn(&pdev->dev,
"Maximum of 7 VFs per PF, using max\n");
max_vfs = adapter->vfs_allocated_count = 7;
} else
adapter->vfs_allocated_count = max_vfs;
if (adapter->vfs_allocated_count)
dev_warn(&pdev->dev,
"Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
break;
default:
break;
}
#endif /* CONFIG_PCI_IOV */
/* Assume MSI-X interrupts, will be checked during IRQ allocation */
adapter->flags |= IGB_FLAG_HAS_MSIX;
igb_probe_vfs(adapter);
igb_init_queue_configuration(adapter);
/* Setup and initialize a copy of the hw vlan table array */
adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
GFP_ATOMIC);
/* This call may decrease the number of queues */
if (igb_init_interrupt_scheme(adapter, true)) {
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
/* Explicitly disable IRQ since the NIC can be in any state. */
igb_irq_disable(adapter);
if (hw->mac.type >= e1000_i350)
adapter->flags &= ~IGB_FLAG_DMAC;
set_bit(__IGB_DOWN, &adapter->state);
return 0;
}
/**
* igb_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
static int __igb_open(struct net_device *netdev, bool resuming)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
int err;
int i;
/* disallow open during test */
if (test_bit(__IGB_TESTING, &adapter->state)) {
WARN_ON(resuming);
return -EBUSY;
}
if (!resuming)
pm_runtime_get_sync(&pdev->dev);
netif_carrier_off(netdev);
/* allocate transmit descriptors */
err = igb_setup_all_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = igb_setup_all_rx_resources(adapter);
if (err)
goto err_setup_rx;
igb_power_up_link(adapter);
/* before we allocate an interrupt, we must be ready to handle it.
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
* as soon as we call pci_request_irq, so we have to setup our
* clean_rx handler before we do so.
*/
igb_configure(adapter);
err = igb_request_irq(adapter);
if (err)
goto err_req_irq;
/* Notify the stack of the actual queue counts. */
err = netif_set_real_num_tx_queues(adapter->netdev,
adapter->num_tx_queues);
if (err)
goto err_set_queues;
err = netif_set_real_num_rx_queues(adapter->netdev,
adapter->num_rx_queues);
if (err)
goto err_set_queues;
/* From here on the code is the same as igb_up() */
clear_bit(__IGB_DOWN, &adapter->state);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&(adapter->q_vector[i]->napi));
/* Clear any pending interrupts. */
rd32(E1000_ICR);
igb_irq_enable(adapter);
/* notify VFs that reset has been completed */
if (adapter->vfs_allocated_count) {
u32 reg_data = rd32(E1000_CTRL_EXT);
reg_data |= E1000_CTRL_EXT_PFRSTD;
wr32(E1000_CTRL_EXT, reg_data);
}
netif_tx_start_all_queues(netdev);
if (!resuming)
pm_runtime_put(&pdev->dev);
/* start the watchdog. */
hw->mac.get_link_status = 1;
schedule_work(&adapter->watchdog_task);
return 0;
err_set_queues:
igb_free_irq(adapter);
err_req_irq:
igb_release_hw_control(adapter);
igb_power_down_link(adapter);
igb_free_all_rx_resources(adapter);
err_setup_rx:
igb_free_all_tx_resources(adapter);
err_setup_tx:
igb_reset(adapter);
if (!resuming)
pm_runtime_put(&pdev->dev);
return err;
}
int igb_open(struct net_device *netdev)
{
return __igb_open(netdev, false);
}
/**
* igb_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the driver's control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
static int __igb_close(struct net_device *netdev, bool suspending)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
if (!suspending)
pm_runtime_get_sync(&pdev->dev);
igb_down(adapter);
igb_free_irq(adapter);
igb_free_all_tx_resources(adapter);
igb_free_all_rx_resources(adapter);
if (!suspending)
pm_runtime_put_sync(&pdev->dev);
return 0;
}
int igb_close(struct net_device *netdev)
{
return __igb_close(netdev, false);
}
/**
* igb_setup_tx_resources - allocate Tx resources (Descriptors)
* @tx_ring: tx descriptor ring (for a specific queue) to setup
*
* Return 0 on success, negative on failure
**/
int igb_setup_tx_resources(struct igb_ring *tx_ring)
{
struct device *dev = tx_ring->dev;
int size;
size = sizeof(struct igb_tx_buffer) * tx_ring->count;
tx_ring->tx_buffer_info = vzalloc(size);
if (!tx_ring->tx_buffer_info)
goto err;
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc)
goto err;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return 0;
err:
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
return -ENOMEM;
}
/**
* igb_setup_all_tx_resources - wrapper to allocate Tx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int i, err = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
err = igb_setup_tx_resources(adapter->tx_ring[i]);
if (err) {
dev_err(&pdev->dev,
"Allocation for Tx Queue %u failed\n", i);
for (i--; i >= 0; i--)
igb_free_tx_resources(adapter->tx_ring[i]);
break;
}
}
return err;
}
/**
* igb_setup_tctl - configure the transmit control registers
* @adapter: Board private structure
**/
void igb_setup_tctl(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 tctl;
/* disable queue 0 which is enabled by default on 82575 and 82576 */
wr32(E1000_TXDCTL(0), 0);
/* Program the Transmit Control Register */
tctl = rd32(E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
igb_config_collision_dist(hw);
/* Enable transmits */
tctl |= E1000_TCTL_EN;
wr32(E1000_TCTL, tctl);
}
/**
* igb_configure_tx_ring - Configure transmit ring after Reset
* @adapter: board private structure
* @ring: tx ring to configure
*
* Configure a transmit ring after a reset.
**/
void igb_configure_tx_ring(struct igb_adapter *adapter,
struct igb_ring *ring)
{
struct e1000_hw *hw = &adapter->hw;
u32 txdctl = 0;
u64 tdba = ring->dma;
int reg_idx = ring->reg_idx;
/* disable the queue */
wr32(E1000_TXDCTL(reg_idx), 0);
wrfl();
mdelay(10);
wr32(E1000_TDLEN(reg_idx),
ring->count * sizeof(union e1000_adv_tx_desc));
wr32(E1000_TDBAL(reg_idx),
tdba & 0x00000000ffffffffULL);
wr32(E1000_TDBAH(reg_idx), tdba >> 32);
ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
wr32(E1000_TDH(reg_idx), 0);
writel(0, ring->tail);
txdctl |= IGB_TX_PTHRESH;
txdctl |= IGB_TX_HTHRESH << 8;
txdctl |= IGB_TX_WTHRESH << 16;
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
wr32(E1000_TXDCTL(reg_idx), txdctl);
}
/**
* igb_configure_tx - Configure transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void igb_configure_tx(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
}
/**
* igb_setup_rx_resources - allocate Rx resources (Descriptors)
* @rx_ring: Rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
**/
int igb_setup_rx_resources(struct igb_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
int size;
size = sizeof(struct igb_rx_buffer) * rx_ring->count;
rx_ring->rx_buffer_info = vzalloc(size);
if (!rx_ring->rx_buffer_info)
goto err;
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
rx_ring->size = ALIGN(rx_ring->size, 4096);
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc)
goto err;
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
return 0;
err:
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
return -ENOMEM;
}
/**
* igb_setup_all_rx_resources - wrapper to allocate Rx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int i, err = 0;
for (i = 0; i < adapter->num_rx_queues; i++) {
err = igb_setup_rx_resources(adapter->rx_ring[i]);
if (err) {
dev_err(&pdev->dev,
"Allocation for Rx Queue %u failed\n", i);
for (i--; i >= 0; i--)
igb_free_rx_resources(adapter->rx_ring[i]);
break;
}
}
return err;
}
/**
* igb_setup_mrqc - configure the multiple receive queue control registers
* @adapter: Board private structure
**/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 mrqc, rxcsum;
u32 j, num_rx_queues;
u32 rss_key[10];
netdev_rss_key_fill(rss_key, sizeof(rss_key));
for (j = 0; j < 10; j++)
wr32(E1000_RSSRK(j), rss_key[j]);
num_rx_queues = adapter->rss_queues;
switch (hw->mac.type) {
case e1000_82576:
/* 82576 supports 2 RSS queues for SR-IOV */
if (adapter->vfs_allocated_count)
num_rx_queues = 2;
break;
default:
break;
}
if (adapter->rss_indir_tbl_init != num_rx_queues) {
for (j = 0; j < IGB_RETA_SIZE; j++)
adapter->rss_indir_tbl[j] =
(j * num_rx_queues) / IGB_RETA_SIZE;
adapter->rss_indir_tbl_init = num_rx_queues;
}
igb_write_rss_indir_tbl(adapter);
/* Disable raw packet checksumming so that RSS hash is placed in
* descriptor on writeback. No need to enable TCP/UDP/IP checksum
* offloads as they are enabled by default
*/
rxcsum = rd32(E1000_RXCSUM);
rxcsum |= E1000_RXCSUM_PCSD;
if (adapter->hw.mac.type >= e1000_82576)
/* Enable Receive Checksum Offload for SCTP */
rxcsum |= E1000_RXCSUM_CRCOFL;
/* Don't need to set TUOFL or IPOFL, they default to 1 */
wr32(E1000_RXCSUM, rxcsum);
/* Generate RSS hash based on packet types, TCP/UDP
* port numbers and/or IPv4/v6 src and dst addresses
*/
mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
E1000_MRQC_RSS_FIELD_IPV4_TCP |
E1000_MRQC_RSS_FIELD_IPV6 |
E1000_MRQC_RSS_FIELD_IPV6_TCP |
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
/* If VMDq is enabled then we set the appropriate mode for that, else
* we default to RSS so that an RSS hash is calculated per packet even
* if we are only using one queue
*/
if (adapter->vfs_allocated_count) {
if (hw->mac.type > e1000_82575) {
/* Set the default pool for the PF's first queue */
u32 vtctl = rd32(E1000_VT_CTL);
vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
E1000_VT_CTL_DISABLE_DEF_POOL);
vtctl |= adapter->vfs_allocated_count <<
E1000_VT_CTL_DEFAULT_POOL_SHIFT;
wr32(E1000_VT_CTL, vtctl);
}
if (adapter->rss_queues > 1)
mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
else
mrqc |= E1000_MRQC_ENABLE_VMDQ;
} else {
if (hw->mac.type != e1000_i211)
mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
}
igb_vmm_control(adapter);
wr32(E1000_MRQC, mrqc);
}
/**
* igb_setup_rctl - configure the receive control registers
* @adapter: Board private structure
**/
void igb_setup_rctl(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
rctl = rd32(E1000_RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/* enable stripping of CRC. It's unlikely this will break BMC
* redirection as it did with e1000. Newer features require
* that the HW strips the CRC.
*/
rctl |= E1000_RCTL_SECRC;
/* disable store bad packets and clear size bits. */
rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
/* enable LPE to allow for reception of jumbo frames */
rctl |= E1000_RCTL_LPE;
/* disable queue 0 to prevent tail write w/o re-config */
wr32(E1000_RXDCTL(0), 0);
/* Attention!!! For SR-IOV PF driver operations you must enable
* queue drop for all VF and PF queues to prevent head of line blocking
* if an un-trusted VF does not provide descriptors to hardware.
*/
if (adapter->vfs_allocated_count) {
/* set all queue drop enable bits */
wr32(E1000_QDE, ALL_QUEUES);
}
/* This is useful for sniffing bad packets. */
if (adapter->netdev->features & NETIF_F_RXALL) {
/* UPE and MPE will be handled by normal PROMISC logic
* in e1000e_set_rx_mode
*/
rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
E1000_RCTL_BAM | /* RX All Bcast Pkts */
E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
* and that breaks VLANs.
*/
}
wr32(E1000_RCTL, rctl);
}
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
int vfn)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr;
if (size > MAX_JUMBO_FRAME_SIZE)
size = MAX_JUMBO_FRAME_SIZE;
vmolr = rd32(E1000_VMOLR(vfn));
vmolr &= ~E1000_VMOLR_RLPML_MASK;
vmolr |= size | E1000_VMOLR_LPE;
wr32(E1000_VMOLR(vfn), vmolr);
return 0;
}
static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
int vfn, bool enable)
{
struct e1000_hw *hw = &adapter->hw;
u32 val, reg;
if (hw->mac.type < e1000_82576)
return;
if (hw->mac.type == e1000_i350)
reg = E1000_DVMOLR(vfn);
else
reg = E1000_VMOLR(vfn);
val = rd32(reg);
if (enable)
val |= E1000_VMOLR_STRVLAN;
else
val &= ~(E1000_VMOLR_STRVLAN);
wr32(reg, val);
}
static inline void igb_set_vmolr(struct igb_adapter *adapter,
int vfn, bool aupe)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr;
/* This register exists only on 82576 and newer so if we are older then
* we should exit and do nothing
*/
if (hw->mac.type < e1000_82576)
return;
vmolr = rd32(E1000_VMOLR(vfn));
if (aupe)
vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
else
vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
/* clear all bits that might not be set */
vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
/* for VMDq only allow the VFs and pool 0 to accept broadcast and
* multicast packets
*/
if (vfn <= adapter->vfs_allocated_count)
vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
wr32(E1000_VMOLR(vfn), vmolr);
}
/**
* igb_configure_rx_ring - Configure a receive ring after Reset
* @adapter: board private structure
* @ring: receive ring to be configured
*
* Configure the Rx unit of the MAC after a reset.
