linux/drivers/net/wireless/iwlwifi/mvm/rs.c
Eyal Shapira 75d3e2d693 iwlwifi: mvm: rs: fix handling of column switch error
If we can't switch to a column because no rates are supported
in that column this led to a state where the search cycle
got stuck and never ended. This in turn also led to aggregation
not being turned on. Fix this by marking a column as
visited if we can't switch to it.

Reported-and-tested-by: Karl Beldan <karl.beldan@gmail.com>
Signed-off-by: Eyal Shapira <eyal@wizery.com>
Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
2014-01-13 18:42:54 +02:00

2872 lines
82 KiB
C

/******************************************************************************
*
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <net/mac80211.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include "rs.h"
#include "fw-api.h"
#include "sta.h"
#include "iwl-op-mode.h"
#include "mvm.h"
#define RS_NAME "iwl-mvm-rs"
#define NUM_TRY_BEFORE_ANT_TOGGLE 1
#define RS_LEGACY_RETRIES_PER_RATE 1
#define RS_HT_VHT_RETRIES_PER_RATE 2
#define RS_HT_VHT_RETRIES_PER_RATE_TW 1
#define RS_INITIAL_MIMO_NUM_RATES 3
#define RS_INITIAL_SISO_NUM_RATES 3
#define RS_INITIAL_LEGACY_NUM_RATES LINK_QUAL_MAX_RETRY_NUM
#define RS_SECONDARY_LEGACY_NUM_RATES LINK_QUAL_MAX_RETRY_NUM
#define RS_SECONDARY_SISO_NUM_RATES 3
#define RS_SECONDARY_SISO_RETRIES 1
#define IWL_RATE_MAX_WINDOW 62 /* # tx in history window */
#define IWL_RATE_MIN_FAILURE_TH 3 /* min failures to calc tpt */
#define IWL_RATE_MIN_SUCCESS_TH 8 /* min successes to calc tpt */
/* max allowed rate miss before sync LQ cmd */
#define IWL_MISSED_RATE_MAX 15
#define RS_STAY_IN_COLUMN_TIMEOUT (5*HZ)
static u8 rs_ht_to_legacy[] = {
[IWL_RATE_MCS_0_INDEX] = IWL_RATE_6M_INDEX,
[IWL_RATE_MCS_1_INDEX] = IWL_RATE_9M_INDEX,
[IWL_RATE_MCS_2_INDEX] = IWL_RATE_12M_INDEX,
[IWL_RATE_MCS_3_INDEX] = IWL_RATE_18M_INDEX,
[IWL_RATE_MCS_4_INDEX] = IWL_RATE_24M_INDEX,
[IWL_RATE_MCS_5_INDEX] = IWL_RATE_36M_INDEX,
[IWL_RATE_MCS_6_INDEX] = IWL_RATE_48M_INDEX,
[IWL_RATE_MCS_7_INDEX] = IWL_RATE_54M_INDEX,
[IWL_RATE_MCS_8_INDEX] = IWL_RATE_54M_INDEX,
[IWL_RATE_MCS_9_INDEX] = IWL_RATE_54M_INDEX,
};
static const u8 ant_toggle_lookup[] = {
[ANT_NONE] = ANT_NONE,
[ANT_A] = ANT_B,
[ANT_B] = ANT_C,
[ANT_AB] = ANT_BC,
[ANT_C] = ANT_A,
[ANT_AC] = ANT_AB,
[ANT_BC] = ANT_AC,
[ANT_ABC] = ANT_ABC,
};
#define IWL_DECLARE_RATE_INFO(r, s, rp, rn) \
[IWL_RATE_##r##M_INDEX] = { IWL_RATE_##r##M_PLCP, \
IWL_RATE_HT_SISO_MCS_##s##_PLCP, \
IWL_RATE_HT_MIMO2_MCS_##s##_PLCP, \
IWL_RATE_VHT_SISO_MCS_##s##_PLCP, \
IWL_RATE_VHT_MIMO2_MCS_##s##_PLCP,\
IWL_RATE_##rp##M_INDEX, \
IWL_RATE_##rn##M_INDEX }
#define IWL_DECLARE_MCS_RATE(s) \
[IWL_RATE_MCS_##s##_INDEX] = { IWL_RATE_INVM_PLCP, \
IWL_RATE_HT_SISO_MCS_##s##_PLCP, \
IWL_RATE_HT_MIMO2_MCS_##s##_PLCP, \
IWL_RATE_VHT_SISO_MCS_##s##_PLCP, \
IWL_RATE_VHT_MIMO2_MCS_##s##_PLCP, \
IWL_RATE_INVM_INDEX, \
IWL_RATE_INVM_INDEX }
/*
* Parameter order:
* rate, ht rate, prev rate, next rate
*
* If there isn't a valid next or previous rate then INV is used which
* maps to IWL_RATE_INVALID
*
*/
static const struct iwl_rs_rate_info iwl_rates[IWL_RATE_COUNT] = {
IWL_DECLARE_RATE_INFO(1, INV, INV, 2), /* 1mbps */
IWL_DECLARE_RATE_INFO(2, INV, 1, 5), /* 2mbps */
IWL_DECLARE_RATE_INFO(5, INV, 2, 11), /*5.5mbps */
IWL_DECLARE_RATE_INFO(11, INV, 9, 12), /* 11mbps */
IWL_DECLARE_RATE_INFO(6, 0, 5, 11), /* 6mbps ; MCS 0 */
IWL_DECLARE_RATE_INFO(9, INV, 6, 11), /* 9mbps */
IWL_DECLARE_RATE_INFO(12, 1, 11, 18), /* 12mbps ; MCS 1 */
IWL_DECLARE_RATE_INFO(18, 2, 12, 24), /* 18mbps ; MCS 2 */
IWL_DECLARE_RATE_INFO(24, 3, 18, 36), /* 24mbps ; MCS 3 */
IWL_DECLARE_RATE_INFO(36, 4, 24, 48), /* 36mbps ; MCS 4 */
IWL_DECLARE_RATE_INFO(48, 5, 36, 54), /* 48mbps ; MCS 5 */
IWL_DECLARE_RATE_INFO(54, 6, 48, INV), /* 54mbps ; MCS 6 */
IWL_DECLARE_MCS_RATE(7), /* MCS 7 */
IWL_DECLARE_MCS_RATE(8), /* MCS 8 */
IWL_DECLARE_MCS_RATE(9), /* MCS 9 */
};
enum rs_action {
RS_ACTION_STAY = 0,
RS_ACTION_DOWNSCALE = -1,
RS_ACTION_UPSCALE = 1,
};
enum rs_column_mode {
RS_INVALID = 0,
RS_LEGACY,
RS_SISO,
RS_MIMO2,
};
#define MAX_NEXT_COLUMNS 5
#define MAX_COLUMN_CHECKS 3
typedef bool (*allow_column_func_t) (struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_scale_tbl_info *tbl);
struct rs_tx_column {
enum rs_column_mode mode;
u8 ant;
bool sgi;
enum rs_column next_columns[MAX_NEXT_COLUMNS];
allow_column_func_t checks[MAX_COLUMN_CHECKS];
};
static bool rs_mimo_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
struct iwl_scale_tbl_info *tbl)
{
if (!sta->ht_cap.ht_supported)
return false;
if (sta->smps_mode == IEEE80211_SMPS_STATIC)
return false;
if (num_of_ant(iwl_fw_valid_tx_ant(mvm->fw)) < 2)
return false;
if (!iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta))
return false;
return true;
}
static bool rs_siso_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
struct iwl_scale_tbl_info *tbl)
{
if (!sta->ht_cap.ht_supported)
return false;
return true;
}
static bool rs_sgi_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
struct iwl_scale_tbl_info *tbl)
{
struct rs_rate *rate = &tbl->rate;
struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
if (is_ht20(rate) && (ht_cap->cap &
IEEE80211_HT_CAP_SGI_20))
return true;
if (is_ht40(rate) && (ht_cap->cap &
IEEE80211_HT_CAP_SGI_40))
return true;
if (is_ht80(rate) && (vht_cap->cap &
IEEE80211_VHT_CAP_SHORT_GI_80))
return true;
return false;
}
static const struct rs_tx_column rs_tx_columns[] = {
[RS_COLUMN_LEGACY_ANT_A] = {
.mode = RS_LEGACY,
.ant = ANT_A,
.next_columns = {
RS_COLUMN_LEGACY_ANT_B,
RS_COLUMN_SISO_ANT_A,
RS_COLUMN_MIMO2,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
},
[RS_COLUMN_LEGACY_ANT_B] = {
.mode = RS_LEGACY,
.ant = ANT_B,
.next_columns = {
RS_COLUMN_LEGACY_ANT_A,
RS_COLUMN_SISO_ANT_B,
RS_COLUMN_MIMO2,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
},
[RS_COLUMN_SISO_ANT_A] = {
.mode = RS_SISO,
.ant = ANT_A,
.next_columns = {
RS_COLUMN_SISO_ANT_B,
RS_COLUMN_MIMO2,
RS_COLUMN_SISO_ANT_A_SGI,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_siso_allow,
},
},
[RS_COLUMN_SISO_ANT_B] = {
.mode = RS_SISO,
.ant = ANT_B,
.next_columns = {
RS_COLUMN_SISO_ANT_A,
RS_COLUMN_MIMO2,
RS_COLUMN_SISO_ANT_B_SGI,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_siso_allow,
},
},
[RS_COLUMN_SISO_ANT_A_SGI] = {
.mode = RS_SISO,
.ant = ANT_A,
.sgi = true,
.next_columns = {
RS_COLUMN_SISO_ANT_B_SGI,
RS_COLUMN_MIMO2_SGI,
RS_COLUMN_SISO_ANT_A,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_siso_allow,
rs_sgi_allow,
},
},
[RS_COLUMN_SISO_ANT_B_SGI] = {
.mode = RS_SISO,
.ant = ANT_B,
.sgi = true,
.next_columns = {
RS_COLUMN_SISO_ANT_A_SGI,
RS_COLUMN_MIMO2_SGI,
RS_COLUMN_SISO_ANT_B,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_siso_allow,
rs_sgi_allow,
},
},
[RS_COLUMN_MIMO2] = {
.mode = RS_MIMO2,
.ant = ANT_AB,
.next_columns = {
RS_COLUMN_SISO_ANT_A,
RS_COLUMN_MIMO2_SGI,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_mimo_allow,
},
},
[RS_COLUMN_MIMO2_SGI] = {
.mode = RS_MIMO2,
.ant = ANT_AB,
.sgi = true,
.next_columns = {
RS_COLUMN_SISO_ANT_A_SGI,
RS_COLUMN_MIMO2,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_mimo_allow,
rs_sgi_allow,
},
},
};
static inline u8 rs_extract_rate(u32 rate_n_flags)
{
/* also works for HT because bits 7:6 are zero there */
return (u8)(rate_n_flags & RATE_LEGACY_RATE_MSK);
}
static int iwl_hwrate_to_plcp_idx(u32 rate_n_flags)
{
int idx = 0;
if (rate_n_flags & RATE_MCS_HT_MSK) {
idx = rate_n_flags & RATE_HT_MCS_RATE_CODE_MSK;
idx += IWL_RATE_MCS_0_INDEX;
/* skip 9M not supported in HT*/
if (idx >= IWL_RATE_9M_INDEX)
idx += 1;
if ((idx >= IWL_FIRST_HT_RATE) && (idx <= IWL_LAST_HT_RATE))
return idx;
} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
idx += IWL_RATE_MCS_0_INDEX;
/* skip 9M not supported in VHT*/
if (idx >= IWL_RATE_9M_INDEX)
idx++;
if ((idx >= IWL_FIRST_VHT_RATE) && (idx <= IWL_LAST_VHT_RATE))
return idx;
} else {
/* legacy rate format, search for match in table */
u8 legacy_rate = rs_extract_rate(rate_n_flags);
for (idx = 0; idx < ARRAY_SIZE(iwl_rates); idx++)
if (iwl_rates[idx].plcp == legacy_rate)
return idx;
}
return -1;
}
static void rs_rate_scale_perform(struct iwl_mvm *mvm,
struct sk_buff *skb,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta);
static void rs_fill_lq_cmd(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
const struct rs_rate *initial_rate);
static void rs_stay_in_table(struct iwl_lq_sta *lq_sta, bool force_search);
/**
* The following tables contain the expected throughput metrics for all rates
*
* 1, 2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, 54, 60 MBits
*
* where invalid entries are zeros.
*
* CCK rates are only valid in legacy table and will only be used in G
* (2.4 GHz) band.
*/
static s32 expected_tpt_legacy[IWL_RATE_COUNT] = {
7, 13, 35, 58, 40, 57, 72, 98, 121, 154, 177, 186, 0, 0, 0
};
/* Expected TpT tables. 4 indexes:
* 0 - NGI, 1 - SGI, 2 - AGG+NGI, 3 - AGG+SGI
*/
static s32 expected_tpt_siso_20MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 42, 0, 76, 102, 124, 159, 183, 193, 202, 216, 0},
{0, 0, 0, 0, 46, 0, 82, 110, 132, 168, 192, 202, 210, 225, 0},
{0, 0, 0, 0, 49, 0, 97, 145, 192, 285, 375, 420, 464, 551, 0},
{0, 0, 0, 0, 54, 0, 108, 160, 213, 315, 415, 465, 513, 608, 0},
};
static s32 expected_tpt_siso_40MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 77, 0, 127, 160, 184, 220, 242, 250, 257, 269, 275},
{0, 0, 0, 0, 83, 0, 135, 169, 193, 229, 250, 257, 264, 275, 280},
{0, 0, 0, 0, 101, 0, 199, 295, 389, 570, 744, 828, 911, 1070, 1173},
{0, 0, 0, 0, 112, 0, 220, 326, 429, 629, 819, 912, 1000, 1173, 1284},
};
static s32 expected_tpt_siso_80MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 130, 0, 191, 223, 244, 273, 288, 294, 298, 305, 308},
{0, 0, 0, 0, 138, 0, 200, 231, 251, 279, 293, 298, 302, 308, 312},
{0, 0, 0, 0, 217, 0, 429, 634, 834, 1220, 1585, 1760, 1931, 2258, 2466},
{0, 0, 0, 0, 241, 0, 475, 701, 921, 1343, 1741, 1931, 2117, 2468, 2691},
};
static s32 expected_tpt_mimo2_20MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 74, 0, 123, 155, 179, 213, 235, 243, 250, 261, 0},
{0, 0, 0, 0, 81, 0, 131, 164, 187, 221, 242, 250, 256, 267, 0},
{0, 0, 0, 0, 98, 0, 193, 286, 375, 550, 718, 799, 878, 1032, 0},
{0, 0, 0, 0, 109, 0, 214, 316, 414, 607, 790, 879, 965, 1132, 0},
};
static s32 expected_tpt_mimo2_40MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 123, 0, 182, 214, 235, 264, 279, 285, 289, 296, 300},
{0, 0, 0, 0, 131, 0, 191, 222, 242, 270, 284, 289, 293, 300, 303},
{0, 0, 0, 0, 200, 0, 390, 571, 741, 1067, 1365, 1505, 1640, 1894, 2053},
{0, 0, 0, 0, 221, 0, 430, 630, 816, 1169, 1490, 1641, 1784, 2053, 2221},
};
static s32 expected_tpt_mimo2_80MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 182, 0, 240, 264, 278, 299, 308, 311, 313, 317, 319},
{0, 0, 0, 0, 190, 0, 247, 269, 282, 302, 310, 313, 315, 319, 320},
{0, 0, 0, 0, 428, 0, 833, 1215, 1577, 2254, 2863, 3147, 3418, 3913, 4219},
{0, 0, 0, 0, 474, 0, 920, 1338, 1732, 2464, 3116, 3418, 3705, 4225, 4545},
};
/* mbps, mcs */
static const struct iwl_rate_mcs_info iwl_rate_mcs[IWL_RATE_COUNT] = {
{ "1", "BPSK DSSS"},
{ "2", "QPSK DSSS"},
{"5.5", "BPSK CCK"},
{ "11", "QPSK CCK"},
{ "6", "BPSK 1/2"},
{ "9", "BPSK 1/2"},
{ "12", "QPSK 1/2"},
{ "18", "QPSK 3/4"},
{ "24", "16QAM 1/2"},
{ "36", "16QAM 3/4"},
{ "48", "64QAM 2/3"},
{ "54", "64QAM 3/4"},
{ "60", "64QAM 5/6"},
};
#define MCS_INDEX_PER_STREAM (8)
static const char *rs_pretty_ant(u8 ant)
{
static const char * const ant_name[] = {
[ANT_NONE] = "None",
[ANT_A] = "A",
[ANT_B] = "B",
[ANT_AB] = "AB",
[ANT_C] = "C",
[ANT_AC] = "AC",
[ANT_BC] = "BC",
[ANT_ABC] = "ABC",
};
if (ant > ANT_ABC)
return "UNKNOWN";
return ant_name[ant];
}
static const char *rs_pretty_lq_type(enum iwl_table_type type)
{
static const char * const lq_types[] = {
[LQ_NONE] = "NONE",
[LQ_LEGACY_A] = "LEGACY_A",
[LQ_LEGACY_G] = "LEGACY_G",
[LQ_HT_SISO] = "HT SISO",
[LQ_HT_MIMO2] = "HT MIMO",
[LQ_VHT_SISO] = "VHT SISO",
[LQ_VHT_MIMO2] = "VHT MIMO",
};
if (type < LQ_NONE || type >= LQ_MAX)
return "UNKNOWN";
return lq_types[type];
}
static inline void rs_dump_rate(struct iwl_mvm *mvm, const struct rs_rate *rate,
const char *prefix)
{
IWL_DEBUG_RATE(mvm, "%s: (%s: %d) ANT: %s BW: %d SGI: %d\n",
prefix, rs_pretty_lq_type(rate->type),
rate->index, rs_pretty_ant(rate->ant),
rate->bw, rate->sgi);
}
static void rs_rate_scale_clear_window(struct iwl_rate_scale_data *window)
{
window->data = 0;
window->success_counter = 0;
window->success_ratio = IWL_INVALID_VALUE;
window->counter = 0;
window->average_tpt = IWL_INVALID_VALUE;
}
static inline u8 rs_is_valid_ant(u8 valid_antenna, u8 ant_type)
{
return (ant_type & valid_antenna) == ant_type;
}
static int rs_tl_turn_on_agg_for_tid(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_data, u8 tid,
struct ieee80211_sta *sta)
{
int ret = -EAGAIN;
IWL_DEBUG_HT(mvm, "Starting Tx agg: STA: %pM tid: %d\n",
sta->addr, tid);
ret = ieee80211_start_tx_ba_session(sta, tid, 5000);
if (ret == -EAGAIN) {
/*
* driver and mac80211 is out of sync
* this might be cause by reloading firmware
* stop the tx ba session here
*/
IWL_ERR(mvm, "Fail start Tx agg on tid: %d\n",
tid);
ieee80211_stop_tx_ba_session(sta, tid);
}
return ret;
}
static void rs_tl_turn_on_agg(struct iwl_mvm *mvm, u8 tid,
struct iwl_lq_sta *lq_data,
struct ieee80211_sta *sta)
{
if (tid < IWL_MAX_TID_COUNT)
rs_tl_turn_on_agg_for_tid(mvm, lq_data, tid, sta);
else
IWL_ERR(mvm, "tid exceeds max TID count: %d/%d\n",
tid, IWL_MAX_TID_COUNT);
}
static inline int get_num_of_ant_from_rate(u32 rate_n_flags)
{
return !!(rate_n_flags & RATE_MCS_ANT_A_MSK) +
!!(rate_n_flags & RATE_MCS_ANT_B_MSK) +
!!(rate_n_flags & RATE_MCS_ANT_C_MSK);
}
/*
* Static function to get the expected throughput from an iwl_scale_tbl_info
* that wraps a NULL pointer check
*/
static s32 get_expected_tpt(struct iwl_scale_tbl_info *tbl, int rs_index)
{
if (tbl->expected_tpt)
return tbl->expected_tpt[rs_index];
return 0;
}
/**
* rs_collect_tx_data - Update the success/failure sliding window
*
* We keep a sliding window of the last 62 packets transmitted
* at this rate. window->data contains the bitmask of successful
* packets.