**/
void igb_configure_rx_ring(struct igb_adapter *adapter,
struct igb_ring *ring)
{
struct e1000_hw *hw = &adapter->hw;
u64 rdba = ring->dma;
int reg_idx = ring->reg_idx;
u32 srrctl = 0, rxdctl = 0;
/* disable the queue */
wr32(E1000_RXDCTL(reg_idx), 0);
/* Set DMA base address registers */
wr32(E1000_RDBAL(reg_idx),
rdba & 0x00000000ffffffffULL);
wr32(E1000_RDBAH(reg_idx), rdba >> 32);
wr32(E1000_RDLEN(reg_idx),
ring->count * sizeof(union e1000_adv_rx_desc));
/* initialize head and tail */
ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
wr32(E1000_RDH(reg_idx), 0);
writel(0, ring->tail);
/* set descriptor configuration */
srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
if (hw->mac.type >= e1000_82580)
srrctl |= E1000_SRRCTL_TIMESTAMP;
/* Only set Drop Enable if we are supporting multiple queues */
if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
srrctl |= E1000_SRRCTL_DROP_EN;
wr32(E1000_SRRCTL(reg_idx), srrctl);
/* set filtering for VMDQ pools */
igb_set_vmolr(adapter, reg_idx & 0x7, true);
rxdctl |= IGB_RX_PTHRESH;
rxdctl |= IGB_RX_HTHRESH << 8;
rxdctl |= IGB_RX_WTHRESH << 16;
/* enable receive descriptor fetching */
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
wr32(E1000_RXDCTL(reg_idx), rxdctl);
}
/**
* igb_configure_rx - Configure receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void igb_configure_rx(struct igb_adapter *adapter)
{
int i;
/* set the correct pool for the PF default MAC address in entry 0 */
igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
adapter->vfs_allocated_count);
/* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring
*/
for (i = 0; i < adapter->num_rx_queues; i++)
igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
}
/**
* igb_free_tx_resources - Free Tx Resources per Queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
**/
void igb_free_tx_resources(struct igb_ring *tx_ring)
{
igb_clean_tx_ring(tx_ring);
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
/* if not set, then don't free */
if (!tx_ring->desc)
return;
dma_free_coherent(tx_ring->dev, tx_ring->size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* igb_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
**/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
if (adapter->tx_ring[i])
igb_free_tx_resources(adapter->tx_ring[i]);
}
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
struct igb_tx_buffer *tx_buffer)
{
if (tx_buffer->skb) {
dev_kfree_skb_any(tx_buffer->skb);
if (dma_unmap_len(tx_buffer, len))
dma_unmap_single(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
} else if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
}
tx_buffer->next_to_watch = NULL;
tx_buffer->skb = NULL;
dma_unmap_len_set(tx_buffer, len, 0);
/* buffer_info must be completely set up in the transmit path */
}
/**
* igb_clean_tx_ring - Free Tx Buffers
* @tx_ring: ring to be cleaned
**/
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
{
struct igb_tx_buffer *buffer_info;
unsigned long size;
u16 i;
if (!tx_ring->tx_buffer_info)
return;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tx_ring->count; i++) {
buffer_info = &tx_ring->tx_buffer_info[i];
igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
}
netdev_tx_reset_queue(txring_txq(tx_ring));
size = sizeof(struct igb_tx_buffer) * tx_ring->count;
memset(tx_ring->tx_buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
}
/**
* igb_clean_all_tx_rings - Free Tx Buffers for all queues
* @adapter: board private structure
**/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
if (adapter->tx_ring[i])
igb_clean_tx_ring(adapter->tx_ring[i]);
}
/**
* igb_free_rx_resources - Free Rx Resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
void igb_free_rx_resources(struct igb_ring *rx_ring)
{
igb_clean_rx_ring(rx_ring);
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
/* if not set, then don't free */
if (!rx_ring->desc)
return;
dma_free_coherent(rx_ring->dev, rx_ring->size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* igb_free_all_rx_resources - Free Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
**/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
if (adapter->rx_ring[i])
igb_free_rx_resources(adapter->rx_ring[i]);
}
/**
* igb_clean_rx_ring - Free Rx Buffers per Queue
* @rx_ring: ring to free buffers from
**/
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
{
unsigned long size;
u16 i;
if (rx_ring->skb)
dev_kfree_skb(rx_ring->skb);
rx_ring->skb = NULL;
if (!rx_ring->rx_buffer_info)
return;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
if (!buffer_info->page)
continue;
dma_unmap_page(rx_ring->dev,
buffer_info->dma,
PAGE_SIZE,
DMA_FROM_DEVICE);
__free_page(buffer_info->page);
buffer_info->page = NULL;
}
size = sizeof(struct igb_rx_buffer) * rx_ring->count;
memset(rx_ring->rx_buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
/**
* igb_clean_all_rx_rings - Free Rx Buffers for all queues
* @adapter: board private structure
**/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
if (adapter->rx_ring[i])
igb_clean_rx_ring(adapter->rx_ring[i]);
}
/**
* igb_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int igb_set_mac(struct net_device *netdev, void *p)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
/* set the correct pool for the new PF MAC address in entry 0 */
igb_rar_set_qsel(adapter, hw->mac.addr, 0,
adapter->vfs_allocated_count);
return 0;
}
/**
* igb_write_mc_addr_list - write multicast addresses to MTA
* @netdev: network interface device structure
*
* Writes multicast address list to the MTA hash table.
* Returns: -ENOMEM on failure
* 0 on no addresses written
* X on writing X addresses to MTA
**/
static int igb_write_mc_addr_list(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct netdev_hw_addr *ha;
u8 *mta_list;
int i;
if (netdev_mc_empty(netdev)) {
/* nothing to program, so clear mc list */
igb_update_mc_addr_list(hw, NULL, 0);
igb_restore_vf_multicasts(adapter);
return 0;
}
mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
if (!mta_list)
return -ENOMEM;
/* The shared function expects a packed array of only addresses. */
i = 0;
netdev_for_each_mc_addr(ha, netdev)
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
igb_update_mc_addr_list(hw, mta_list, i);
kfree(mta_list);
return netdev_mc_count(netdev);
}
/**
* igb_write_uc_addr_list - write unicast addresses to RAR table
* @netdev: network interface device structure
*
* Writes unicast address list to the RAR table.
* Returns: -ENOMEM on failure/insufficient address space
* 0 on no addresses written
* X on writing X addresses to the RAR table
**/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
unsigned int vfn = adapter->vfs_allocated_count;
unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
int count = 0;
/* return ENOMEM indicating insufficient memory for addresses */
if (netdev_uc_count(netdev) > rar_entries)
return -ENOMEM;
if (!netdev_uc_empty(netdev) && rar_entries) {
struct netdev_hw_addr *ha;
netdev_for_each_uc_addr(ha, netdev) {
if (!rar_entries)
break;
igb_rar_set_qsel(adapter, ha->addr,
rar_entries--,
vfn);
count++;
}
}
/* write the addresses in reverse order to avoid write combining */
for (; rar_entries > 0 ; rar_entries--) {
wr32(E1000_RAH(rar_entries), 0);
wr32(E1000_RAL(rar_entries), 0);
}
wrfl();
return count;
}
static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 i, pf_id;
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
case e1000_i350:
/* VLAN filtering needed for VLAN prio filter */
if (adapter->netdev->features & NETIF_F_NTUPLE)
break;
/* fall through */
case e1000_82576:
case e1000_82580:
case e1000_i354:
/* VLAN filtering needed for pool filtering */
if (adapter->vfs_allocated_count)
break;
/* fall through */
default:
return 1;
}
/* We are already in VLAN promisc, nothing to do */
if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
return 0;
if (!adapter->vfs_allocated_count)
goto set_vfta;
/* Add PF to all active pools */
pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
u32 vlvf = rd32(E1000_VLVF(i));
vlvf |= 1 << pf_id;
wr32(E1000_VLVF(i), vlvf);
}
set_vfta:
/* Set all bits in the VLAN filter table array */
for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
hw->mac.ops.write_vfta(hw, i, ~0U);
/* Set flag so we don't redo unnecessary work */
adapter->flags |= IGB_FLAG_VLAN_PROMISC;
return 0;
}
#define VFTA_BLOCK_SIZE 8
static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
{
struct e1000_hw *hw = &adapter->hw;
u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
u32 vid_start = vfta_offset * 32;
u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
u32 i, vid, word, bits, pf_id;
/* guarantee that we don't scrub out management VLAN */
vid = adapter->mng_vlan_id;
if (vid >= vid_start && vid < vid_end)
vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
if (!adapter->vfs_allocated_count)
goto set_vfta;
pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
u32 vlvf = rd32(E1000_VLVF(i));
/* pull VLAN ID from VLVF */
vid = vlvf & VLAN_VID_MASK;
/* only concern ourselves with a certain range */
if (vid < vid_start || vid >= vid_end)
continue;
if (vlvf & E1000_VLVF_VLANID_ENABLE) {
/* record VLAN ID in VFTA */
vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
/* if PF is part of this then continue */
if (test_bit(vid, adapter->active_vlans))
continue;
}
/* remove PF from the pool */
bits = ~(1 << pf_id);
bits &= rd32(E1000_VLVF(i));
wr32(E1000_VLVF(i), bits);
}
set_vfta:
/* extract values from active_vlans and write back to VFTA */
for (i = VFTA_BLOCK_SIZE; i--;) {
vid = (vfta_offset + i) * 32;
word = vid / BITS_PER_LONG;
bits = vid % BITS_PER_LONG;
vfta[i] |= adapter->active_vlans[word] >> bits;
hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
}
}
static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
{
u32 i;
/* We are not in VLAN promisc, nothing to do */
if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
return;
/* Set flag so we don't redo unnecessary work */
adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
igb_scrub_vfta(adapter, i);
}
/**
* igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_rx_mode entry point is called whenever the unicast or multicast
* address lists or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper unicast, multicast,
* promiscuous mode, and all-multi behavior.
**/
static void igb_set_rx_mode(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
unsigned int vfn = adapter->vfs_allocated_count;
u32 rctl = 0, vmolr = 0;
int count;
/* Check for Promiscuous and All Multicast modes */
if (netdev->flags & IFF_PROMISC) {
rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
/* enable use of UTA filter to force packets to default pool */
if (hw->mac.type == e1000_82576)
vmolr |= E1000_VMOLR_ROPE;
} else {
if (netdev->flags & IFF_ALLMULTI) {
rctl |= E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
} else {
/* Write addresses to the MTA, if the attempt fails
* then we should just turn on promiscuous mode so
* that we can at least receive multicast traffic
*/
count = igb_write_mc_addr_list(netdev);
if (count < 0) {
rctl |= E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
} else if (count) {
vmolr |= E1000_VMOLR_ROMPE;
}
}
}
/* Write addresses to available RAR registers, if there is not
* sufficient space to store all the addresses then enable
* unicast promiscuous mode
*/
count = igb_write_uc_addr_list(netdev);
if (count < 0) {
rctl |= E1000_RCTL_UPE;
vmolr |= E1000_VMOLR_ROPE;
}
/* enable VLAN filtering by default */
rctl |= E1000_RCTL_VFE;
/* disable VLAN filtering for modes that require it */
if ((netdev->flags & IFF_PROMISC) ||
(netdev->features & NETIF_F_RXALL)) {
/* if we fail to set all rules then just clear VFE */
if (igb_vlan_promisc_enable(adapter))
rctl &= ~E1000_RCTL_VFE;
} else {
igb_vlan_promisc_disable(adapter);
}
/* update state of unicast, multicast, and VLAN filtering modes */
rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
E1000_RCTL_VFE);
wr32(E1000_RCTL, rctl);
/* In order to support SR-IOV and eventually VMDq it is necessary to set
* the VMOLR to enable the appropriate modes. Without this workaround
* we will have issues with VLAN tag stripping not being done for frames
* that are only arriving because we are the default pool
*/
if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
return;
/* set UTA to appropriate mode */
igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
vmolr |= rd32(E1000_VMOLR(vfn)) &
~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
/* enable Rx jumbo frames, no need for restriction */
vmolr &= ~E1000_VMOLR_RLPML_MASK;
vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
wr32(E1000_VMOLR(vfn), vmolr);
wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
igb_restore_vf_multicasts(adapter);
}
static void igb_check_wvbr(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 wvbr = 0;
switch (hw->mac.type) {
case e1000_82576:
case e1000_i350:
wvbr = rd32(E1000_WVBR);
if (!wvbr)
return;
break;
default:
break;
}
adapter->wvbr |= wvbr;
}
#define IGB_STAGGERED_QUEUE_OFFSET 8
static void igb_spoof_check(struct igb_adapter *adapter)
{
int j;
if (!adapter->wvbr)
return;
for (j = 0; j < adapter->vfs_allocated_count; j++) {
if (adapter->wvbr & (1 << j) ||
adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
dev_warn(&adapter->pdev->dev,
"Spoof event(s) detected on VF %d\n", j);
adapter->wvbr &=
~((1 << j) |
(1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
}
}
}
/* Need to wait a few seconds after link up to get diagnostic information from
* the phy
*/
static void igb_update_phy_info(unsigned long data)
{
struct igb_adapter *adapter = (struct igb_adapter *) data;
igb_get_phy_info(&adapter->hw);
}
/**
* igb_has_link - check shared code for link and determine up/down
* @adapter: pointer to driver private info
**/
bool igb_has_link(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
bool link_active = false;
/* get_link_status is set on LSC (link status) interrupt or
* rx sequence error interrupt. get_link_status will stay
* false until the e1000_check_for_link establishes link
* for copper adapters ONLY
*/
switch (hw->phy.media_type) {
case e1000_media_type_copper:
if (!hw->mac.get_link_status)
return true;
case e1000_media_type_internal_serdes:
hw->mac.ops.check_for_link(hw);
link_active = !hw->mac.get_link_status;
break;
default:
case e1000_media_type_unknown:
break;
}
if (((hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) &&
(hw->phy.id == I210_I_PHY_ID)) {
if (!netif_carrier_ok(adapter->netdev)) {
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
adapter->link_check_timeout = jiffies;
}
}
return link_active;
}
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
bool ret = false;
u32 ctrl_ext, thstat;
/* check for thermal sensor event on i350 copper only */
if (hw->mac.type == e1000_i350) {
thstat = rd32(E1000_THSTAT);
ctrl_ext = rd32(E1000_CTRL_EXT);
if ((hw->phy.media_type == e1000_media_type_copper) &&
!(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
ret = !!(thstat & event);
}
return ret;
}
/**
* igb_check_lvmmc - check for malformed packets received
* and indicated in LVMMC register
* @adapter: pointer to adapter
**/
static void igb_check_lvmmc(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 lvmmc;
lvmmc = rd32(E1000_LVMMC);
if (lvmmc) {
if (unlikely(net_ratelimit())) {