*/
static int rs_collect_tx_data(struct iwl_scale_tbl_info *tbl,
int scale_index, int attempts, int successes)
{
struct iwl_rate_scale_data *window = NULL;
static const u64 mask = (((u64)1) << (IWL_RATE_MAX_WINDOW - 1));
s32 fail_count, tpt;
if (scale_index < 0 || scale_index >= IWL_RATE_COUNT)
return -EINVAL;
/* Select window for current tx bit rate */
window = &(tbl->win[scale_index]);
/* Get expected throughput */
tpt = get_expected_tpt(tbl, scale_index);
/*
* Keep track of only the latest 62 tx frame attempts in this rate's
* history window; anything older isn't really relevant any more.
* If we have filled up the sliding window, drop the oldest attempt;
* if the oldest attempt (highest bit in bitmap) shows "success",
* subtract "1" from the success counter (this is the main reason
* we keep these bitmaps!).
*/
while (attempts > 0) {
if (window->counter >= IWL_RATE_MAX_WINDOW) {
/* remove earliest */
window->counter = IWL_RATE_MAX_WINDOW - 1;
if (window->data & mask) {
window->data &= ~mask;
window->success_counter--;
}
}
/* Increment frames-attempted counter */
window->counter++;
/* Shift bitmap by one frame to throw away oldest history */
window->data <<= 1;
/* Mark the most recent #successes attempts as successful */
if (successes > 0) {
window->success_counter++;
window->data |= 0x1;
successes--;
}
attempts--;
}
/* Calculate current success ratio, avoid divide-by-0! */
if (window->counter > 0)
window->success_ratio = 128 * (100 * window->success_counter)
/ window->counter;
else
window->success_ratio = IWL_INVALID_VALUE;
fail_count = window->counter - window->success_counter;
/* Calculate average throughput, if we have enough history. */
if ((fail_count >= IWL_RATE_MIN_FAILURE_TH) ||
(window->success_counter >= IWL_RATE_MIN_SUCCESS_TH))
window->average_tpt = (window->success_ratio * tpt + 64) / 128;
else
window->average_tpt = IWL_INVALID_VALUE;
return 0;
}
/* Convert rs_rate object into ucode rate bitmask */
static u32 ucode_rate_from_rs_rate(struct iwl_mvm *mvm,
struct rs_rate *rate)
{
u32 ucode_rate = 0;
int index = rate->index;
ucode_rate |= ((rate->ant << RATE_MCS_ANT_POS) &
RATE_MCS_ANT_ABC_MSK);
if (is_legacy(rate)) {
ucode_rate |= iwl_rates[index].plcp;
if (index >= IWL_FIRST_CCK_RATE && index <= IWL_LAST_CCK_RATE)
ucode_rate |= RATE_MCS_CCK_MSK;
return ucode_rate;
}
if (is_ht(rate)) {
if (index < IWL_FIRST_HT_RATE || index > IWL_LAST_HT_RATE) {
IWL_ERR(mvm, "Invalid HT rate index %d\n", index);
index = IWL_LAST_HT_RATE;
}
ucode_rate |= RATE_MCS_HT_MSK;
if (is_ht_siso(rate))
ucode_rate |= iwl_rates[index].plcp_ht_siso;
else if (is_ht_mimo2(rate))
ucode_rate |= iwl_rates[index].plcp_ht_mimo2;
else
WARN_ON_ONCE(1);
} else if (is_vht(rate)) {
if (index < IWL_FIRST_VHT_RATE || index > IWL_LAST_VHT_RATE) {
IWL_ERR(mvm, "Invalid VHT rate index %d\n", index);
index = IWL_LAST_VHT_RATE;
}
ucode_rate |= RATE_MCS_VHT_MSK;
if (is_vht_siso(rate))
ucode_rate |= iwl_rates[index].plcp_vht_siso;
else if (is_vht_mimo2(rate))
ucode_rate |= iwl_rates[index].plcp_vht_mimo2;
else
WARN_ON_ONCE(1);
} else {
IWL_ERR(mvm, "Invalid rate->type %d\n", rate->type);
}
ucode_rate |= rate->bw;
if (rate->sgi)
ucode_rate |= RATE_MCS_SGI_MSK;
return ucode_rate;
}
/* Convert a ucode rate into an rs_rate object */
static int rs_rate_from_ucode_rate(const u32 ucode_rate,
enum ieee80211_band band,
struct rs_rate *rate)
{
u32 ant_msk = ucode_rate & RATE_MCS_ANT_ABC_MSK;
u8 num_of_ant = get_num_of_ant_from_rate(ucode_rate);
u8 nss;
memset(rate, 0, sizeof(*rate));
rate->index = iwl_hwrate_to_plcp_idx(ucode_rate);
if (rate->index == IWL_RATE_INVALID) {
rate->index = -1;
return -EINVAL;
}
rate->ant = (ant_msk >> RATE_MCS_ANT_POS);
/* Legacy */
if (!(ucode_rate & RATE_MCS_HT_MSK) &&
!(ucode_rate & RATE_MCS_VHT_MSK)) {
if (num_of_ant == 1) {
if (band == IEEE80211_BAND_5GHZ)
rate->type = LQ_LEGACY_A;
else
rate->type = LQ_LEGACY_G;
}
return 0;
}
/* HT or VHT */
if (ucode_rate & RATE_MCS_SGI_MSK)
rate->sgi = true;
rate->bw = ucode_rate & RATE_MCS_CHAN_WIDTH_MSK;
if (ucode_rate & RATE_MCS_HT_MSK) {
nss = ((ucode_rate & RATE_HT_MCS_NSS_MSK) >>
RATE_HT_MCS_NSS_POS) + 1;
if (nss == 1) {
rate->type = LQ_HT_SISO;
WARN_ON_ONCE(num_of_ant != 1);
} else if (nss == 2) {
rate->type = LQ_HT_MIMO2;
WARN_ON_ONCE(num_of_ant != 2);
} else {
WARN_ON_ONCE(1);
}
} else if (ucode_rate & RATE_MCS_VHT_MSK) {
nss = ((ucode_rate & RATE_VHT_MCS_NSS_MSK) >>
RATE_VHT_MCS_NSS_POS) + 1;
if (nss == 1) {
rate->type = LQ_VHT_SISO;
WARN_ON_ONCE(num_of_ant != 1);
} else if (nss == 2) {
rate->type = LQ_VHT_MIMO2;
WARN_ON_ONCE(num_of_ant != 2);
} else {
WARN_ON_ONCE(1);
}
}
WARN_ON_ONCE(rate->bw == RATE_MCS_CHAN_WIDTH_160);
WARN_ON_ONCE(rate->bw == RATE_MCS_CHAN_WIDTH_80 &&
!is_vht(rate));
return 0;
}
/* switch to another antenna/antennas and return 1 */
/* if no other valid antenna found, return 0 */
static int rs_toggle_antenna(u32 valid_ant, struct rs_rate *rate)
{
u8 new_ant_type;
if (!rate->ant || rate->ant > ANT_ABC)
return 0;
if (!rs_is_valid_ant(valid_ant, rate->ant))
return 0;
new_ant_type = ant_toggle_lookup[rate->ant];
while ((new_ant_type != rate->ant) &&
!rs_is_valid_ant(valid_ant, new_ant_type))
new_ant_type = ant_toggle_lookup[new_ant_type];
if (new_ant_type == rate->ant)
return 0;
rate->ant = new_ant_type;
return 1;
}
static u16 rs_get_supported_rates(struct iwl_lq_sta *lq_sta,
struct rs_rate *rate)
{
if (is_legacy(rate))
return lq_sta->active_legacy_rate;
else if (is_siso(rate))
return lq_sta->active_siso_rate;
else if (is_mimo2(rate))
return lq_sta->active_mimo2_rate;
WARN_ON_ONCE(1);
return 0;
}
static u16 rs_get_adjacent_rate(struct iwl_mvm *mvm, u8 index, u16 rate_mask,
int rate_type)
{
u8 high = IWL_RATE_INVALID;
u8 low = IWL_RATE_INVALID;
/* 802.11A or ht walks to the next literal adjacent rate in
* the rate table */
if (is_type_a_band(rate_type) || !is_type_legacy(rate_type)) {
int i;
u32 mask;
/* Find the previous rate that is in the rate mask */
i = index - 1;
for (mask = (1 << i); i >= 0; i--, mask >>= 1) {
if (rate_mask & mask) {
low = i;
break;
}
}
/* Find the next rate that is in the rate mask */
i = index + 1;
for (mask = (1 << i); i < IWL_RATE_COUNT; i++, mask <<= 1) {
if (rate_mask & mask) {
high = i;
break;
}
}
return (high << 8) | low;
}
low = index;
while (low != IWL_RATE_INVALID) {
low = iwl_rates[low].prev_rs;
if (low == IWL_RATE_INVALID)
break;
if (rate_mask & (1 << low))
break;
IWL_DEBUG_RATE(mvm, "Skipping masked lower rate: %d\n", low);
}
high = index;
while (high != IWL_RATE_INVALID) {
high = iwl_rates[high].next_rs;
if (high == IWL_RATE_INVALID)
break;
if (rate_mask & (1 << high))
break;
IWL_DEBUG_RATE(mvm, "Skipping masked higher rate: %d\n", high);
}
return (high << 8) | low;
}
static inline bool rs_rate_supported(struct iwl_lq_sta *lq_sta,
struct rs_rate *rate)
{
return BIT(rate->index) & rs_get_supported_rates(lq_sta, rate);
}
/* Get the next supported lower rate in the current column.
* Return true if bottom rate in the current column was reached
*/
static bool rs_get_lower_rate_in_column(struct iwl_lq_sta *lq_sta,
struct rs_rate *rate)
{
u8 low;
u16 high_low;
u16 rate_mask;
struct iwl_mvm *mvm = lq_sta->drv;
rate_mask = rs_get_supported_rates(lq_sta, rate);
high_low = rs_get_adjacent_rate(mvm, rate->index, rate_mask,
rate->type);
low = high_low & 0xff;
/* Bottom rate of column reached */
if (low == IWL_RATE_INVALID)
return true;
rate->index = low;
return false;
}
/* Get the next rate to use following a column downgrade */
static void rs_get_lower_rate_down_column(struct iwl_lq_sta *lq_sta,
struct rs_rate *rate)
{
struct iwl_mvm *mvm = lq_sta->drv;
if (is_legacy(rate)) {
/* No column to downgrade from Legacy */
return;
} else if (is_siso(rate)) {
/* Downgrade to Legacy if we were in SISO */
if (lq_sta->band == IEEE80211_BAND_5GHZ)
rate->type = LQ_LEGACY_A;
else
rate->type = LQ_LEGACY_G;
rate->bw = RATE_MCS_CHAN_WIDTH_20;
WARN_ON_ONCE(rate->index < IWL_RATE_MCS_0_INDEX &&
rate->index > IWL_RATE_MCS_9_INDEX);
rate->index = rs_ht_to_legacy[rate->index];
} else {
/* Downgrade to SISO with same MCS if in MIMO */
rate->type = is_vht_mimo2(rate) ?
LQ_VHT_SISO : LQ_HT_SISO;
}
if (num_of_ant(rate->ant) > 1)
rate->ant = first_antenna(iwl_fw_valid_tx_ant(mvm->fw));
/* Relevant in both switching to SISO or Legacy */
rate->sgi = false;
if (!rs_rate_supported(lq_sta, rate))
rs_get_lower_rate_in_column(lq_sta, rate);
}
/* Simple function to compare two rate scale table types */
static inline bool rs_rate_match(struct rs_rate *a,
struct rs_rate *b)
{
return (a->type == b->type) && (a->ant == b->ant) && (a->sgi == b->sgi);
}
static u32 rs_ch_width_from_mac_flags(enum mac80211_rate_control_flags flags)
{
if (flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
return RATE_MCS_CHAN_WIDTH_40;
else if (flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
return RATE_MCS_CHAN_WIDTH_80;
else if (flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
return RATE_MCS_CHAN_WIDTH_160;
return RATE_MCS_CHAN_WIDTH_20;
}
/*
* mac80211 sends us Tx status
*/
static void rs_tx_status(void *mvm_r, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta,
struct sk_buff *skb)
{
int legacy_success;
int retries;
int mac_index, i;
struct iwl_lq_sta *lq_sta = priv_sta;
struct iwl_lq_cmd *table;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct iwl_op_mode *op_mode = (struct iwl_op_mode *)mvm_r;
struct iwl_mvm *mvm = IWL_OP_MODE_GET_MVM(op_mode);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
enum mac80211_rate_control_flags mac_flags;
u32 ucode_rate;
struct rs_rate rate;
struct iwl_scale_tbl_info *curr_tbl, *other_tbl, *tmp_tbl;
/* Treat uninitialized rate scaling data same as non-existing. */
if (!lq_sta) {
IWL_DEBUG_RATE(mvm, "Station rate scaling not created yet.\n");
return;
} else if (!lq_sta->drv) {
IWL_DEBUG_RATE(mvm, "Rate scaling not initialized yet.\n");
return;
}
if (!ieee80211_is_data(hdr->frame_control) ||
info->flags & IEEE80211_TX_CTL_NO_ACK)
return;
/* This packet was aggregated but doesn't carry status info */
if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
!(info->flags & IEEE80211_TX_STAT_AMPDU))
return;
/*
* Ignore this Tx frame response if its initial rate doesn't match
* that of latest Link Quality command. There may be stragglers
* from a previous Link Quality command, but we're no longer interested
* in those; they're either from the "active" mode while we're trying
* to check "search" mode, or a prior "search" mode after we've moved
* to a new "search" mode (which might become the new "active" mode).
*/
table = &lq_sta->lq;
ucode_rate = le32_to_cpu(table->rs_table[0]);
rs_rate_from_ucode_rate(ucode_rate, info->band, &rate);
if (info->band == IEEE80211_BAND_5GHZ)
rate.index -= IWL_FIRST_OFDM_RATE;
mac_flags = info->status.rates[0].flags;
mac_index = info->status.rates[0].idx;
/* For HT packets, map MCS to PLCP */
if (mac_flags & IEEE80211_TX_RC_MCS) {
/* Remove # of streams */
mac_index &= RATE_HT_MCS_RATE_CODE_MSK;
if (mac_index >= (IWL_RATE_9M_INDEX - IWL_FIRST_OFDM_RATE))
mac_index++;
/*
* mac80211 HT index is always zero-indexed; we need to move
* HT OFDM rates after CCK rates in 2.4 GHz band
*/
if (info->band == IEEE80211_BAND_2GHZ)
mac_index += IWL_FIRST_OFDM_RATE;
} else if (mac_flags & IEEE80211_TX_RC_VHT_MCS) {
mac_index &= RATE_VHT_MCS_RATE_CODE_MSK;
if (mac_index >= (IWL_RATE_9M_INDEX - IWL_FIRST_OFDM_RATE))
mac_index++;
}
/* Here we actually compare this rate to the latest LQ command */
if ((mac_index < 0) ||
(rate.sgi != !!(mac_flags & IEEE80211_TX_RC_SHORT_GI)) ||
(rate.bw != rs_ch_width_from_mac_flags(mac_flags)) ||
(rate.ant != info->status.antenna) ||
(!!(ucode_rate & RATE_MCS_HT_MSK) !=
!!(mac_flags & IEEE80211_TX_RC_MCS)) ||
(!!(ucode_rate & RATE_MCS_VHT_MSK) !=
!!(mac_flags & IEEE80211_TX_RC_VHT_MCS)) ||
(!!(ucode_rate & RATE_HT_MCS_GF_MSK) !=
!!(mac_flags & IEEE80211_TX_RC_GREEN_FIELD)) ||
(rate.index != mac_index)) {
IWL_DEBUG_RATE(mvm,
"initial rate %d does not match %d (0x%x)\n",
mac_index, rate.index, ucode_rate);
/*
* Since rates mis-match, the last LQ command may have failed.
* After IWL_MISSED_RATE_MAX mis-matches, resync the uCode with
* ... driver.
*/
lq_sta->missed_rate_counter++;
if (lq_sta->missed_rate_counter > IWL_MISSED_RATE_MAX) {
lq_sta->missed_rate_counter = 0;
IWL_DEBUG_RATE(mvm,
"Too many rates mismatch. Send sync LQ. rs_state %d\n",
lq_sta->rs_state);
iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, false);
}
/* Regardless, ignore this status info for outdated rate */
return;
} else
/* Rate did match, so reset the missed_rate_counter */
lq_sta->missed_rate_counter = 0;
/* Figure out if rate scale algorithm is in active or search table */
if (rs_rate_match(&rate,
&(lq_sta->lq_info[lq_sta->active_tbl].rate))) {
curr_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
other_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]);
} else if (rs_rate_match(&rate,
&lq_sta->lq_info[1 - lq_sta->active_tbl].rate)) {
curr_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]);
other_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
} else {
IWL_DEBUG_RATE(mvm,
"Neither active nor search matches tx rate\n");
tmp_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
rs_dump_rate(mvm, &tmp_tbl->rate, "ACTIVE");
tmp_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]);
rs_dump_rate(mvm, &tmp_tbl->rate, "SEARCH");
rs_dump_rate(mvm, &rate, "ACTUAL");
/*
* no matching table found, let's by-pass the data collection
* and continue to perform rate scale to find the rate table
*/
rs_stay_in_table(lq_sta, true);
goto done;
}
/*
* Updating the frame history depends on whether packets were
* aggregated.
*
* For aggregation, all packets were transmitted at the same rate, the
* first index into rate scale table.
*/
if (info->flags & IEEE80211_TX_STAT_AMPDU) {
ucode_rate = le32_to_cpu(table->rs_table[0]);
rs_rate_from_ucode_rate(ucode_rate, info->band, &rate);
rs_collect_tx_data(curr_tbl, rate.index,
info->status.ampdu_len,
info->status.ampdu_ack_len);
/* Update success/fail counts if not searching for new mode */
if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) {
lq_sta->total_success += info->status.ampdu_ack_len;
lq_sta->total_failed += (info->status.ampdu_len -
info->status.ampdu_ack_len);
}
} else {
/*
* For legacy, update frame history with for each Tx retry.