netdev_warn(adapter->netdev,
"malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
lvmmc);
}
}
}
/**
* igb_watchdog - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
static void igb_watchdog(unsigned long data)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
}
static void igb_watchdog_task(struct work_struct *work)
{
struct igb_adapter *adapter = container_of(work,
struct igb_adapter,
watchdog_task);
struct e1000_hw *hw = &adapter->hw;
struct e1000_phy_info *phy = &hw->phy;
struct net_device *netdev = adapter->netdev;
u32 link;
int i;
u32 connsw;
u16 phy_data, retry_count = 20;
link = igb_has_link(adapter);
if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
else
link = false;
}
/* Force link down if we have fiber to swap to */
if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
if (hw->phy.media_type == e1000_media_type_copper) {
connsw = rd32(E1000_CONNSW);
if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
link = 0;
}
}
if (link) {
/* Perform a reset if the media type changed. */
if (hw->dev_spec._82575.media_changed) {
hw->dev_spec._82575.media_changed = false;
adapter->flags |= IGB_FLAG_MEDIA_RESET;
igb_reset(adapter);
}
/* Cancel scheduled suspend requests. */
pm_runtime_resume(netdev->dev.parent);
if (!netif_carrier_ok(netdev)) {
u32 ctrl;
hw->mac.ops.get_speed_and_duplex(hw,
&adapter->link_speed,
&adapter->link_duplex);
ctrl = rd32(E1000_CTRL);
/* Links status message must follow this format */
netdev_info(netdev,
"igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full" : "Half",
(ctrl & E1000_CTRL_TFCE) &&
(ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
(ctrl & E1000_CTRL_RFCE) ? "RX" :
(ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
/* disable EEE if enabled */
if ((adapter->flags & IGB_FLAG_EEE) &&
(adapter->link_duplex == HALF_DUPLEX)) {
dev_info(&adapter->pdev->dev,
"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
adapter->hw.dev_spec._82575.eee_disable = true;
adapter->flags &= ~IGB_FLAG_EEE;
}
/* check if SmartSpeed worked */
igb_check_downshift(hw);
if (phy->speed_downgraded)
netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
/* check for thermal sensor event */
if (igb_thermal_sensor_event(hw,
E1000_THSTAT_LINK_THROTTLE))
netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
/* adjust timeout factor according to speed/duplex */
adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) {
case SPEED_10:
adapter->tx_timeout_factor = 14;
break;
case SPEED_100:
/* maybe add some timeout factor ? */
break;
}
if (adapter->link_speed != SPEED_1000)
goto no_wait;
/* wait for Remote receiver status OK */
retry_read_status:
if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data)) {
if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
retry_count) {
msleep(100);
retry_count--;
goto retry_read_status;
} else if (!retry_count) {
dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
}
} else {
dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
}
no_wait:
netif_carrier_on(netdev);
igb_ping_all_vfs(adapter);
igb_check_vf_rate_limit(adapter);
/* link state has changed, schedule phy info update */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
/* check for thermal sensor event */
if (igb_thermal_sensor_event(hw,
E1000_THSTAT_PWR_DOWN)) {
netdev_err(netdev, "The network adapter was stopped because it overheated\n");
}
/* Links status message must follow this format */
netdev_info(netdev, "igb: %s NIC Link is Down\n",
netdev->name);
netif_carrier_off(netdev);
igb_ping_all_vfs(adapter);
/* link state has changed, schedule phy info update */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
/* link is down, time to check for alternate media */
if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
igb_check_swap_media(adapter);
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
schedule_work(&adapter->reset_task);
/* return immediately */
return;
}
}
pm_schedule_suspend(netdev->dev.parent,
MSEC_PER_SEC * 5);
/* also check for alternate media here */
} else if (!netif_carrier_ok(netdev) &&
(adapter->flags & IGB_FLAG_MAS_ENABLE)) {
igb_check_swap_media(adapter);
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
schedule_work(&adapter->reset_task);
/* return immediately */
return;
}
}
}
spin_lock(&adapter->stats64_lock);
igb_update_stats(adapter, &adapter->stats64);
spin_unlock(&adapter->stats64_lock);
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igb_ring *tx_ring = adapter->tx_ring[i];
if (!netif_carrier_ok(netdev)) {
/* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context).
*/
if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return;
}
}
/* Force detection of hung controller every watchdog period */
set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
}
/* Cause software interrupt to ensure Rx ring is cleaned */
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
u32 eics = 0;
for (i = 0; i < adapter->num_q_vectors; i++)
eics |= adapter->q_vector[i]->eims_value;
wr32(E1000_EICS, eics);
} else {
wr32(E1000_ICS, E1000_ICS_RXDMT0);
}
igb_spoof_check(adapter);
igb_ptp_rx_hang(adapter);
/* Check LVMMC register on i350/i354 only */
if ((adapter->hw.mac.type == e1000_i350) ||
(adapter->hw.mac.type == e1000_i354))
igb_check_lvmmc(adapter);
/* Reset the timer */
if (!test_bit(__IGB_DOWN, &adapter->state)) {
if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + HZ));
else
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 2 * HZ));
}
}
enum latency_range {
lowest_latency = 0,
low_latency = 1,
bulk_latency = 2,
latency_invalid = 255
};
/**
* igb_update_ring_itr - update the dynamic ITR value based on packet size
* @q_vector: pointer to q_vector
*
* Stores a new ITR value based on strictly on packet size. This
* algorithm is less sophisticated than that used in igb_update_itr,
* due to the difficulty of synchronizing statistics across multiple
* receive rings. The divisors and thresholds used by this function
* were determined based on theoretical maximum wire speed and testing
* data, in order to minimize response time while increasing bulk
* throughput.
* This functionality is controlled by ethtool's coalescing settings.
* NOTE: This function is called only when operating in a multiqueue
* receive environment.
**/
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
{
int new_val = q_vector->itr_val;
int avg_wire_size = 0;
struct igb_adapter *adapter = q_vector->adapter;
unsigned int packets;
/* For non-gigabit speeds, just fix the interrupt rate at 4000
* ints/sec - ITR timer value of 120 ticks.
*/
if (adapter->link_speed != SPEED_1000) {
new_val = IGB_4K_ITR;
goto set_itr_val;
}
packets = q_vector->rx.total_packets;
if (packets)
avg_wire_size = q_vector->rx.total_bytes / packets;
packets = q_vector->tx.total_packets;
if (packets)
avg_wire_size = max_t(u32, avg_wire_size,
q_vector->tx.total_bytes / packets);
/* if avg_wire_size isn't set no work was done */
if (!avg_wire_size)
goto clear_counts;
/* Add 24 bytes to size to account for CRC, preamble, and gap */
avg_wire_size += 24;
/* Don't starve jumbo frames */
avg_wire_size = min(avg_wire_size, 3000);
/* Give a little boost to mid-size frames */
if ((avg_wire_size > 300) && (avg_wire_size < 1200))
new_val = avg_wire_size / 3;
else
new_val = avg_wire_size / 2;
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (new_val < IGB_20K_ITR &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
new_val = IGB_20K_ITR;
set_itr_val:
if (new_val != q_vector->itr_val) {
q_vector->itr_val = new_val;
q_vector->set_itr = 1;
}
clear_counts:
q_vector->rx.total_bytes = 0;
q_vector->rx.total_packets = 0;
q_vector->tx.total_bytes = 0;
q_vector->tx.total_packets = 0;
}
/**
* igb_update_itr - update the dynamic ITR value based on statistics
* @q_vector: pointer to q_vector
* @ring_container: ring info to update the itr for
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput.
* This functionality is controlled by ethtool's coalescing settings.
* NOTE: These calculations are only valid when operating in a single-
* queue environment.
**/
static void igb_update_itr(struct igb_q_vector *q_vector,
struct igb_ring_container *ring_container)
{
unsigned int packets = ring_container->total_packets;
unsigned int bytes = ring_container->total_bytes;
u8 itrval = ring_container->itr;
/* no packets, exit with status unchanged */
if (packets == 0)
return;
switch (itrval) {
case lowest_latency:
/* handle TSO and jumbo frames */
if (bytes/packets > 8000)
itrval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
itrval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* this if handles the TSO accounting */
if (bytes/packets > 8000)
itrval = bulk_latency;
else if ((packets < 10) || ((bytes/packets) > 1200))
itrval = bulk_latency;
else if ((packets > 35))
itrval = lowest_latency;
} else if (bytes/packets > 2000) {
itrval = bulk_latency;
} else if (packets <= 2 && bytes < 512) {
itrval = lowest_latency;
}
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
itrval = low_latency;
} else if (bytes < 1500) {
itrval = low_latency;
}
break;
}
/* clear work counters since we have the values we need */
ring_container->total_bytes = 0;
ring_container->total_packets = 0;
/* write updated itr to ring container */
ring_container->itr = itrval;
}
static void igb_set_itr(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
u32 new_itr = q_vector->itr_val;
u8 current_itr = 0;
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
if (adapter->link_speed != SPEED_1000) {
current_itr = 0;
new_itr = IGB_4K_ITR;
goto set_itr_now;
}
igb_update_itr(q_vector, &q_vector->tx);
igb_update_itr(q_vector, &q_vector->rx);
current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (current_itr == lowest_latency &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
current_itr = low_latency;
switch (current_itr) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
break;
case low_latency:
new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
break;
case bulk_latency:
new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
break;
default:
break;
}
set_itr_now:
if (new_itr != q_vector->itr_val) {
/* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing
*/
new_itr = new_itr > q_vector->itr_val ?
max((new_itr * q_vector->itr_val) /
(new_itr + (q_vector->itr_val >> 2)),
new_itr) : new_itr;
/* Don't write the value here; it resets the adapter's
* internal timer, and causes us to delay far longer than
* we should between interrupts. Instead, we write the ITR
* value at the beginning of the next interrupt so the timing
* ends up being correct.
*/
q_vector->itr_val = new_itr;
q_vector->set_itr = 1;
}
}
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
u32 type_tucmd, u32 mss_l4len_idx)
{
struct e1000_adv_tx_context_desc *context_desc;
u16 i = tx_ring->next_to_use;
context_desc = IGB_TX_CTXTDESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
/* set bits to identify this as an advanced context descriptor */
type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
/* For 82575, context index must be unique per ring. */
if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
mss_l4len_idx |= tx_ring->reg_idx << 4;
context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
context_desc->seqnum_seed = 0;
context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
}
static int igb_tso(struct igb_ring *tx_ring,
struct igb_tx_buffer *first,
u8 *hdr_len)
{
struct sk_buff *skb = first->skb;
u32 vlan_macip_lens, type_tucmd;
u32 mss_l4len_idx, l4len;
int err;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
if (first->protocol == htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
iph->tot_len = 0;
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
first->tx_flags |= IGB_TX_FLAGS_TSO |
IGB_TX_FLAGS_CSUM |
IGB_TX_FLAGS_IPV4;
} else if (skb_is_gso_v6(skb)) {
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
first->tx_flags |= IGB_TX_FLAGS_TSO |
IGB_TX_FLAGS_CSUM;
}
/* compute header lengths */
l4len = tcp_hdrlen(skb);
*hdr_len = skb_transport_offset(skb) + l4len;
/* update gso size and bytecount with header size */
first->gso_segs = skb_shinfo(skb)->gso_segs;
first->bytecount += (first->gso_segs - 1) * *hdr_len;
/* MSS L4LEN IDX */
mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
/* VLAN MACLEN IPLEN */
vlan_macip_lens = skb_network_header_len(skb);
vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
return 1;
}
static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
{
unsigned int offset = 0;
ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
return offset == skb_checksum_start_offset(skb);
}
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
{
struct sk_buff *skb = first->skb;
u32 vlan_macip_lens = 0;
u32 type_tucmd = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL) {
csum_failed:
if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
return;
goto no_csum;
}
switch (skb->csum_offset) {
case offsetof(struct tcphdr, check):
type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
/* fall through */
case offsetof(struct udphdr, check):
break;
case offsetof(struct sctphdr, checksum):
/* validate that this is actually an SCTP request */
if (((first->protocol == htons(ETH_P_IP)) &&
(ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
((first->protocol == htons(ETH_P_IPV6)) &&
igb_ipv6_csum_is_sctp(skb))) {
type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
break;
}
default:
skb_checksum_help(skb);
goto csum_failed;
}
/* update TX checksum flag */
first->tx_flags |= IGB_TX_FLAGS_CSUM;
vlan_macip_lens = skb_checksum_start_offset(skb) -
skb_network_offset(skb);
no_csum:
vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
}
#define IGB_SET_FLAG(_input, _flag, _result) \
((_flag <= _result) ? \
((u32)(_input & _flag) * (_result / _flag)) : \
((u32)(_input & _flag) / (_flag / _result)))
static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
{
/* set type for advanced descriptor with frame checksum insertion */
u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
E1000_ADVTXD_DCMD_DEXT |
E1000_ADVTXD_DCMD_IFCS;
/* set HW vlan bit if vlan is present */
cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
(E1000_ADVTXD_DCMD_VLE));
/* set segmentation bits for TSO */
cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
(E1000_ADVTXD_DCMD_TSE));
/* set timestamp bit if present */
cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
(E1000_ADVTXD_MAC_TSTAMP));
/* insert frame checksum */
cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
return cmd_type;
}
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
union e1000_adv_tx_desc *tx_desc,
u32 tx_flags, unsigned int paylen)
{
u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
/* 82575 requires a unique index per ring */
if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
olinfo_status |= tx_ring->reg_idx << 4;
/* insert L4 checksum */
olinfo_status |= IGB_SET_FLAG(tx_flags,
IGB_TX_FLAGS_CSUM,
(E1000_TXD_POPTS_TXSM << 8));
/* insert IPv4 checksum */
olinfo_status |= IGB_SET_FLAG(tx_flags,
IGB_TX_FLAGS_IPV4,
(E1000_TXD_POPTS_IXSM << 8));
tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
}
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
struct net_device *netdev = tx_ring->netdev;
netif_stop_subqueue(netdev, tx_ring->queue_index);
/* Herbert's original patch had:
* smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it.