*/
retries = info->status.rates[0].count - 1;
/* HW doesn't send more than 15 retries */
retries = min(retries, 15);
/* The last transmission may have been successful */
legacy_success = !!(info->flags & IEEE80211_TX_STAT_ACK);
/* Collect data for each rate used during failed TX attempts */
for (i = 0; i <= retries; ++i) {
ucode_rate = le32_to_cpu(table->rs_table[i]);
rs_rate_from_ucode_rate(ucode_rate, info->band, &rate);
/*
* Only collect stats if retried rate is in the same RS
* table as active/search.
*/
if (rs_rate_match(&rate, &curr_tbl->rate))
tmp_tbl = curr_tbl;
else if (rs_rate_match(&rate, &other_tbl->rate))
tmp_tbl = other_tbl;
else
continue;
rs_collect_tx_data(tmp_tbl, rate.index, 1,
i < retries ? 0 : legacy_success);
}
/* Update success/fail counts if not searching for new mode */
if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) {
lq_sta->total_success += legacy_success;
lq_sta->total_failed += retries + (1 - legacy_success);
}
}
/* The last TX rate is cached in lq_sta; it's set in if/else above */
lq_sta->last_rate_n_flags = ucode_rate;
done:
/* See if there's a better rate or modulation mode to try. */
if (sta && sta->supp_rates[sband->band])
rs_rate_scale_perform(mvm, skb, sta, lq_sta);
}
/*
* Begin a period of staying with a selected modulation mode.
* Set "stay_in_tbl" flag to prevent any mode switches.
* Set frame tx success limits according to legacy vs. high-throughput,
* and reset overall (spanning all rates) tx success history statistics.
* These control how long we stay using same modulation mode before
* searching for a new mode.
*/
static void rs_set_stay_in_table(struct iwl_mvm *mvm, u8 is_legacy,
struct iwl_lq_sta *lq_sta)
{
IWL_DEBUG_RATE(mvm, "Moving to RS_STATE_STAY_IN_COLUMN\n");
lq_sta->rs_state = RS_STATE_STAY_IN_COLUMN;
if (is_legacy) {
lq_sta->table_count_limit = IWL_LEGACY_TABLE_COUNT;
lq_sta->max_failure_limit = IWL_LEGACY_FAILURE_LIMIT;
lq_sta->max_success_limit = IWL_LEGACY_SUCCESS_LIMIT;
} else {
lq_sta->table_count_limit = IWL_NONE_LEGACY_TABLE_COUNT;
lq_sta->max_failure_limit = IWL_NONE_LEGACY_FAILURE_LIMIT;
lq_sta->max_success_limit = IWL_NONE_LEGACY_SUCCESS_LIMIT;
}
lq_sta->table_count = 0;
lq_sta->total_failed = 0;
lq_sta->total_success = 0;
lq_sta->flush_timer = jiffies;
lq_sta->visited_columns = 0;
}
static s32 *rs_get_expected_tpt_table(struct iwl_lq_sta *lq_sta,
const struct rs_tx_column *column,
u32 bw)
{
/* Used to choose among HT tables */
s32 (*ht_tbl_pointer)[IWL_RATE_COUNT];
if (WARN_ON_ONCE(column->mode != RS_LEGACY &&
column->mode != RS_SISO &&
column->mode != RS_MIMO2))
return expected_tpt_legacy;
/* Legacy rates have only one table */
if (column->mode == RS_LEGACY)
return expected_tpt_legacy;
ht_tbl_pointer = expected_tpt_mimo2_20MHz;
/* Choose among many HT tables depending on number of streams
* (SISO/MIMO2), channel width (20/40/80), SGI, and aggregation
* status */
if (column->mode == RS_SISO) {
switch (bw) {
case RATE_MCS_CHAN_WIDTH_20:
ht_tbl_pointer = expected_tpt_siso_20MHz;
break;
case RATE_MCS_CHAN_WIDTH_40:
ht_tbl_pointer = expected_tpt_siso_40MHz;
break;
case RATE_MCS_CHAN_WIDTH_80:
ht_tbl_pointer = expected_tpt_siso_80MHz;
break;
default:
WARN_ON_ONCE(1);
}
} else if (column->mode == RS_MIMO2) {
switch (bw) {
case RATE_MCS_CHAN_WIDTH_20:
ht_tbl_pointer = expected_tpt_mimo2_20MHz;
break;
case RATE_MCS_CHAN_WIDTH_40:
ht_tbl_pointer = expected_tpt_mimo2_40MHz;
break;
case RATE_MCS_CHAN_WIDTH_80:
ht_tbl_pointer = expected_tpt_mimo2_80MHz;
break;
default:
WARN_ON_ONCE(1);
}
} else {
WARN_ON_ONCE(1);
}
if (!column->sgi && !lq_sta->is_agg) /* Normal */
return ht_tbl_pointer[0];
else if (column->sgi && !lq_sta->is_agg) /* SGI */
return ht_tbl_pointer[1];
else if (!column->sgi && lq_sta->is_agg) /* AGG */
return ht_tbl_pointer[2];
else /* AGG+SGI */
return ht_tbl_pointer[3];
}
static void rs_set_expected_tpt_table(struct iwl_lq_sta *lq_sta,
struct iwl_scale_tbl_info *tbl)
{
struct rs_rate *rate = &tbl->rate;
const struct rs_tx_column *column = &rs_tx_columns[tbl->column];
tbl->expected_tpt = rs_get_expected_tpt_table(lq_sta, column, rate->bw);
}
/*
* Find starting rate for new "search" high-throughput mode of modulation.
* Goal is to find lowest expected rate (under perfect conditions) that is
* above the current measured throughput of "active" mode, to give new mode
* a fair chance to prove itself without too many challenges.
*
* This gets called when transitioning to more aggressive modulation
* (i.e. legacy to SISO or MIMO, or SISO to MIMO), as well as less aggressive
* (i.e. MIMO to SISO). When moving to MIMO, bit rate will typically need
* to decrease to match "active" throughput. When moving from MIMO to SISO,
* bit rate will typically need to increase, but not if performance was bad.
*/
static s32 rs_get_best_rate(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
struct iwl_scale_tbl_info *tbl, /* "search" */
u16 rate_mask, s8 index)
{
/* "active" values */
struct iwl_scale_tbl_info *active_tbl =
&(lq_sta->lq_info[lq_sta->active_tbl]);
s32 active_sr = active_tbl->win[index].success_ratio;
s32 active_tpt = active_tbl->expected_tpt[index];
/* expected "search" throughput */
s32 *tpt_tbl = tbl->expected_tpt;
s32 new_rate, high, low, start_hi;
u16 high_low;
s8 rate = index;
new_rate = high = low = start_hi = IWL_RATE_INVALID;
while (1) {
high_low = rs_get_adjacent_rate(mvm, rate, rate_mask,
tbl->rate.type);
low = high_low & 0xff;
high = (high_low >> 8) & 0xff;
/*
* Lower the "search" bit rate, to give new "search" mode
* approximately the same throughput as "active" if:
*
* 1) "Active" mode has been working modestly well (but not
* great), and expected "search" throughput (under perfect
* conditions) at candidate rate is above the actual
* measured "active" throughput (but less than expected
* "active" throughput under perfect conditions).
* OR
* 2) "Active" mode has been working perfectly or very well
* and expected "search" throughput (under perfect
* conditions) at candidate rate is above expected
* "active" throughput (under perfect conditions).
*/
if ((((100 * tpt_tbl[rate]) > lq_sta->last_tpt) &&
((active_sr > RS_SR_FORCE_DECREASE) &&
(active_sr <= IWL_RATE_HIGH_TH) &&
(tpt_tbl[rate] <= active_tpt))) ||
((active_sr >= IWL_RATE_SCALE_SWITCH) &&
(tpt_tbl[rate] > active_tpt))) {
/* (2nd or later pass)
* If we've already tried to raise the rate, and are
* now trying to lower it, use the higher rate. */
if (start_hi != IWL_RATE_INVALID) {
new_rate = start_hi;
break;
}
new_rate = rate;
/* Loop again with lower rate */
if (low != IWL_RATE_INVALID)
rate = low;
/* Lower rate not available, use the original */
else
break;
/* Else try to raise the "search" rate to match "active" */
} else {
/* (2nd or later pass)
* If we've already tried to lower the rate, and are
* now trying to raise it, use the lower rate. */
if (new_rate != IWL_RATE_INVALID)
break;
/* Loop again with higher rate */
else if (high != IWL_RATE_INVALID) {
start_hi = high;
rate = high;
/* Higher rate not available, use the original */
} else {
new_rate = rate;
break;
}
}
}
return new_rate;
}
static u32 rs_bw_from_sta_bw(struct ieee80211_sta *sta)
{
if (sta->bandwidth >= IEEE80211_STA_RX_BW_80)
return RATE_MCS_CHAN_WIDTH_80;
else if (sta->bandwidth >= IEEE80211_STA_RX_BW_40)
return RATE_MCS_CHAN_WIDTH_40;
return RATE_MCS_CHAN_WIDTH_20;
}
/*
* Check whether we should continue using same modulation mode, or
* begin search for a new mode, based on:
* 1) # tx successes or failures while using this mode
* 2) # times calling this function
* 3) elapsed time in this mode (not used, for now)
*/
static void rs_stay_in_table(struct iwl_lq_sta *lq_sta, bool force_search)
{
struct iwl_scale_tbl_info *tbl;
int i;
int active_tbl;
int flush_interval_passed = 0;
struct iwl_mvm *mvm;
mvm = lq_sta->drv;
active_tbl = lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
/* If we've been disallowing search, see if we should now allow it */
if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) {
/* Elapsed time using current modulation mode */
if (lq_sta->flush_timer)
flush_interval_passed =
time_after(jiffies,
(unsigned long)(lq_sta->flush_timer +
RS_STAY_IN_COLUMN_TIMEOUT));
/*
* Check if we should allow search for new modulation mode.