*/
smp_mb();
/* We need to check again in a case another CPU has just
* made room available.
*/
if (igb_desc_unused(tx_ring) < size)
return -EBUSY;
/* A reprieve! */
netif_wake_subqueue(netdev, tx_ring->queue_index);
u64_stats_update_begin(&tx_ring->tx_syncp2);
tx_ring->tx_stats.restart_queue2++;
u64_stats_update_end(&tx_ring->tx_syncp2);
return 0;
}
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
if (igb_desc_unused(tx_ring) >= size)
return 0;
return __igb_maybe_stop_tx(tx_ring, size);
}
static void igb_tx_map(struct igb_ring *tx_ring,
struct igb_tx_buffer *first,
const u8 hdr_len)
{
struct sk_buff *skb = first->skb;
struct igb_tx_buffer *tx_buffer;
union e1000_adv_tx_desc *tx_desc;
struct skb_frag_struct *frag;
dma_addr_t dma;
unsigned int data_len, size;
u32 tx_flags = first->tx_flags;
u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
u16 i = tx_ring->next_to_use;
tx_desc = IGB_TX_DESC(tx_ring, i);
igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
size = skb_headlen(skb);
data_len = skb->data_len;
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
tx_buffer = first;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
/* record length, and DMA address */
dma_unmap_len_set(tx_buffer, len, size);
dma_unmap_addr_set(tx_buffer, dma, dma);
tx_desc->read.buffer_addr = cpu_to_le64(dma);
while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
tx_desc->read.cmd_type_len =
cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IGB_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
dma += IGB_MAX_DATA_PER_TXD;
size -= IGB_MAX_DATA_PER_TXD;
tx_desc->read.buffer_addr = cpu_to_le64(dma);
}
if (likely(!data_len))
break;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IGB_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
size, DMA_TO_DEVICE);
tx_buffer = &tx_ring->tx_buffer_info[i];
}
/* write last descriptor with RS and EOP bits */
cmd_type |= size | IGB_TXD_DCMD;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
/* set the timestamp */
first->time_stamp = jiffies;
/* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch. (Only applicable for weak-ordered
* memory model archs, such as IA-64).
*
* We also need this memory barrier to make certain all of the
* status bits have been updated before next_to_watch is written.
*/
wmb();
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
/* Make sure there is space in the ring for the next send. */
igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
writel(i, tx_ring->tail);
/* we need this if more than one processor can write to our tail
* at a time, it synchronizes IO on IA64/Altix systems
*/
mmiowb();
}
return;
dma_error:
dev_err(tx_ring->dev, "TX DMA map failed\n");
/* clear dma mappings for failed tx_buffer_info map */
for (;;) {
tx_buffer = &tx_ring->tx_buffer_info[i];
igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
if (tx_buffer == first)
break;
if (i == 0)
i = tx_ring->count;
i--;
}
tx_ring->next_to_use = i;
}
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
struct igb_ring *tx_ring)
{
struct igb_tx_buffer *first;
int tso;
u32 tx_flags = 0;
unsigned short f;
u16 count = TXD_USE_COUNT(skb_headlen(skb));
__be16 protocol = vlan_get_protocol(skb);
u8 hdr_len = 0;
/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
* + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
* + 2 desc gap to keep tail from touching head,
* + 1 desc for context descriptor,
* otherwise try next time
*/
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
if (igb_maybe_stop_tx(tx_ring, count + 3)) {
/* this is a hard error */
return NETDEV_TX_BUSY;
}
/* record the location of the first descriptor for this packet */
first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
first->skb = skb;
first->bytecount = skb->len;
first->gso_segs = 1;
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
&adapter->state)) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
tx_flags |= IGB_TX_FLAGS_TSTAMP;
adapter->ptp_tx_skb = skb_get(skb);
adapter->ptp_tx_start = jiffies;
if (adapter->hw.mac.type == e1000_82576)
schedule_work(&adapter->ptp_tx_work);
}
}
skb_tx_timestamp(skb);
if (skb_vlan_tag_present(skb)) {
tx_flags |= IGB_TX_FLAGS_VLAN;
tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
}
/* record initial flags and protocol */
first->tx_flags = tx_flags;
first->protocol = protocol;
tso = igb_tso(tx_ring, first, &hdr_len);
if (tso < 0)
goto out_drop;
else if (!tso)
igb_tx_csum(tx_ring, first);
igb_tx_map(tx_ring, first, hdr_len);
return NETDEV_TX_OK;
out_drop:
igb_unmap_and_free_tx_resource(tx_ring, first);
return NETDEV_TX_OK;
}
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
struct sk_buff *skb)
{
unsigned int r_idx = skb->queue_mapping;
if (r_idx >= adapter->num_tx_queues)
r_idx = r_idx % adapter->num_tx_queues;
return adapter->tx_ring[r_idx];
}
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
* in order to meet this minimum size requirement.
*/
if (skb_put_padto(skb, 17))
return NETDEV_TX_OK;
return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
}
/**
* igb_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
**/
static void igb_tx_timeout(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
/* Do the reset outside of interrupt context */
adapter->tx_timeout_count++;
if (hw->mac.type >= e1000_82580)
hw->dev_spec._82575.global_device_reset = true;
schedule_work(&adapter->reset_task);
wr32(E1000_EICS,
(adapter->eims_enable_mask & ~adapter->eims_other));
}
static void igb_reset_task(struct work_struct *work)
{
struct igb_adapter *adapter;
adapter = container_of(work, struct igb_adapter, reset_task);
igb_dump(adapter);
netdev_err(adapter->netdev, "Reset adapter\n");
igb_reinit_locked(adapter);
}
/**
* igb_get_stats64 - Get System Network Statistics
* @netdev: network interface device structure
* @stats: rtnl_link_stats64 pointer
**/
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct igb_adapter *adapter = netdev_priv(netdev);
spin_lock(&adapter->stats64_lock);
igb_update_stats(adapter, &adapter->stats64);
memcpy(stats, &adapter->stats64, sizeof(*stats));
spin_unlock(&adapter->stats64_lock);
return stats;
}
/**
* igb_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
dev_err(&pdev->dev, "Invalid MTU setting\n");
return -EINVAL;
}
#define MAX_STD_JUMBO_FRAME_SIZE 9238
if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
return -EINVAL;
}
/* adjust max frame to be at least the size of a standard frame */
if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
/* igb_down has a dependency on max_frame_size */
adapter->max_frame_size = max_frame;
if (netif_running(netdev))
igb_down(adapter);
dev_info(&pdev->dev, "changing MTU from %d to %d\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
if (netif_running(netdev))
igb_up(adapter);
else
igb_reset(adapter);
clear_bit(__IGB_RESETTING, &adapter->state);
return 0;
}
/**
* igb_update_stats - Update the board statistics counters
* @adapter: board private structure
**/
void igb_update_stats(struct igb_adapter *adapter,
struct rtnl_link_stats64 *net_stats)
{
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
u32 reg, mpc;
int i;
u64 bytes, packets;
unsigned int start;
u64 _bytes, _packets;
/* Prevent stats update while adapter is being reset, or if the pci
* connection is down.
*/
if (adapter->link_speed == 0)
return;
if (pci_channel_offline(pdev))
return;
bytes = 0;
packets = 0;
rcu_read_lock();
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = adapter->rx_ring[i];
u32 rqdpc = rd32(E1000_RQDPC(i));
if (hw->mac.type >= e1000_i210)
wr32(E1000_RQDPC(i), 0);
if (rqdpc) {
ring->rx_stats.drops += rqdpc;
net_stats->rx_fifo_errors += rqdpc;
}
do {
start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
_bytes = ring->rx_stats.bytes;
_packets = ring->rx_stats.packets;
} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
bytes += _bytes;
packets += _packets;
}
net_stats->rx_bytes = bytes;
net_stats->rx_packets = packets;
bytes = 0;
packets = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igb_ring *ring = adapter->tx_ring[i];
do {
start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
_bytes = ring->tx_stats.bytes;
_packets = ring->tx_stats.packets;
} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
bytes += _bytes;
packets += _packets;
}
net_stats->tx_bytes = bytes;
net_stats->tx_packets = packets;
rcu_read_unlock();
/* read stats registers */
adapter->stats.crcerrs += rd32(E1000_CRCERRS);
adapter->stats.gprc += rd32(E1000_GPRC);
adapter->stats.gorc += rd32(E1000_GORCL);
rd32(E1000_GORCH); /* clear GORCL */
adapter->stats.bprc += rd32(E1000_BPRC);
adapter->stats.mprc += rd32(E1000_MPRC);
adapter->stats.roc += rd32(E1000_ROC);
adapter->stats.prc64 += rd32(E1000_PRC64);
adapter->stats.prc127 += rd32(E1000_PRC127);
adapter->stats.prc255 += rd32(E1000_PRC255);
adapter->stats.prc511 += rd32(E1000_PRC511);
adapter->stats.prc1023 += rd32(E1000_PRC1023);
adapter->stats.prc1522 += rd32(E1000_PRC1522);
adapter->stats.symerrs += rd32(E1000_SYMERRS);
adapter->stats.sec += rd32(E1000_SEC);
mpc = rd32(E1000_MPC);
adapter->stats.mpc += mpc;
net_stats->rx_fifo_errors += mpc;
adapter->stats.scc += rd32(E1000_SCC);
adapter->stats.ecol += rd32(E1000_ECOL);
adapter->stats.mcc += rd32(E1000_MCC);
adapter->stats.latecol += rd32(E1000_LATECOL);
adapter->stats.dc += rd32(E1000_DC);
adapter->stats.rlec += rd32(E1000_RLEC);
adapter->stats.xonrxc += rd32(E1000_XONRXC);
adapter->stats.xontxc += rd32(E1000_XONTXC);
adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
adapter->stats.fcruc += rd32(E1000_FCRUC);
adapter->stats.gptc += rd32(E1000_GPTC);
adapter->stats.gotc += rd32(E1000_GOTCL);
rd32(E1000_GOTCH); /* clear GOTCL */
adapter->stats.rnbc += rd32(E1000_RNBC);
adapter->stats.ruc += rd32(E1000_RUC);
adapter->stats.rfc += rd32(E1000_RFC);
adapter->stats.rjc += rd32(E1000_RJC);
adapter->stats.tor += rd32(E1000_TORH);
adapter->stats.tot += rd32(E1000_TOTH);
adapter->stats.tpr += rd32(E1000_TPR);
adapter->stats.ptc64 += rd32(E1000_PTC64);
adapter->stats.ptc127 += rd32(E1000_PTC127);
adapter->stats.ptc255 += rd32(E1000_PTC255);
adapter->stats.ptc511 += rd32(E1000_PTC511);
adapter->stats.ptc1023 += rd32(E1000_PTC1023);
adapter->stats.ptc1522 += rd32(E1000_PTC1522);
adapter->stats.mptc += rd32(E1000_MPTC);
adapter->stats.bptc += rd32(E1000_BPTC);
adapter->stats.tpt += rd32(E1000_TPT);
adapter->stats.colc += rd32(E1000_COLC);
adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
/* read internal phy specific stats */
reg = rd32(E1000_CTRL_EXT);
if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
adapter->stats.rxerrc += rd32(E1000_RXERRC);
/* this stat has invalid values on i210/i211 */
if ((hw->mac.type != e1000_i210) &&
(hw->mac.type != e1000_i211))
adapter->stats.tncrs += rd32(E1000_TNCRS);
}
adapter->stats.tsctc += rd32(E1000_TSCTC);
adapter->stats.tsctfc += rd32(E1000_TSCTFC);
adapter->stats.iac += rd32(E1000_IAC);
adapter->stats.icrxoc += rd32(E1000_ICRXOC);
adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
adapter->stats.icrxatc += rd32(E1000_ICRXATC);
adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
adapter->stats.ictxatc += rd32(E1000_ICTXATC);
adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
/* Fill out the OS statistics structure */
net_stats->multicast = adapter->stats.mprc;
net_stats->collisions = adapter->stats.colc;
/* Rx Errors */
/* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
net_stats->rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
net_stats->rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
net_stats->rx_crc_errors = adapter->stats.crcerrs;
net_stats->rx_frame_errors = adapter->stats.algnerrc;
net_stats->rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
net_stats->tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
net_stats->tx_aborted_errors = adapter->stats.ecol;
net_stats->tx_window_errors = adapter->stats.latecol;
net_stats->tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
/* Management Stats */
adapter->stats.mgptc += rd32(E1000_MGTPTC);
adapter->stats.mgprc += rd32(E1000_MGTPRC);
adapter->stats.mgpdc += rd32(E1000_MGTPDC);
/* OS2BMC Stats */
reg = rd32(E1000_MANC);
if (reg & E1000_MANC_EN_BMC2OS) {
adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
adapter->stats.o2bspc += rd32(E1000_O2BSPC);
adapter->stats.b2ospc += rd32(E1000_B2OSPC);
adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
}
}
static void igb_tsync_interrupt(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct ptp_clock_event event;
struct timespec64 ts;
u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
if (tsicr & TSINTR_SYS_WRAP) {
event.type = PTP_CLOCK_PPS;
if (adapter->ptp_caps.pps)
ptp_clock_event(adapter->ptp_clock, &event);
else
dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
ack |= TSINTR_SYS_WRAP;
}
if (tsicr & E1000_TSICR_TXTS) {
/* retrieve hardware timestamp */
schedule_work(&adapter->ptp_tx_work);
ack |= E1000_TSICR_TXTS;
}
if (tsicr & TSINTR_TT0) {
spin_lock(&adapter->tmreg_lock);
ts = timespec64_add(adapter->perout[0].start,
adapter->perout[0].period);
/* u32 conversion of tv_sec is safe until y2106 */
wr32(E1000_TRGTTIML0, ts.tv_nsec);
wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
tsauxc = rd32(E1000_TSAUXC);
tsauxc |= TSAUXC_EN_TT0;
wr32(E1000_TSAUXC, tsauxc);
adapter->perout[0].start = ts;
spin_unlock(&adapter->tmreg_lock);
ack |= TSINTR_TT0;
}
if (tsicr & TSINTR_TT1) {
spin_lock(&adapter->tmreg_lock);
ts = timespec64_add(adapter->perout[1].start,
adapter->perout[1].period);
wr32(E1000_TRGTTIML1, ts.tv_nsec);
wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
tsauxc = rd32(E1000_TSAUXC);
tsauxc |= TSAUXC_EN_TT1;
wr32(E1000_TSAUXC, tsauxc);
adapter->perout[1].start = ts;
spin_unlock(&adapter->tmreg_lock);
ack |= TSINTR_TT1;
}
if (tsicr & TSINTR_AUTT0) {
nsec = rd32(E1000_AUXSTMPL0);
sec = rd32(E1000_AUXSTMPH0);
event.type = PTP_CLOCK_EXTTS;
event.index = 0;
event.timestamp = sec * 1000000000ULL + nsec;
ptp_clock_event(adapter->ptp_clock, &event);
ack |= TSINTR_AUTT0;
}
if (tsicr & TSINTR_AUTT1) {
nsec = rd32(E1000_AUXSTMPL1);
sec = rd32(E1000_AUXSTMPH1);
event.type = PTP_CLOCK_EXTTS;
event.index = 1;
event.timestamp = sec * 1000000000ULL + nsec;
ptp_clock_event(adapter->ptp_clock, &event);
ack |= TSINTR_AUTT1;
}
/* acknowledge the interrupts */
wr32(E1000_TSICR, ack);
}
static irqreturn_t igb_msix_other(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct e1000_hw *hw = &adapter->hw;
u32 icr = rd32(E1000_ICR);
/* reading ICR causes bit 31 of EICR to be cleared */
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
/* The DMA Out of Sync is also indication of a spoof event
* in IOV mode. Check the Wrong VM Behavior register to
* see if it is really a spoof event.