* If many frames have failed or succeeded, or we've used
* this same modulation for a long time, allow search, and
* reset history stats that keep track of whether we should
* allow a new search. Also (below) reset all bitmaps and
* stats in active history.
*/
if (force_search ||
(lq_sta->total_failed > lq_sta->max_failure_limit) ||
(lq_sta->total_success > lq_sta->max_success_limit) ||
((!lq_sta->search_better_tbl) &&
(lq_sta->flush_timer) && (flush_interval_passed))) {
IWL_DEBUG_RATE(mvm,
"LQ: stay is expired %d %d %d\n",
lq_sta->total_failed,
lq_sta->total_success,
flush_interval_passed);
/* Allow search for new mode */
lq_sta->rs_state = RS_STATE_SEARCH_CYCLE_STARTED;
IWL_DEBUG_RATE(mvm,
"Moving to RS_STATE_SEARCH_CYCLE_STARTED\n");
lq_sta->total_failed = 0;
lq_sta->total_success = 0;
lq_sta->flush_timer = 0;
/* mark the current column as visited */
lq_sta->visited_columns = BIT(tbl->column);
/*
* Else if we've used this modulation mode enough repetitions
* (regardless of elapsed time or success/failure), reset
* history bitmaps and rate-specific stats for all rates in
* active table.
*/
} else {
lq_sta->table_count++;
if (lq_sta->table_count >=
lq_sta->table_count_limit) {
lq_sta->table_count = 0;
IWL_DEBUG_RATE(mvm,
"LQ: stay in table clear win\n");
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(
&(tbl->win[i]));
}
}
/* If transitioning to allow "search", reset all history
* bitmaps and stats in active table (this will become the new
* "search" table). */
if (lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_STARTED) {
IWL_DEBUG_RATE(mvm, "Clearing up window stats\n");
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&(tbl->win[i]));
}
}
}
/*
* setup rate table in uCode
*/
static void rs_update_rate_tbl(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
struct rs_rate *rate)
{
rs_fill_lq_cmd(mvm, sta, lq_sta, rate);
iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, false);
}
static u8 rs_get_tid(struct iwl_lq_sta *lq_data,
struct ieee80211_hdr *hdr)
{
u8 tid = IWL_MAX_TID_COUNT;
if (ieee80211_is_data_qos(hdr->frame_control)) {
u8 *qc = ieee80211_get_qos_ctl(hdr);
tid = qc[0] & 0xf;
}
if (unlikely(tid > IWL_MAX_TID_COUNT))
tid = IWL_MAX_TID_COUNT;
return tid;
}
static enum rs_column rs_get_next_column(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
struct ieee80211_sta *sta,
struct iwl_scale_tbl_info *tbl)
{
int i, j, n;
enum rs_column next_col_id;
const struct rs_tx_column *curr_col = &rs_tx_columns[tbl->column];
const struct rs_tx_column *next_col;
allow_column_func_t allow_func;
u8 valid_ants = iwl_fw_valid_tx_ant(mvm->fw);
s32 *expected_tpt_tbl;
s32 tpt, max_expected_tpt;
for (i = 0; i < MAX_NEXT_COLUMNS; i++) {
next_col_id = curr_col->next_columns[i];
if (next_col_id == RS_COLUMN_INVALID)
continue;
if (lq_sta->visited_columns & BIT(next_col_id)) {
IWL_DEBUG_RATE(mvm, "Skip already visited column %d\n",
next_col_id);
continue;
}
next_col = &rs_tx_columns[next_col_id];
if (!rs_is_valid_ant(valid_ants, next_col->ant)) {
IWL_DEBUG_RATE(mvm,
"Skip column %d as ANT config isn't supported by chip. valid_ants 0x%x column ant 0x%x\n",
next_col_id, valid_ants, next_col->ant);
continue;
}
for (j = 0; j < MAX_COLUMN_CHECKS; j++) {
allow_func = next_col->checks[j];
if (allow_func && !allow_func(mvm, sta, tbl))
break;
}
if (j != MAX_COLUMN_CHECKS) {
IWL_DEBUG_RATE(mvm,
"Skip column %d: not allowed (check %d failed)\n",
next_col_id, j);
continue;
}
tpt = lq_sta->last_tpt / 100;
expected_tpt_tbl = rs_get_expected_tpt_table(lq_sta, next_col,
tbl->rate.bw);
if (WARN_ON_ONCE(!expected_tpt_tbl))
continue;
max_expected_tpt = 0;
for (n = 0; n < IWL_RATE_COUNT; n++)
if (expected_tpt_tbl[n] > max_expected_tpt)
max_expected_tpt = expected_tpt_tbl[n];
if (tpt >= max_expected_tpt) {
IWL_DEBUG_RATE(mvm,
"Skip column %d: can't beat current TPT. Max expected %d current %d\n",
next_col_id, max_expected_tpt, tpt);
continue;
}
break;
}
if (i == MAX_NEXT_COLUMNS)
return RS_COLUMN_INVALID;
IWL_DEBUG_RATE(mvm, "Found potential column %d\n", next_col_id);
return next_col_id;
}
static int rs_switch_to_column(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
struct ieee80211_sta *sta,
enum rs_column col_id)
{
struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
struct iwl_scale_tbl_info *search_tbl =
&(lq_sta->lq_info[(1 - lq_sta->active_tbl)]);
struct rs_rate *rate = &search_tbl->rate;
const struct rs_tx_column *column = &rs_tx_columns[col_id];
const struct rs_tx_column *curr_column = &rs_tx_columns[tbl->column];
u32 sz = (sizeof(struct iwl_scale_tbl_info) -
(sizeof(struct iwl_rate_scale_data) * IWL_RATE_COUNT));
u16 rate_mask = 0;
u32 rate_idx = 0;
memcpy(search_tbl, tbl, sz);
rate->sgi = column->sgi;
rate->ant = column->ant;
if (column->mode == RS_LEGACY) {
if (lq_sta->band == IEEE80211_BAND_5GHZ)
rate->type = LQ_LEGACY_A;
else
rate->type = LQ_LEGACY_G;
rate_mask = lq_sta->active_legacy_rate;
} else if (column->mode == RS_SISO) {
rate->type = lq_sta->is_vht ? LQ_VHT_SISO : LQ_HT_SISO;
rate_mask = lq_sta->active_siso_rate;
} else if (column->mode == RS_MIMO2) {
rate->type = lq_sta->is_vht ? LQ_VHT_MIMO2 : LQ_HT_MIMO2;
rate_mask = lq_sta->active_mimo2_rate;
} else {
WARN_ON_ONCE("Bad column mode");
}
rate->bw = rs_bw_from_sta_bw(sta);
search_tbl->column = col_id;
rs_set_expected_tpt_table(lq_sta, search_tbl);
lq_sta->visited_columns |= BIT(col_id);
/* Get the best matching rate if we're changing modes. e.g.
* SISO->MIMO, LEGACY->SISO, MIMO->SISO
*/
if (curr_column->mode != column->mode) {
rate_idx = rs_get_best_rate(mvm, lq_sta, search_tbl,
rate_mask, rate->index);
if ((rate_idx == IWL_RATE_INVALID) ||
!(BIT(rate_idx) & rate_mask)) {
IWL_DEBUG_RATE(mvm,
"can not switch with index %d"
" rate mask %x\n",
rate_idx, rate_mask);
goto err;
}
rate->index = rate_idx;
}
IWL_DEBUG_RATE(mvm, "Switched to column %d: Index %d\n",
col_id, rate->index);
return 0;
err:
rate->type = LQ_NONE;
return -1;
}
static enum rs_action rs_get_rate_action(struct iwl_mvm *mvm,
struct iwl_scale_tbl_info *tbl,
s32 sr, int low, int high,
int current_tpt,
int low_tpt, int high_tpt)
{
enum rs_action action = RS_ACTION_STAY;
/* Too many failures, decrease rate */
if ((sr <= RS_SR_FORCE_DECREASE) || (current_tpt == 0)) {
IWL_DEBUG_RATE(mvm,
"decrease rate because of low SR\n");
action = RS_ACTION_DOWNSCALE;
/* No throughput measured yet for adjacent rates; try increase. */
} else if ((low_tpt == IWL_INVALID_VALUE) &&
(high_tpt == IWL_INVALID_VALUE)) {
if (high != IWL_RATE_INVALID && sr >= IWL_RATE_INCREASE_TH) {
IWL_DEBUG_RATE(mvm,
"Good SR and no high rate measurement. "
"Increase rate\n");
action = RS_ACTION_UPSCALE;
} else if (low != IWL_RATE_INVALID) {
IWL_DEBUG_RATE(mvm,
"Remain in current rate\n");
action = RS_ACTION_STAY;
}
}
/* Both adjacent throughputs are measured, but neither one has better
* throughput; we're using the best rate, don't change it!
*/
else if ((low_tpt != IWL_INVALID_VALUE) &&
(high_tpt != IWL_INVALID_VALUE) &&
(low_tpt < current_tpt) &&
(high_tpt < current_tpt)) {
IWL_DEBUG_RATE(mvm,
"Both high and low are worse. "
"Maintain rate\n");
action = RS_ACTION_STAY;
}
/* At least one adjacent rate's throughput is measured,
* and may have better performance.