*/
igb_check_wvbr(adapter);
}
/* Check for a mailbox event */
if (icr & E1000_ICR_VMMB)
igb_msg_task(adapter);
if (icr & E1000_ICR_LSC) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (icr & E1000_ICR_TS)
igb_tsync_interrupt(adapter);
wr32(E1000_EIMS, adapter->eims_other);
return IRQ_HANDLED;
}
static void igb_write_itr(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
u32 itr_val = q_vector->itr_val & 0x7FFC;
if (!q_vector->set_itr)
return;
if (!itr_val)
itr_val = 0x4;
if (adapter->hw.mac.type == e1000_82575)
itr_val |= itr_val << 16;
else
itr_val |= E1000_EITR_CNT_IGNR;
writel(itr_val, q_vector->itr_register);
q_vector->set_itr = 0;
}
static irqreturn_t igb_msix_ring(int irq, void *data)
{
struct igb_q_vector *q_vector = data;
/* Write the ITR value calculated from the previous interrupt. */
igb_write_itr(q_vector);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
#ifdef CONFIG_IGB_DCA
static void igb_update_tx_dca(struct igb_adapter *adapter,
struct igb_ring *tx_ring,
int cpu)
{
struct e1000_hw *hw = &adapter->hw;
u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
if (hw->mac.type != e1000_82575)
txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
/* We can enable relaxed ordering for reads, but not writes when
* DCA is enabled. This is due to a known issue in some chipsets
* which will cause the DCA tag to be cleared.
*/
txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
E1000_DCA_TXCTRL_DATA_RRO_EN |
E1000_DCA_TXCTRL_DESC_DCA_EN;
wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}
static void igb_update_rx_dca(struct igb_adapter *adapter,
struct igb_ring *rx_ring,
int cpu)
{
struct e1000_hw *hw = &adapter->hw;
u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
if (hw->mac.type != e1000_82575)
rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
/* We can enable relaxed ordering for reads, but not writes when
* DCA is enabled. This is due to a known issue in some chipsets
* which will cause the DCA tag to be cleared.
*/
rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
E1000_DCA_RXCTRL_DESC_DCA_EN;
wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}
static void igb_update_dca(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
int cpu = get_cpu();
if (q_vector->cpu == cpu)
goto out_no_update;
if (q_vector->tx.ring)
igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
if (q_vector->rx.ring)
igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
q_vector->cpu = cpu;
out_no_update:
put_cpu();
}
static void igb_setup_dca(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
return;
/* Always use CB2 mode, difference is masked in the CB driver. */
wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
for (i = 0; i < adapter->num_q_vectors; i++) {
adapter->q_vector[i]->cpu = -1;
igb_update_dca(adapter->q_vector[i]);
}
}
static int __igb_notify_dca(struct device *dev, void *data)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
unsigned long event = *(unsigned long *)data;
switch (event) {
case DCA_PROVIDER_ADD:
/* if already enabled, don't do it again */
if (adapter->flags & IGB_FLAG_DCA_ENABLED)
break;
if (dca_add_requester(dev) == 0) {
adapter->flags |= IGB_FLAG_DCA_ENABLED;
dev_info(&pdev->dev, "DCA enabled\n");
igb_setup_dca(adapter);
break;
}
/* Fall Through since DCA is disabled. */
case DCA_PROVIDER_REMOVE:
if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
/* without this a class_device is left
* hanging around in the sysfs model
*/
dca_remove_requester(dev);
dev_info(&pdev->dev, "DCA disabled\n");
adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
}
break;
}
return 0;
}
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
void *p)
{
int ret_val;
ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
__igb_notify_dca);
return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
#endif /* CONFIG_IGB_DCA */
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
unsigned char mac_addr[ETH_ALEN];
eth_zero_addr(mac_addr);
igb_set_vf_mac(adapter, vf, mac_addr);
/* By default spoof check is enabled for all VFs */
adapter->vf_data[vf].spoofchk_enabled = true;
return 0;
}
#endif
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ping;
int i;
for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
ping = E1000_PF_CONTROL_MSG;
if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
ping |= E1000_VT_MSGTYPE_CTS;
igb_write_mbx(hw, &ping, 1, i);
}
}
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr = rd32(E1000_VMOLR(vf));
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
IGB_VF_FLAG_MULTI_PROMISC);
vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
vmolr |= E1000_VMOLR_MPME;
vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
} else {
/* if we have hashes and we are clearing a multicast promisc
* flag we need to write the hashes to the MTA as this step
* was previously skipped
*/
if (vf_data->num_vf_mc_hashes > 30) {
vmolr |= E1000_VMOLR_MPME;
} else if (vf_data->num_vf_mc_hashes) {
int j;
vmolr |= E1000_VMOLR_ROMPE;
for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
}
}
wr32(E1000_VMOLR(vf), vmolr);
/* there are flags left unprocessed, likely not supported */
if (*msgbuf & E1000_VT_MSGINFO_MASK)
return -EINVAL;
return 0;
}
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
u32 *msgbuf, u32 vf)
{
int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
u16 *hash_list = (u16 *)&msgbuf[1];
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
int i;
/* salt away the number of multicast addresses assigned
* to this VF for later use to restore when the PF multi cast
* list changes
*/
vf_data->num_vf_mc_hashes = n;
/* only up to 30 hash values supported */
if (n > 30)
n = 30;
/* store the hashes for later use */
for (i = 0; i < n; i++)
vf_data->vf_mc_hashes[i] = hash_list[i];
/* Flush and reset the mta with the new values */
igb_set_rx_mode(adapter->netdev);
return 0;
}
static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data;
int i, j;
for (i = 0; i < adapter->vfs_allocated_count; i++) {
u32 vmolr = rd32(E1000_VMOLR(i));
vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
vf_data = &adapter->vf_data[i];
if ((vf_data->num_vf_mc_hashes > 30) ||
(vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
vmolr |= E1000_VMOLR_MPME;
} else if (vf_data->num_vf_mc_hashes) {
vmolr |= E1000_VMOLR_ROMPE;
for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
}
wr32(E1000_VMOLR(i), vmolr);
}
}
static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
u32 pool_mask, vlvf_mask, i;
/* create mask for VF and other pools */
pool_mask = E1000_VLVF_POOLSEL_MASK;
vlvf_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
/* drop PF from pool bits */
pool_mask &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT +
adapter->vfs_allocated_count));
/* Find the vlan filter for this id */
for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
u32 vlvf = rd32(E1000_VLVF(i));
u32 vfta_mask, vid, vfta;
/* remove the vf from the pool */
if (!(vlvf & vlvf_mask))
continue;
/* clear out bit from VLVF */
vlvf ^= vlvf_mask;
/* if other pools are present, just remove ourselves */
if (vlvf & pool_mask)
goto update_vlvfb;
/* if PF is present, leave VFTA */
if (vlvf & E1000_VLVF_POOLSEL_MASK)
goto update_vlvf;
vid = vlvf & E1000_VLVF_VLANID_MASK;
vfta_mask = 1 << (vid % 32);
/* clear bit from VFTA */
vfta = adapter->shadow_vfta[vid / 32];
if (vfta & vfta_mask)
hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
update_vlvf:
/* clear pool selection enable */
if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
vlvf &= E1000_VLVF_POOLSEL_MASK;
else
vlvf = 0;
update_vlvfb:
/* clear pool bits */
wr32(E1000_VLVF(i), vlvf);
}
}
static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
{
u32 vlvf;
int idx;
/* short cut the special case */
if (vlan == 0)
return 0;
/* Search for the VLAN id in the VLVF entries */
for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
vlvf = rd32(E1000_VLVF(idx));
if ((vlvf & VLAN_VID_MASK) == vlan)
break;
}
return idx;
}
void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
{
struct e1000_hw *hw = &adapter->hw;
u32 bits, pf_id;
int idx;
idx = igb_find_vlvf_entry(hw, vid);
if (!idx)
return;
/* See if any other pools are set for this VLAN filter
* entry other than the PF.
*/
pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
bits = ~(1 << pf_id) & E1000_VLVF_POOLSEL_MASK;
bits &= rd32(E1000_VLVF(idx));
/* Disable the filter so this falls into the default pool. */
if (!bits) {
if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
wr32(E1000_VLVF(idx), 1 << pf_id);
else
wr32(E1000_VLVF(idx), 0);
}
}
static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
bool add, u32 vf)
{
int pf_id = adapter->vfs_allocated_count;
struct e1000_hw *hw = &adapter->hw;
int err;
/* If VLAN overlaps with one the PF is currently monitoring make
* sure that we are able to allocate a VLVF entry. This may be
* redundant but it guarantees PF will maintain visibility to
* the VLAN.
*/
if (add && test_bit(vid, adapter->active_vlans)) {
err = igb_vfta_set(hw, vid, pf_id, true, false);
if (err)
return err;
}
err = igb_vfta_set(hw, vid, vf, add, false);
if (add && !err)
return err;
/* If we failed to add the VF VLAN or we are removing the VF VLAN
* we may need to drop the PF pool bit in order to allow us to free
* up the VLVF resources.