*/
else {
/* Higher adjacent rate's throughput is measured */
if (high_tpt != IWL_INVALID_VALUE) {
/* Higher rate has better throughput */
if (high_tpt > current_tpt &&
sr >= IWL_RATE_INCREASE_TH) {
IWL_DEBUG_RATE(mvm,
"Higher rate is better and good "
"SR. Increate rate\n");
action = RS_ACTION_UPSCALE;
} else {
IWL_DEBUG_RATE(mvm,
"Higher rate isn't better OR "
"no good SR. Maintain rate\n");
action = RS_ACTION_STAY;
}
/* Lower adjacent rate's throughput is measured */
} else if (low_tpt != IWL_INVALID_VALUE) {
/* Lower rate has better throughput */
if (low_tpt > current_tpt) {
IWL_DEBUG_RATE(mvm,
"Lower rate is better. "
"Decrease rate\n");
action = RS_ACTION_DOWNSCALE;
} else if (sr >= IWL_RATE_INCREASE_TH) {
IWL_DEBUG_RATE(mvm,
"Lower rate isn't better and "
"good SR. Increase rate\n");
action = RS_ACTION_UPSCALE;
}
}
}
/* Sanity check; asked for decrease, but success rate or throughput
* has been good at old rate. Don't change it.
*/
if ((action == RS_ACTION_DOWNSCALE) && (low != IWL_RATE_INVALID) &&
((sr > IWL_RATE_HIGH_TH) ||
(current_tpt > (100 * tbl->expected_tpt[low])))) {
IWL_DEBUG_RATE(mvm,
"Sanity check failed. Maintain rate\n");
action = RS_ACTION_STAY;
}
return action;
}
/*
* Do rate scaling and search for new modulation mode.
*/
static void rs_rate_scale_perform(struct iwl_mvm *mvm,
struct sk_buff *skb,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int low = IWL_RATE_INVALID;
int high = IWL_RATE_INVALID;
int index;
int i;
struct iwl_rate_scale_data *window = NULL;
int current_tpt = IWL_INVALID_VALUE;
int low_tpt = IWL_INVALID_VALUE;
int high_tpt = IWL_INVALID_VALUE;
u32 fail_count;
enum rs_action scale_action = RS_ACTION_STAY;
u16 rate_mask;
u8 update_lq = 0;
struct iwl_scale_tbl_info *tbl, *tbl1;
u8 active_tbl = 0;
u8 done_search = 0;
u16 high_low;
s32 sr;
u8 tid = IWL_MAX_TID_COUNT;
u8 prev_agg = lq_sta->is_agg;
struct iwl_mvm_sta *sta_priv = (void *)sta->drv_priv;
struct iwl_mvm_tid_data *tid_data;
struct rs_rate *rate;
/* Send management frames and NO_ACK data using lowest rate. */
/* TODO: this could probably be improved.. */
if (!ieee80211_is_data(hdr->frame_control) ||
info->flags & IEEE80211_TX_CTL_NO_ACK)
return;
tid = rs_get_tid(lq_sta, hdr);
if ((tid != IWL_MAX_TID_COUNT) &&
(lq_sta->tx_agg_tid_en & (1 << tid))) {
tid_data = &sta_priv->tid_data[tid];
if (tid_data->state == IWL_AGG_OFF)
lq_sta->is_agg = 0;
else
lq_sta->is_agg = 1;
} else {
lq_sta->is_agg = 0;
}
/*
* Select rate-scale / modulation-mode table to work with in
* the rest of this function: "search" if searching for better
* modulation mode, or "active" if doing rate scaling within a mode.
*/
if (!lq_sta->search_better_tbl)
active_tbl = lq_sta->active_tbl;
else
active_tbl = 1 - lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
rate = &tbl->rate;
if (prev_agg != lq_sta->is_agg) {
IWL_DEBUG_RATE(mvm,
"Aggregation changed: prev %d current %d. Update expected TPT table\n",
prev_agg, lq_sta->is_agg);
rs_set_expected_tpt_table(lq_sta, tbl);
}
/* current tx rate */
index = lq_sta->last_txrate_idx;
/* rates available for this association, and for modulation mode */
rate_mask = rs_get_supported_rates(lq_sta, rate);
if (!(BIT(index) & rate_mask)) {
IWL_ERR(mvm, "Current Rate is not valid\n");
if (lq_sta->search_better_tbl) {
/* revert to active table if search table is not valid*/
rate->type = LQ_NONE;
lq_sta->search_better_tbl = 0;
tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
rs_update_rate_tbl(mvm, sta, lq_sta, &tbl->rate);
}
return;
}
/* Get expected throughput table and history window for current rate */
if (!tbl->expected_tpt) {
IWL_ERR(mvm, "tbl->expected_tpt is NULL\n");
return;
}
/* force user max rate if set by user */
if ((lq_sta->max_rate_idx != -1) &&
(lq_sta->max_rate_idx < index)) {
index = lq_sta->max_rate_idx;
update_lq = 1;
window = &(tbl->win[index]);
IWL_DEBUG_RATE(mvm,
"Forcing user max rate %d\n",
index);
goto lq_update;
}
window = &(tbl->win[index]);
/*
* If there is not enough history to calculate actual average
* throughput, keep analyzing results of more tx frames, without
* changing rate or mode (bypass most of the rest of this function).
* Set up new rate table in uCode only if old rate is not supported
* in current association (use new rate found above).
*/
fail_count = window->counter - window->success_counter;
if ((fail_count < IWL_RATE_MIN_FAILURE_TH) &&
(window->success_counter < IWL_RATE_MIN_SUCCESS_TH)) {
IWL_DEBUG_RATE(mvm,
"(%s: %d): Test Window: succ %d total %d\n",
rs_pretty_lq_type(rate->type),
index, window->success_counter, window->counter);
/* Can't calculate this yet; not enough history */
window->average_tpt = IWL_INVALID_VALUE;
/* Should we stay with this modulation mode,
* or search for a new one? */
rs_stay_in_table(lq_sta, false);
goto out;
}
/* Else we have enough samples; calculate estimate of
* actual average throughput */
if (window->average_tpt != ((window->success_ratio *
tbl->expected_tpt[index] + 64) / 128)) {
window->average_tpt = ((window->success_ratio *
tbl->expected_tpt[index] + 64) / 128);
}
/* If we are searching for better modulation mode, check success. */
if (lq_sta->search_better_tbl) {
/* If good success, continue using the "search" mode;
* no need to send new link quality command, since we're
* continuing to use the setup that we've been trying. */
if (window->average_tpt > lq_sta->last_tpt) {
IWL_DEBUG_RATE(mvm,
"SWITCHING TO NEW TABLE SR: %d "
"cur-tpt %d old-tpt %d\n",
window->success_ratio,
window->average_tpt,
lq_sta->last_tpt);
/* Swap tables; "search" becomes "active" */
lq_sta->active_tbl = active_tbl;
current_tpt = window->average_tpt;
/* Else poor success; go back to mode in "active" table */
} else {
IWL_DEBUG_RATE(mvm,
"GOING BACK TO THE OLD TABLE: SR %d "
"cur-tpt %d old-tpt %d\n",
window->success_ratio,
window->average_tpt,
lq_sta->last_tpt);
/* Nullify "search" table */
rate->type = LQ_NONE;
/* Revert to "active" table */
active_tbl = lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
/* Revert to "active" rate and throughput info */
index = tbl->rate.index;
current_tpt = lq_sta->last_tpt;
/* Need to set up a new rate table in uCode */
update_lq = 1;
}
/* Either way, we've made a decision; modulation mode
* search is done, allow rate adjustment next time. */
lq_sta->search_better_tbl = 0;
done_search = 1; /* Don't switch modes below! */
goto lq_update;
}
/* (Else) not in search of better modulation mode, try for better
* starting rate, while staying in this mode. */
high_low = rs_get_adjacent_rate(mvm, index, rate_mask, rate->type);
low = high_low & 0xff;
high = (high_low >> 8) & 0xff;
/* If user set max rate, dont allow higher than user constrain */
if ((lq_sta->max_rate_idx != -1) &&
(lq_sta->max_rate_idx < high))
high = IWL_RATE_INVALID;
sr = window->success_ratio;
/* Collect measured throughputs for current and adjacent rates */
current_tpt = window->average_tpt;
if (low != IWL_RATE_INVALID)
low_tpt = tbl->win[low].average_tpt;
if (high != IWL_RATE_INVALID)
high_tpt = tbl->win[high].average_tpt;
IWL_DEBUG_RATE(mvm,
"(%s: %d): cur_tpt %d SR %d low %d high %d low_tpt %d high_tpt %d\n",
rs_pretty_lq_type(rate->type), index, current_tpt, sr,
low, high, low_tpt, high_tpt);
scale_action = rs_get_rate_action(mvm, tbl, sr, low, high,
current_tpt, low_tpt, high_tpt);
/* Force a search in case BT doesn't like us being in MIMO */
if (is_mimo(rate) &&
!iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta)) {
IWL_DEBUG_RATE(mvm,
"BT Coex forbids MIMO. Search for new config\n");
rs_stay_in_table(lq_sta, true);
goto lq_update;
}
switch (scale_action) {
case RS_ACTION_DOWNSCALE:
/* Decrease starting rate, update uCode's rate table */
if (low != IWL_RATE_INVALID) {
update_lq = 1;
index = low;
} else {
IWL_DEBUG_RATE(mvm,
"At the bottom rate. Can't decrease\n");
}
break;
case RS_ACTION_UPSCALE:
/* Increase starting rate, update uCode's rate table */
if (high != IWL_RATE_INVALID) {
update_lq = 1;
index = high;
} else {
IWL_DEBUG_RATE(mvm,