*/
if (test_bit(vid, adapter->active_vlans) ||
(adapter->flags & IGB_FLAG_VLAN_PROMISC))
igb_update_pf_vlvf(adapter, vid);
return err;
}
static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
if (vid)
wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
else
wr32(E1000_VMVIR(vf), 0);
}
static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
u16 vlan, u8 qos)
{
int err;
err = igb_set_vf_vlan(adapter, vlan, true, vf);
if (err)
return err;
igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
igb_set_vmolr(adapter, vf, !vlan);
/* revoke access to previous VLAN */
if (vlan != adapter->vf_data[vf].pf_vlan)
igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
false, vf);
adapter->vf_data[vf].pf_vlan = vlan;
adapter->vf_data[vf].pf_qos = qos;
igb_set_vf_vlan_strip(adapter, vf, true);
dev_info(&adapter->pdev->dev,
"Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
if (test_bit(__IGB_DOWN, &adapter->state)) {
dev_warn(&adapter->pdev->dev,
"The VF VLAN has been set, but the PF device is not up.\n");
dev_warn(&adapter->pdev->dev,
"Bring the PF device up before attempting to use the VF device.\n");
}
return err;
}
static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
{
/* Restore tagless access via VLAN 0 */
igb_set_vf_vlan(adapter, 0, true, vf);
igb_set_vmvir(adapter, 0, vf);
igb_set_vmolr(adapter, vf, true);
/* Remove any PF assigned VLAN */
if (adapter->vf_data[vf].pf_vlan)
igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
false, vf);
adapter->vf_data[vf].pf_vlan = 0;
adapter->vf_data[vf].pf_qos = 0;
igb_set_vf_vlan_strip(adapter, vf, false);
return 0;
}
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
int vf, u16 vlan, u8 qos)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
return -EINVAL;
return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
igb_disable_port_vlan(adapter, vf);
}
static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
int ret;
if (adapter->vf_data[vf].pf_vlan)
return -1;
/* VLAN 0 is a special case, don't allow it to be removed */
if (!vid && !add)
return 0;
ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
if (!ret)
igb_set_vf_vlan_strip(adapter, vf, !!vid);
return ret;
}
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
{
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
/* clear flags - except flag that indicates PF has set the MAC */
vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
vf_data->last_nack = jiffies;
/* reset vlans for device */
igb_clear_vf_vfta(adapter, vf);
igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
igb_set_vmvir(adapter, vf_data->pf_vlan |
(vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
/* reset multicast table array for vf */
adapter->vf_data[vf].num_vf_mc_hashes = 0;
/* Flush and reset the mta with the new values */
igb_set_rx_mode(adapter->netdev);
}
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
/* clear mac address as we were hotplug removed/added */
if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
eth_zero_addr(vf_mac);
/* process remaining reset events */
igb_vf_reset(adapter, vf);
}
static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
int rar_entry = hw->mac.rar_entry_count - (vf + 1);
u32 reg, msgbuf[3];
u8 *addr = (u8 *)(&msgbuf[1]);
/* process all the same items cleared in a function level reset */
igb_vf_reset(adapter, vf);
/* set vf mac address */
igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
/* enable transmit and receive for vf */
reg = rd32(E1000_VFTE);
wr32(E1000_VFTE, reg | (1 << vf));
reg = rd32(E1000_VFRE);
wr32(E1000_VFRE, reg | (1 << vf));
adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
/* reply to reset with ack and vf mac address */
if (!is_zero_ether_addr(vf_mac)) {
msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
memcpy(addr, vf_mac, ETH_ALEN);
} else {
msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
}
igb_write_mbx(hw, msgbuf, 3, vf);
}
static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
/* The VF MAC Address is stored in a packed array of bytes
* starting at the second 32 bit word of the msg array
*/
unsigned char *addr = (char *)&msg[1];
int err = -1;
if (is_valid_ether_addr(addr))
err = igb_set_vf_mac(adapter, vf, addr);
return err;
}
static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
u32 msg = E1000_VT_MSGTYPE_NACK;
/* if device isn't clear to send it shouldn't be reading either */
if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
igb_write_mbx(hw, &msg, 1, vf);
vf_data->last_nack = jiffies;
}
}
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
{
struct pci_dev *pdev = adapter->pdev;
u32 msgbuf[E1000_VFMAILBOX_SIZE];
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
s32 retval;
retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
if (retval) {
/* if receive failed revoke VF CTS stats and restart init */
dev_err(&pdev->dev, "Error receiving message from VF\n");
vf_data->flags &= ~IGB_VF_FLAG_CTS;
if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
return;
goto out;
}
/* this is a message we already processed, do nothing */
if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
return;
/* until the vf completes a reset it should not be
* allowed to start any configuration.
*/
if (msgbuf[0] == E1000_VF_RESET) {
igb_vf_reset_msg(adapter, vf);
return;
}
if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
return;
retval = -1;
goto out;
}
switch ((msgbuf[0] & 0xFFFF)) {
case E1000_VF_SET_MAC_ADDR:
retval = -EINVAL;
if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
else
dev_warn(&pdev->dev,
"VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
vf);
break;
case E1000_VF_SET_PROMISC:
retval = igb_set_vf_promisc(adapter, msgbuf, vf);
break;
case E1000_VF_SET_MULTICAST:
retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
break;
case E1000_VF_SET_LPE:
retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
break;
case E1000_VF_SET_VLAN:
retval = -1;
if (vf_data->pf_vlan)
dev_warn(&pdev->dev,
"VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
vf);
else
retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
break;
default:
dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
retval = -1;
break;
}
msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
/* notify the VF of the results of what it sent us */
if (retval)
msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
else
msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
igb_write_mbx(hw, msgbuf, 1, vf);
}
static void igb_msg_task(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 vf;
for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
/* process any reset requests */
if (!igb_check_for_rst(hw, vf))
igb_vf_reset_event(adapter, vf);
/* process any messages pending */
if (!igb_check_for_msg(hw, vf))
igb_rcv_msg_from_vf(adapter, vf);
/* process any acks */
if (!igb_check_for_ack(hw, vf))
igb_rcv_ack_from_vf(adapter, vf);
}
}
/**
* igb_set_uta - Set unicast filter table address
* @adapter: board private structure
* @set: boolean indicating if we are setting or clearing bits
*
* The unicast table address is a register array of 32-bit registers.
* The table is meant to be used in a way similar to how the MTA is used
* however due to certain limitations in the hardware it is necessary to
* set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
* enable bit to allow vlan tag stripping when promiscuous mode is enabled
**/
static void igb_set_uta(struct igb_adapter *adapter, bool set)
{
struct e1000_hw *hw = &adapter->hw;
u32 uta = set ? ~0 : 0;
int i;
/* we only need to do this if VMDq is enabled */
if (!adapter->vfs_allocated_count)
return;
for (i = hw->mac.uta_reg_count; i--;)
array_wr32(E1000_UTA, i, uta);
}
/**
* igb_intr_msi - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct igb_q_vector *q_vector = adapter->q_vector[0];
struct e1000_hw *hw = &adapter->hw;
/* read ICR disables interrupts using IAM */
u32 icr = rd32(E1000_ICR);
igb_write_itr(q_vector);
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
hw->mac.get_link_status = 1;
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (icr & E1000_ICR_TS)
igb_tsync_interrupt(adapter);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* igb_intr - Legacy Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t igb_intr(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct igb_q_vector *q_vector = adapter->q_vector[0];
struct e1000_hw *hw = &adapter->hw;
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
* need for the IMC write
*/
u32 icr = rd32(E1000_ICR);
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
* not set, then the adapter didn't send an interrupt
*/
if (!(icr & E1000_ICR_INT_ASSERTED))
return IRQ_NONE;
igb_write_itr(q_vector);
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (icr & E1000_ICR_TS)
igb_tsync_interrupt(adapter);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
(!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
igb_set_itr(q_vector);
else
igb_update_ring_itr(q_vector);
}
if (!test_bit(__IGB_DOWN, &adapter->state)) {
if (adapter->flags & IGB_FLAG_HAS_MSIX)
wr32(E1000_EIMS, q_vector->eims_value);
else
igb_irq_enable(adapter);
}
}
/**
* igb_poll - NAPI Rx polling callback
* @napi: napi polling structure
* @budget: count of how many packets we should handle
**/
static int igb_poll(struct napi_struct *napi, int budget)
{
struct igb_q_vector *q_vector = container_of(napi,
struct igb_q_vector,
napi);
bool clean_complete = true;
int work_done = 0;
#ifdef CONFIG_IGB_DCA
if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
igb_update_dca(q_vector);
#endif
if (q_vector->tx.ring)
clean_complete = igb_clean_tx_irq(q_vector, budget);
if (q_vector->rx.ring) {
int cleaned = igb_clean_rx_irq(q_vector, budget);
work_done += cleaned;
if (cleaned >= budget)
clean_complete = false;
}
/* If all work not completed, return budget and keep polling */
if (!clean_complete)
return budget;
/* If not enough Rx work done, exit the polling mode */
napi_complete_done(napi, work_done);
igb_ring_irq_enable(q_vector);
return 0;
}
/**
* igb_clean_tx_irq - Reclaim resources after transmit completes
* @q_vector: pointer to q_vector containing needed info
* @napi_budget: Used to determine if we are in netpoll
*
* returns true if ring is completely cleaned
**/
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
{
struct igb_adapter *adapter = q_vector->adapter;
struct igb_ring *tx_ring = q_vector->tx.ring;
struct igb_tx_buffer *tx_buffer;
union e1000_adv_tx_desc *tx_desc;
unsigned int total_bytes = 0, total_packets = 0;
unsigned int budget = q_vector->tx.work_limit;
unsigned int i = tx_ring->next_to_clean;
if (test_bit(__IGB_DOWN, &adapter->state))
return true;
tx_buffer = &tx_ring->tx_buffer_info[i];
tx_desc = IGB_TX_DESC(tx_ring, i);
i -= tx_ring->count;
do {
union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
read_barrier_depends();
/* if DD is not set pending work has not been completed */
if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buffer->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buffer->bytecount;
total_packets += tx_buffer->gso_segs;
/* free the skb */
napi_consume_skb(tx_buffer->skb, napi_budget);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
/* clear tx_buffer data */
tx_buffer->skb = NULL;
dma_unmap_len_set(tx_buffer, len, 0);
/* clear last DMA location and unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
}
}
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, 0);
}
/* issue prefetch for next Tx descriptor */
prefetch(tx_desc);
/* update budget accounting */
budget--;
} while (likely(budget));
netdev_tx_completed_queue(txring_txq(tx_ring),
total_packets, total_bytes);
i += tx_ring->count;
tx_ring->next_to_clean = i;
u64_stats_update_begin(&tx_ring->tx_syncp);
tx_ring->tx_stats.bytes += total_bytes;
tx_ring->tx_stats.packets += total_packets;
u64_stats_update_end(&tx_ring->tx_syncp);
q_vector->tx.total_bytes += total_bytes;
q_vector->tx.total_packets += total_packets;
if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
struct e1000_hw *hw = &adapter->hw;
/* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i
*/
clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
if (tx_buffer->next_to_watch &&
time_after(jiffies, tx_buffer->time_stamp +
(adapter->tx_timeout_factor * HZ)) &&
!(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
/* detected Tx unit hang */
dev_err(tx_ring->dev,
"Detected Tx Unit Hang\n"
" Tx Queue <%d>\n"
" TDH <%x>\n"
" TDT <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n"
"buffer_info[next_to_clean]\n"
" time_stamp <%lx>\n"
" next_to_watch <%p>\n"
" jiffies <%lx>\n"
" desc.status <%x>\n",
tx_ring->queue_index,
rd32(E1000_TDH(tx_ring->reg_idx)),
readl(tx_ring->tail),
tx_ring->next_to_use,
tx_ring->next_to_clean,
tx_buffer->time_stamp,
tx_buffer->next_to_watch,
jiffies,
tx_buffer->next_to_watch->wb.status);
netif_stop_subqueue(tx_ring->netdev,
tx_ring->queue_index);
/* we are about to reset, no point in enabling stuff */
return true;
}
}
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
if (unlikely(total_packets &&
netif_carrier_ok(tx_ring->netdev) &&
igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (__netif_subqueue_stopped(tx_ring->netdev,
tx_ring->queue_index) &&
!(test_bit(__IGB_DOWN, &adapter->state))) {
netif_wake_subqueue(tx_ring->netdev,
tx_ring->queue_index);
u64_stats_update_begin(&tx_ring->tx_syncp);
tx_ring->tx_stats.restart_queue++;
u64_stats_update_end(&tx_ring->tx_syncp);
}
}
return !!budget;
}
/**
* igb_reuse_rx_page - page flip buffer and store it back on the ring
* @rx_ring: rx descriptor ring to store buffers on
* @old_buff: donor buffer to have page reused
*
* Synchronizes page for reuse by the adapter
**/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
struct igb_rx_buffer *old_buff)
{
struct igb_rx_buffer *new_buff;
u16 nta = rx_ring->next_to_alloc;
new_buff = &rx_ring->rx_buffer_info[nta];
/* update, and store next to alloc */
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
/* transfer page from old buffer to new buffer */
*new_buff = *old_buff;
/* sync the buffer for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
old_buff->page_offset,
IGB_RX_BUFSZ,
DMA_FROM_DEVICE);
}
static inline bool igb_page_is_reserved(struct page *page)
{
return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
}
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
struct page *page,
unsigned int truesize)
{
/* avoid re-using remote pages */
if (unlikely(igb_page_is_reserved(page)))
return false;
#if (PAGE_SIZE < 8192)
/* if we are only owner of page we can reuse it */
if (unlikely(page_count(page) != 1))
return false;
/* flip page offset to other buffer */
rx_buffer->page_offset ^= IGB_RX_BUFSZ;
#else
/* move offset up to the next cache line */
rx_buffer->page_offset += truesize;
if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
return false;
#endif
/* Even if we own the page, we are not allowed to use atomic_set()
* This would break get_page_unless_zero() users.
*/
page_ref_inc(page);
return true;
}
/**
* igb_add_rx_frag - Add contents of Rx buffer to sk_buff
* @rx_ring: rx descriptor ring to transact packets on
* @rx_buffer: buffer containing page to add
* @rx_desc: descriptor containing length of buffer written by hardware
* @skb: sk_buff to place the data into
*
* This function will add the data contained in rx_buffer->page to the skb.
* This is done either through a direct copy if the data in the buffer is
* less than the skb header size, otherwise it will just attach the page as
* a frag to the skb.
*
* The function will then update the page offset if necessary and return
* true if the buffer can be reused by the adapter.
**/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
struct igb_rx_buffer *rx_buffer,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct page *page = rx_buffer->page;
unsigned char *va = page_address(page) + rx_buffer->page_offset;
unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
#if (PAGE_SIZE < 8192)
unsigned int truesize = IGB_RX_BUFSZ;
#else
unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
unsigned int pull_len;
if (unlikely(skb_is_nonlinear(skb)))
goto add_tail_frag;
if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
va += IGB_TS_HDR_LEN;
size -= IGB_TS_HDR_LEN;
}
if (likely(size <= IGB_RX_HDR_LEN)) {
memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
/* page is not reserved, we can reuse buffer as-is */
if (likely(!igb_page_is_reserved(page)))
return true;
/* this page cannot be reused so discard it */
__free_page(page);
return false;
}
/* we need the header to contain the greater of either ETH_HLEN or
* 60 bytes if the skb->len is less than 60 for skb_pad.
*/
pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
/* align pull length to size of long to optimize memcpy performance */
memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
/* update all of the pointers */
va += pull_len;
size -= pull_len;
add_tail_frag:
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
(unsigned long)va & ~PAGE_MASK, size, truesize);
return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct igb_rx_buffer *rx_buffer;
struct page *page;
rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
page = rx_buffer->page;
prefetchw(page);
if (likely(!skb)) {
void *page_addr = page_address(page) +
rx_buffer->page_offset;
/* prefetch first cache line of first page */
prefetch(page_addr);
#if L1_CACHE_BYTES < 128
prefetch(page_addr + L1_CACHE_BYTES);
#endif
/* allocate a skb to store the frags */
skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
if (unlikely(!skb)) {
rx_ring->rx_stats.alloc_failed++;
return NULL;
}
/* we will be copying header into skb->data in
* pskb_may_pull so it is in our interest to prefetch
* it now to avoid a possible cache miss
*/
prefetchw(skb->data);
}
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev,
rx_buffer->dma,
rx_buffer->page_offset,
IGB_RX_BUFSZ,
DMA_FROM_DEVICE);
/* pull page into skb */
if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
/* hand second half of page back to the ring */
igb_reuse_rx_page(rx_ring, rx_buffer);
} else {
/* we are not reusing the buffer so unmap it */
dma_unmap_page(rx_ring->dev, rx_buffer->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
}
/* clear contents of rx_buffer */
rx_buffer->page = NULL;
return skb;
}
static inline void igb_rx_checksum(struct igb_ring *ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
skb_checksum_none_assert(skb);
/* Ignore Checksum bit is set */
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
return;
/* Rx checksum disabled via ethtool */
if (!(ring->netdev->features & NETIF_F_RXCSUM))
return;
/* TCP/UDP checksum error bit is set */
if (igb_test_staterr(rx_desc,
E1000_RXDEXT_STATERR_TCPE |
E1000_RXDEXT_STATERR_IPE)) {
/* work around errata with sctp packets where the TCPE aka
* L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
* packets, (aka let the stack check the crc32c)
*/
if (!((skb->len == 60) &&
test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
u64_stats_update_begin(&ring->rx_syncp);
ring->rx_stats.csum_err++;
u64_stats_update_end(&ring->rx_syncp);
}
/* let the stack verify checksum errors */
return;
}
/* It must be a TCP or UDP packet with a valid checksum */
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
E1000_RXD_STAT_UDPCS))
skb->ip_summed = CHECKSUM_UNNECESSARY;
dev_dbg(ring->dev, "cksum success: bits %08X\n",
le32_to_cpu(rx_desc->wb.upper.status_error));
}
static inline void igb_rx_hash(struct igb_ring *ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
if (ring->netdev->features & NETIF_F_RXHASH)
skb_set_hash(skb,
le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
PKT_HASH_TYPE_L3);
}
/**
* igb_is_non_eop - process handling of non-EOP buffers
* @rx_ring: Rx ring being processed
* @rx_desc: Rx descriptor for current buffer
* @skb: current socket buffer containing buffer in progress
*
* This function updates next to clean. If the buffer is an EOP buffer
* this function exits returning false, otherwise it will place the
* sk_buff in the next buffer to be chained and return true indicating
* that this is in fact a non-EOP buffer.
**/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc)
{
u32 ntc = rx_ring->next_to_clean + 1;
/* fetch, update, and store next to clean */
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(IGB_RX_DESC(rx_ring, ntc));
if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
return false;
return true;
}
/**
* igb_cleanup_headers - Correct corrupted or empty headers
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being fixed
*
* Address the case where we are pulling data in on pages only
* and as such no data is present in the skb header.
*
* In addition if skb is not at least 60 bytes we need to pad it so that
* it is large enough to qualify as a valid Ethernet frame.
*
* Returns true if an error was encountered and skb was freed.
**/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
if (unlikely((igb_test_staterr(rx_desc,
E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
struct net_device *netdev = rx_ring->netdev;
if (!(netdev->features & NETIF_F_RXALL)) {
dev_kfree_skb_any(skb);
return true;
}
}
/* if eth_skb_pad returns an error the skb was freed */
if (eth_skb_pad(skb))
return true;
return false;
}
/**
* igb_process_skb_fields - Populate skb header fields from Rx descriptor
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being populated
*
* This function checks the ring, descriptor, and packet information in
* order to populate the hash, checksum, VLAN, timestamp, protocol, and
* other fields within the skb.
**/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct net_device *dev = rx_ring->netdev;
igb_rx_hash(rx_ring, rx_desc, skb);
igb_rx_checksum(rx_ring, rx_desc, skb);
if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
u16 vid;
if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
vid = be16_to_cpu(rx_desc->wb.upper.vlan);
else
vid = le16_to_cpu(rx_desc->wb.upper.vlan);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
}
skb_record_rx_queue(skb, rx_ring->queue_index);
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}
static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
{
struct igb_ring *rx_ring = q_vector->rx.ring;
struct sk_buff *skb = rx_ring->skb;
unsigned int total_bytes = 0, total_packets = 0;
u16 cleaned_count = igb_desc_unused(rx_ring);
while (likely(total_packets < budget)) {
union e1000_adv_rx_desc *rx_desc;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
igb_alloc_rx_buffers(rx_ring, cleaned_count);
cleaned_count = 0;
}
rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
if (!rx_desc->wb.upper.status_error)
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* descriptor has been written back
*/
dma_rmb();
/* retrieve a buffer from the ring */
skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
/* exit if we failed to retrieve a buffer */
if (!skb)
break;
cleaned_count++;
/* fetch next buffer in frame if non-eop */
if (igb_is_non_eop(rx_ring, rx_desc))
continue;
/* verify the packet layout is correct */
if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
skb = NULL;
continue;
}
/* probably a little skewed due to removing CRC */
total_bytes += skb->len;
/* populate checksum, timestamp, VLAN, and protocol */
igb_process_skb_fields(rx_ring, rx_desc, skb);
napi_gro_receive(&q_vector->napi, skb);
/* reset skb pointer */
skb = NULL;
/* update budget accounting */
total_packets++;
}
/* place incomplete frames back on ring for completion */
rx_ring->skb = skb;
u64_stats_update_begin(&rx_ring->rx_syncp);
rx_ring->rx_stats.packets += total_packets;
rx_ring->rx_stats.bytes += total_bytes;
u64_stats_update_end(&rx_ring->rx_syncp);
q_vector->rx.total_packets += total_packets;
q_vector->rx.total_bytes += total_bytes;
if (cleaned_count)
igb_alloc_rx_buffers(rx_ring, cleaned_count);
return total_packets;
}
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
struct igb_rx_buffer *bi)
{
struct page *page = bi->page;
dma_addr_t dma;
/* since we are recycling buffers we should seldom need to alloc */
if (likely(page))
return true;
/* alloc new page for storage */
page = dev_alloc_page();
if (unlikely(!page)) {
rx_ring->rx_stats.alloc_failed++;
return false;
}
/* map page for use */
dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
/* if mapping failed free memory back to system since
* there isn't much point in holding memory we can't use
*/
if (dma_mapping_error(rx_ring->dev, dma)) {
__free_page(page);
rx_ring->rx_stats.alloc_failed++;
return false;
}
bi->dma = dma;
bi->page = page;
bi->page_offset = 0;
return true;
}
/**
* igb_alloc_rx_buffers - Replace used receive buffers; packet split
* @adapter: address of board private structure
**/
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
{
union e1000_adv_rx_desc *rx_desc;
struct igb_rx_buffer *bi;
u16 i = rx_ring->next_to_use;
/* nothing to do */
if (!cleaned_count)
return;
rx_desc = IGB_RX_DESC(rx_ring, i);
bi = &rx_ring->rx_buffer_info[i];
i -= rx_ring->count;
do {
if (!igb_alloc_mapped_page(rx_ring, bi))
break;
/* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info.
*/
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
rx_desc++;
bi++;
i++;
if (unlikely(!i)) {
rx_desc = IGB_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buffer_info;
i -= rx_ring->count;
}
/* clear the status bits for the next_to_use descriptor */
rx_desc->wb.upper.status_error = 0;
cleaned_count--;
} while (cleaned_count);
i += rx_ring->count;
if (rx_ring->next_to_use != i) {
/* record the next descriptor to use */
rx_ring->next_to_use = i;
/* update next to alloc since we have filled the ring */
rx_ring->next_to_alloc = i;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
writel(i, rx_ring->tail);
}
}
/**
* igb_mii_ioctl -
* @netdev:
* @ifreq:
* @cmd:
**/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
if (adapter->hw.phy.media_type != e1000_media_type_copper)
return -EOPNOTSUPP;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = adapter->hw.phy.addr;
break;
case SIOCGMIIREG:
if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
&data->val_out))
return -EIO;
break;
case SIOCSMIIREG:
default:
return -EOPNOTSUPP;
}
return 0;
}
/**
* igb_ioctl -
* @netdev:
* @ifreq:
* @cmd:
**/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return igb_mii_ioctl(netdev, ifr, cmd);
case SIOCGHWTSTAMP:
return igb_ptp_get_ts_config(netdev, ifr);
case SIOCSHWTSTAMP:
return igb_ptp_set_ts_config(netdev, ifr);
default:
return -EOPNOTSUPP;
}
}
void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
pci_read_config_word(adapter->pdev, reg, value);
}
void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
pci_write_config_word(adapter->pdev, reg, *value);
}
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
if (pcie_capability_read_word(adapter->pdev, reg, value))
return -E1000_ERR_CONFIG;
return 0;
}
s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
if (pcie_capability_write_word(adapter->pdev, reg, *value))
return -E1000_ERR_CONFIG;
return 0;
}
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, rctl;
bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
if (enable) {
/* enable VLAN tag insert/strip */
ctrl = rd32(E1000_CTRL);
ctrl |= E1000_CTRL_VME;
wr32(E1000_CTRL, ctrl);
/* Disable CFI check */
rctl = rd32(E1000_RCTL);
rctl &= ~E1000_RCTL_CFIEN;
wr32(E1000_RCTL, rctl);
} else {
/* disable VLAN tag insert/strip */
ctrl = rd32(E1000_CTRL);
ctrl &= ~E1000_CTRL_VME;
wr32(E1000_CTRL, ctrl);
}
igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
}
static int igb_vlan_rx_add_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int pf_id = adapter->vfs_allocated_count;
/* add the filter since PF can receive vlans w/o entry in vlvf */
if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
igb_vfta_set(hw, vid, pf_id, true, !!vid);
set_bit(vid, adapter->active_vlans);
return 0;
}
static int igb_vlan_rx_kill_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct igb_adapter *adapter = netdev_priv(netdev);
int pf_id = adapter->vfs_allocated_count;
struct e1000_hw *hw = &adapter->hw;
/* remove VID from filter table */
if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
igb_vfta_set(hw, vid, pf_id, false, true);
clear_bit(vid, adapter->active_vlans);
return 0;
}
static void igb_restore_vlan(struct igb_adapter *adapter)
{
u16 vid = 1;
igb_vlan_mode(adapter->netdev, adapter->netdev->features);
igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
}
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_mac_info *mac = &adapter->hw.mac;
mac->autoneg = 0;
/* Make sure dplx is at most 1 bit and lsb of speed is not set
* for the switch() below to work
*/
if ((spd & 1) || (dplx & ~1))
goto err_inval;
/* Fiber NIC's only allow 1000 gbps Full duplex
* and 100Mbps Full duplex for 100baseFx sfp
*/
if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
switch (spd + dplx) {
case SPEED_10 + DUPLEX_HALF:
case SPEED_10 + DUPLEX_FULL:
case SPEED_100 + DUPLEX_HALF:
goto err_inval;
default:
break;
}
}
switch (spd + dplx) {
case SPEED_10 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_10_HALF;
break;
case SPEED_10 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_10_FULL;
break;
case SPEED_100 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_100_HALF;
break;
case SPEED_100 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_100_FULL;
break;
case SPEED_1000 + DUPLEX_FULL:
mac->autoneg = 1;
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */
default:
goto err_inval;
}
/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
adapter->hw.phy.mdix = AUTO_ALL_MODES;
return 0;
err_inval:
dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
return -EINVAL;
}
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
bool runtime)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, rctl, status;
u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
#ifdef CONFIG_PM
int retval = 0;
#endif
netif_device_detach(netdev);
if (netif_running(netdev))
__igb_close(netdev, true);
igb_clear_interrupt_scheme(adapter);
#ifdef CONFIG_PM
retval = pci_save_state(pdev);
if (retval)
return retval;
#endif
status = rd32(E1000_STATUS);
if (status & E1000_STATUS_LU)
wufc &= ~E1000_WUFC_LNKC;
if (wufc) {
igb_setup_rctl(adapter);
igb_set_rx_mode(netdev);
/* turn on all-multi mode if wake on multicast is enabled */
if (wufc & E1000_WUFC_MC) {
rctl = rd32(E1000_RCTL);
rctl |= E1000_RCTL_MPE;
wr32(E1000_RCTL, rctl);
}
ctrl = rd32(E1000_CTRL);
/* advertise wake from D3Cold */
#define E1000_CTRL_ADVD3WUC 0x00100000
/* phy power management enable */
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
ctrl |= E1000_CTRL_ADVD3WUC;
wr32(E1000_CTRL, ctrl);
/* Allow time for pending master requests to run */
igb_disable_pcie_master(hw);
wr32(E1000_WUC, E1000_WUC_PME_EN);
wr32(E1000_WUFC, wufc);
} else {
wr32(E1000_WUC, 0);
wr32(E1000_WUFC, 0);
}
*enable_wake = wufc || adapter->en_mng_pt;
if (!*enable_wake)
igb_power_down_link(adapter);
else
igb_power_up_link(adapter);
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
igb_release_hw_control(adapter);
pci_disable_device(pdev);
return 0;
}
#ifdef CONFIG_PM
#ifdef CONFIG_PM_SLEEP
static int igb_suspend(struct device *dev)
{
int retval;
bool wake;
struct pci_dev *pdev = to_pci_dev(dev);
retval = __igb_shutdown(pdev, &wake, 0);
if (retval)
return retval;
if (wake) {
pci_prepare_to_sleep(pdev);
} else {
pci_wake_from_d3(pdev, false);
pci_set_power_state(pdev, PCI_D3hot);
}
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static int igb_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_save_state(pdev);
if (!pci_device_is_present(pdev))
return -ENODEV;
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev,
"igb: Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
if (igb_init_interrupt_scheme(adapter, true)) {
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
igb_reset(adapter);
/* let the f/w know that the h/w is now under the control of the
* driver.
*/
igb_get_hw_control(adapter);
wr32(E1000_WUS, ~0);
if (netdev->flags & IFF_UP) {
rtnl_lock();
err = __igb_open(netdev, true);
rtnl_unlock();
if (err)
return err;
}
netif_device_attach(netdev);
return 0;
}
static int igb_runtime_idle(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
if (!igb_has_link(adapter))
pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
return -EBUSY;
}
static int igb_runtime_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
int retval;
bool wake;
retval = __igb_shutdown(pdev, &wake, 1);
if (retval)
return retval;
if (wake) {
pci_prepare_to_sleep(pdev);
} else {
pci_wake_from_d3(pdev, false);
pci_set_power_state(pdev, PCI_D3hot);
}
return 0;
}
static int igb_runtime_resume(struct device *dev)
{
return igb_resume(dev);
}
#endif /* CONFIG_PM */
static void igb_shutdown(struct pci_dev *pdev)
{
bool wake;
__igb_shutdown(pdev, &wake, 0);
if (system_state == SYSTEM_POWER_OFF) {
pci_wake_from_d3(pdev, wake);
pci_set_power_state(pdev, PCI_D3hot);
}
}
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
struct net_device *netdev = pci_get_drvdata(dev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
rtnl_lock();
if (netif_running(netdev))
igb_close(netdev);
else
igb_reset(adapter);
igb_clear_interrupt_scheme(adapter);
igb_init_queue_configuration(adapter);
if (igb_init_interrupt_scheme(adapter, true)) {
rtnl_unlock();
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
if (netif_running(netdev))
igb_open(netdev);
rtnl_unlock();
return 0;
}
static int igb_pci_disable_sriov(struct pci_dev *dev)
{
int err = igb_disable_sriov(dev);
if (!err)
err = igb_sriov_reinit(dev);
return err;
}
static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
int err = igb_enable_sriov(dev, num_vfs);
if (err)
goto out;
err = igb_sriov_reinit(dev);
if (!err)
return num_vfs;
out:
return err;
}
#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
if (num_vfs == 0)
return igb_pci_disable_sriov(dev);
else
return igb_pci_enable_sriov(dev, num_vfs);
#endif
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void igb_netpoll(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct igb_q_vector *q_vector;
int i;
for (i = 0; i < adapter->num_q_vectors; i++) {
q_vector = adapter->q_vector[i];
if (adapter->flags & IGB_FLAG_HAS_MSIX)
wr32(E1000_EIMC, q_vector->eims_value);
else
igb_irq_disable(adapter);
napi_schedule(&q_vector->napi);
}
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
/**
* igb_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
**/
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
igb_down(adapter);
pci_disable_device(pdev);
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* igb_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the igb_resume routine.
**/
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pci_ers_result_t result;
int err;
if (pci_enable_device_mem(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
igb_reset(adapter);
wr32(E1000_WUS, ~0);
result = PCI_ERS_RESULT_RECOVERED;
}
err = pci_cleanup_aer_uncorrect_error_status(pdev);
if (err) {
dev_err(&pdev->dev,
"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
err);
/* non-fatal, continue */
}
return result;
}
/**
* igb_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the igb_resume routine.
*/
static void igb_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev)) {
if (igb_up(adapter)) {
dev_err(&pdev->dev, "igb_up failed after reset\n");
return;
}
}
netif_device_attach(netdev);
/* let the f/w know that the h/w is now under the control of the
* driver.
*/
igb_get_hw_control(adapter);
}
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
u8 qsel)
{
struct e1000_hw *hw = &adapter->hw;
u32 rar_low, rar_high;
/* HW expects these to be in network order when they are plugged
* into the registers which are little endian. In order to guarantee
* that ordering we need to do an leXX_to_cpup here in order to be
* ready for the byteswap that occurs with writel
*/
rar_low = le32_to_cpup((__le32 *)(addr));
rar_high = le16_to_cpup((__le16 *)(addr + 4));
/* Indicate to hardware the Address is Valid. */
rar_high |= E1000_RAH_AV;
if (hw->mac.type == e1000_82575)
rar_high |= E1000_RAH_POOL_1 * qsel;
else
rar_high |= E1000_RAH_POOL_1 << qsel;
wr32(E1000_RAL(index), rar_low);
wrfl();
wr32(E1000_RAH(index), rar_high);
wrfl();
}
static int igb_set_vf_mac(struct igb_adapter *adapter,
int vf, unsigned char *mac_addr)
{
struct e1000_hw *hw = &adapter->hw;
/* VF MAC addresses start at end of receive addresses and moves
* towards the first, as a result a collision should not be possible
*/
int rar_entry = hw->mac.rar_entry_count - (vf + 1);
memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
return 0;
}
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
return -EINVAL;
adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
dev_info(&adapter->pdev->dev,
"Reload the VF driver to make this change effective.");
if (test_bit(__IGB_DOWN, &adapter->state)) {
dev_warn(&adapter->pdev->dev,
"The VF MAC address has been set, but the PF device is not up.\n");
dev_warn(&adapter->pdev->dev,
"Bring the PF device up before attempting to use the VF device.\n");
}
return igb_set_vf_mac(adapter, vf, mac);
}
static int igb_link_mbps(int internal_link_speed)
{
switch (internal_link_speed) {
case SPEED_100:
return 100;
case SPEED_1000:
return 1000;
default:
return 0;
}
}
static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
int link_speed)
{
int rf_dec, rf_int;
u32 bcnrc_val;
if (tx_rate != 0) {
/* Calculate the rate factor values to set */
rf_int = link_speed / tx_rate;
rf_dec = (link_speed - (rf_int * tx_rate));
rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
tx_rate;
bcnrc_val = E1000_RTTBCNRC_RS_ENA;
bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
E1000_RTTBCNRC_RF_INT_MASK);
bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
} else {
bcnrc_val = 0;
}
wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
* register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
*/
wr32(E1000_RTTBCNRM, 0x14);
wr32(E1000_RTTBCNRC, bcnrc_val);
}
static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
int actual_link_speed, i;
bool reset_rate = false;
/* VF TX rate limit was not set or not supported */
if ((adapter->vf_rate_link_speed == 0) ||
(adapter->hw.mac.type != e1000_82576))
return;
actual_link_speed = igb_link_mbps(adapter->link_speed);
if (actual_link_speed != adapter->vf_rate_link_speed) {
reset_rate = true;
adapter->vf_rate_link_speed = 0;
dev_info(&adapter->pdev->dev,
"Link speed has been changed. VF Transmit rate is disabled\n");
}
for (i = 0; i < adapter->vfs_allocated_count; i++) {
if (reset_rate)
adapter->vf_data[i].tx_rate = 0;
igb_set_vf_rate_limit(&adapter->hw, i,
adapter->vf_data[i].tx_rate,
actual_link_speed);
}
}
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
int min_tx_rate, int max_tx_rate)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int actual_link_speed;
if (hw->mac.type != e1000_82576)
return -EOPNOTSUPP;
if (min_tx_rate)
return -EINVAL;
actual_link_speed = igb_link_mbps(adapter->link_speed);
if ((vf >= adapter->vfs_allocated_count) ||
(!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
(max_tx_rate < 0) ||
(max_tx_rate > actual_link_speed))
return -EINVAL;
adapter->vf_rate_link_speed = actual_link_speed;
adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
return 0;
}
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
bool setting)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 reg_val, reg_offset;
if (!adapter->vfs_allocated_count)
return -EOPNOTSUPP;
if (vf >= adapter->vfs_allocated_count)
return -EINVAL;
reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
reg_val = rd32(reg_offset);
if (setting)
reg_val |= ((1 << vf) |
(1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
else
reg_val &= ~((1 << vf) |
(1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
wr32(reg_offset, reg_val);
adapter->vf_data[vf].spoofchk_enabled = setting;
return 0;
}
static int igb_ndo_get_vf_config(struct net_device *netdev,
int vf, struct ifla_vf_info *ivi)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (vf >= adapter->vfs_allocated_count)
return -EINVAL;
ivi->vf = vf;
memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
ivi->min_tx_rate = 0;
ivi->vlan = adapter->vf_data[vf].pf_vlan;
ivi->qos = adapter->vf_data[vf].pf_qos;
ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
return 0;
}
static void igb_vmm_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 reg;
switch (hw->mac.type) {
case e1000_82575:
case e1000_i210:
case e1000_i211:
case e1000_i354:
default:
/* replication is not supported for 82575 */
return;
case e1000_82576:
/* notify HW that the MAC is adding vlan tags */
reg = rd32(E1000_DTXCTL);
reg |= E1000_DTXCTL_VLAN_ADDED;
wr32(E1000_DTXCTL, reg);
/* Fall through */
case e1000_82580:
/* enable replication vlan tag stripping */
reg = rd32(E1000_RPLOLR);
reg |= E1000_RPLOLR_STRVLAN;
wr32(E1000_RPLOLR, reg);
/* Fall through */
case e1000_i350:
/* none of the above registers are supported by i350 */
break;
}
if (adapter->vfs_allocated_count) {
igb_vmdq_set_loopback_pf(hw, true);
igb_vmdq_set_replication_pf(hw, true);
igb_vmdq_set_anti_spoofing_pf(hw, true,
adapter->vfs_allocated_count);
} else {
igb_vmdq_set_loopback_pf(hw, false);
igb_vmdq_set_replication_pf(hw, false);
}
}
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
struct e1000_hw *hw = &adapter->hw;
u32 dmac_thr;
u16 hwm;
if (hw->mac.type > e1000_82580) {
if (adapter->flags & IGB_FLAG_DMAC) {
u32 reg;
/* force threshold to 0. */
wr32(E1000_DMCTXTH, 0);
/* DMA Coalescing high water mark needs to be greater
* than the Rx threshold. Set hwm to PBA - max frame
* size in 16B units, capping it at PBA - 6KB.
*/
hwm = 64 * (pba - 6);
reg = rd32(E1000_FCRTC);
reg &= ~E1000_FCRTC_RTH_COAL_MASK;
reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
& E1000_FCRTC_RTH_COAL_MASK);
wr32(E1000_FCRTC, reg);
/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
* frame size, capping it at PBA - 10KB.
*/
dmac_thr = pba - 10;
reg = rd32(E1000_DMACR);
reg &= ~E1000_DMACR_DMACTHR_MASK;
reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
& E1000_DMACR_DMACTHR_MASK);
/* transition to L0x or L1 if available..*/
reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
/* watchdog timer= +-1000 usec in 32usec intervals */
reg |= (1000 >> 5);
/* Disable BMC-to-OS Watchdog Enable */
if (hw->mac.type != e1000_i354)
reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
wr32(E1000_DMACR, reg);
/* no lower threshold to disable
* coalescing(smart fifb)-UTRESH=0
*/
wr32(E1000_DMCRTRH, 0);
reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
wr32(E1000_DMCTLX, reg);
/* free space in tx packet buffer to wake from
* DMA coal
*/
wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
(IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
/* make low power state decision controlled
* by DMA coal
*/
reg = rd32(E1000_PCIEMISC);
reg &= ~E1000_PCIEMISC_LX_DECISION;
wr32(E1000_PCIEMISC, reg);
} /* endif adapter->dmac is not disabled */
} else if (hw->mac.type == e1000_82580) {
u32 reg = rd32(E1000_PCIEMISC);
wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
wr32(E1000_DMACR, 0);
}
}
/**
* igb_read_i2c_byte - Reads 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to read
* @dev_addr: device address
* @data: value read
*
* Performs byte read operation over I2C interface at
* a specified device address.
**/
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
u8 dev_addr, u8 *data)
{
struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
struct i2c_client *this_client = adapter->i2c_client;
s32 status;
u16 swfw_mask = 0;
if (!this_client)
return E1000_ERR_I2C;
swfw_mask = E1000_SWFW_PHY0_SM;
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
return E1000_ERR_SWFW_SYNC;
status = i2c_smbus_read_byte_data(this_client, byte_offset);
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
if (status < 0)
return E1000_ERR_I2C;
else {
*data = status;
return 0;
}
}
/**
* igb_write_i2c_byte - Writes 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to write
* @dev_addr: device address
* @data: value to write
*
* Performs byte write operation over I2C interface at
* a specified device address.
**/
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
u8 dev_addr, u8 data)
{
struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
struct i2c_client *this_client = adapter->i2c_client;
s32 status;
u16 swfw_mask = E1000_SWFW_PHY0_SM;
if (!this_client)
return E1000_ERR_I2C;
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
return E1000_ERR_SWFW_SYNC;
status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
if (status)
return E1000_ERR_I2C;
else
return 0;
}
int igb_reinit_queues(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
int err = 0;
if (netif_running(netdev))
igb_close(netdev);
igb_reset_interrupt_capability(adapter);
if (igb_init_interrupt_scheme(adapter, true)) {
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
if (netif_running(netdev))
err = igb_open(netdev);
return err;
}
/* igb_main.c */