"At the top rate. Can't increase\n");
}
break;
case RS_ACTION_STAY:
/* No change */
default:
break;
}
lq_update:
/* Replace uCode's rate table for the destination station. */
if (update_lq) {
tbl->rate.index = index;
rs_update_rate_tbl(mvm, sta, lq_sta, &tbl->rate);
}
rs_stay_in_table(lq_sta, false);
/*
* Search for new modulation mode if we're:
* 1) Not changing rates right now
* 2) Not just finishing up a search
* 3) Allowing a new search
*/
if (!update_lq && !done_search &&
lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_STARTED
&& window->counter) {
enum rs_column next_column;
/* Save current throughput to compare with "search" throughput*/
lq_sta->last_tpt = current_tpt;
IWL_DEBUG_RATE(mvm,
"Start Search: update_lq %d done_search %d rs_state %d win->counter %d\n",
update_lq, done_search, lq_sta->rs_state,
window->counter);
next_column = rs_get_next_column(mvm, lq_sta, sta, tbl);
if (next_column != RS_COLUMN_INVALID) {
int ret = rs_switch_to_column(mvm, lq_sta, sta,
next_column);
if (!ret)
lq_sta->search_better_tbl = 1;
} else {
IWL_DEBUG_RATE(mvm,
"No more columns to explore in search cycle. Go to RS_STATE_SEARCH_CYCLE_ENDED\n");
lq_sta->rs_state = RS_STATE_SEARCH_CYCLE_ENDED;
}
/* If new "search" mode was selected, set up in uCode table */
if (lq_sta->search_better_tbl) {
/* Access the "search" table, clear its history. */
tbl = &(lq_sta->lq_info[(1 - lq_sta->active_tbl)]);
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&(tbl->win[i]));
/* Use new "search" start rate */
index = tbl->rate.index;
rs_dump_rate(mvm, &tbl->rate,
"Switch to SEARCH TABLE:");
rs_fill_lq_cmd(mvm, sta, lq_sta, &tbl->rate);
iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, false);
} else {
done_search = 1;
}
}
if (done_search && lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_ENDED) {
/* If the "active" (non-search) mode was legacy,
* and we've tried switching antennas,
* but we haven't been able to try HT modes (not available),
* stay with best antenna legacy modulation for a while
* before next round of mode comparisons. */
tbl1 = &(lq_sta->lq_info[lq_sta->active_tbl]);
if (is_legacy(&tbl1->rate) && !sta->ht_cap.ht_supported) {
IWL_DEBUG_RATE(mvm, "LQ: STAY in legacy table\n");
rs_set_stay_in_table(mvm, 1, lq_sta);
} else {
/* If we're in an HT mode, and all 3 mode switch actions
* have been tried and compared, stay in this best modulation
* mode for a while before next round of mode comparisons. */
if ((lq_sta->last_tpt > IWL_AGG_TPT_THREHOLD) &&
(lq_sta->tx_agg_tid_en & (1 << tid)) &&
(tid != IWL_MAX_TID_COUNT)) {
tid_data = &sta_priv->tid_data[tid];
if (tid_data->state == IWL_AGG_OFF) {
IWL_DEBUG_RATE(mvm,
"try to aggregate tid %d\n",
tid);
rs_tl_turn_on_agg(mvm, tid,
lq_sta, sta);
}
}
rs_set_stay_in_table(mvm, 0, lq_sta);
}
}
out:
lq_sta->last_txrate_idx = index;
}
/**
* rs_initialize_lq - Initialize a station's hardware rate table
*
* The uCode's station table contains a table of fallback rates
* for automatic fallback during transmission.
*
* NOTE: This sets up a default set of values. These will be replaced later
* if the driver's iwl-agn-rs rate scaling algorithm is used, instead of
* rc80211_simple.
*
* NOTE: Run REPLY_ADD_STA command to set up station table entry, before
* calling this function (which runs REPLY_TX_LINK_QUALITY_CMD,
* which requires station table entry to exist).
*/
static void rs_initialize_lq(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
enum ieee80211_band band,
bool init)
{
struct iwl_scale_tbl_info *tbl;
struct rs_rate *rate;
int i;
u8 active_tbl = 0;
u8 valid_tx_ant;
if (!sta || !lq_sta)
return;
i = lq_sta->last_txrate_idx;
valid_tx_ant = iwl_fw_valid_tx_ant(mvm->fw);
if (!lq_sta->search_better_tbl)
active_tbl = lq_sta->active_tbl;
else
active_tbl = 1 - lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
rate = &tbl->rate;
if ((i < 0) || (i >= IWL_RATE_COUNT))
i = 0;
rate->index = i;
rate->ant = first_antenna(valid_tx_ant);
rate->sgi = false;
rate->bw = RATE_MCS_CHAN_WIDTH_20;
if (band == IEEE80211_BAND_5GHZ)
rate->type = LQ_LEGACY_A;
else
rate->type = LQ_LEGACY_G;
WARN_ON_ONCE(rate->ant != ANT_A && rate->ant != ANT_B);
if (rate->ant == ANT_A)
tbl->column = RS_COLUMN_LEGACY_ANT_A;
else
tbl->column = RS_COLUMN_LEGACY_ANT_B;
rs_set_expected_tpt_table(lq_sta, tbl);
rs_fill_lq_cmd(mvm, sta, lq_sta, rate);
/* TODO restore station should remember the lq cmd */
iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, init);
}
static void rs_get_rate(void *mvm_r, struct ieee80211_sta *sta, void *mvm_sta,
struct ieee80211_tx_rate_control *txrc)
{
struct sk_buff *skb = txrc->skb;
struct ieee80211_supported_band *sband = txrc->sband;
struct iwl_op_mode *op_mode __maybe_unused =
(struct iwl_op_mode *)mvm_r;
struct iwl_mvm *mvm __maybe_unused = IWL_OP_MODE_GET_MVM(op_mode);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct iwl_lq_sta *lq_sta = mvm_sta;
/* Get max rate if user set max rate */
if (lq_sta) {
lq_sta->max_rate_idx = txrc->max_rate_idx;
if ((sband->band == IEEE80211_BAND_5GHZ) &&
(lq_sta->max_rate_idx != -1))
lq_sta->max_rate_idx += IWL_FIRST_OFDM_RATE;
if ((lq_sta->max_rate_idx < 0) ||
(lq_sta->max_rate_idx >= IWL_RATE_COUNT))
lq_sta->max_rate_idx = -1;
}
/* Treat uninitialized rate scaling data same as non-existing. */
if (lq_sta && !lq_sta->drv) {
IWL_DEBUG_RATE(mvm, "Rate scaling not initialized yet.\n");
mvm_sta = NULL;
}
/* Send management frames and NO_ACK data using lowest rate. */
if (rate_control_send_low(sta, mvm_sta, txrc))
return;
iwl_mvm_hwrate_to_tx_rate(lq_sta->last_rate_n_flags,
info->band, &info->control.rates[0]);
info->control.rates[0].count = 1;
}
static void *rs_alloc_sta(void *mvm_rate, struct ieee80211_sta *sta,
gfp_t gfp)
{
struct iwl_mvm_sta *sta_priv = (struct iwl_mvm_sta *)sta->drv_priv;
struct iwl_op_mode *op_mode __maybe_unused =
(struct iwl_op_mode *)mvm_rate;
struct iwl_mvm *mvm __maybe_unused = IWL_OP_MODE_GET_MVM(op_mode);
IWL_DEBUG_RATE(mvm, "create station rate scale window\n");
return &sta_priv->lq_sta;
}
static int rs_vht_highest_rx_mcs_index(struct ieee80211_sta_vht_cap *vht_cap,
int nss)
{
u16 rx_mcs = le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) &
(0x3 << (2 * (nss - 1)));
rx_mcs >>= (2 * (nss - 1));
if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_7)
return IWL_RATE_MCS_7_INDEX;
else if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_8)
return IWL_RATE_MCS_8_INDEX;
else if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_9)
return IWL_RATE_MCS_9_INDEX;
WARN_ON_ONCE(rx_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED);
return -1;
}
static void rs_vht_set_enabled_rates(struct ieee80211_sta *sta,
struct ieee80211_sta_vht_cap *vht_cap,
struct iwl_lq_sta *lq_sta)
{
int i;
int highest_mcs = rs_vht_highest_rx_mcs_index(vht_cap, 1);
if (highest_mcs >= IWL_RATE_MCS_0_INDEX) {
for (i = IWL_RATE_MCS_0_INDEX; i <= highest_mcs; i++) {
if (i == IWL_RATE_9M_INDEX)
continue;
/* Disable MCS9 as a workaround */
if (i == IWL_RATE_MCS_9_INDEX)
continue;
/* VHT MCS9 isn't valid for 20Mhz for NSS=1,2 */
if (i == IWL_RATE_MCS_9_INDEX &&
sta->bandwidth == IEEE80211_STA_RX_BW_20)
continue;
lq_sta->active_siso_rate |= BIT(i);
}
}
if (sta->rx_nss < 2)
return;
highest_mcs = rs_vht_highest_rx_mcs_index(vht_cap, 2);
if (highest_mcs >= IWL_RATE_MCS_0_INDEX) {
for (i = IWL_RATE_MCS_0_INDEX; i <= highest_mcs; i++) {
if (i == IWL_RATE_9M_INDEX)
continue;
/* Disable MCS9 as a workaround */
if (i == IWL_RATE_MCS_9_INDEX)
continue;
/* VHT MCS9 isn't valid for 20Mhz for NSS=1,2 */
if (i == IWL_RATE_MCS_9_INDEX &&
sta->bandwidth == IEEE80211_STA_RX_BW_20)
continue;
lq_sta->active_mimo2_rate |= BIT(i);
}
}
}
/*
* Called after adding a new station to initialize rate scaling
*/
void iwl_mvm_rs_rate_init(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
enum ieee80211_band band, bool init)
{
int i, j;
struct ieee80211_hw *hw = mvm->hw;
struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
struct iwl_mvm_sta *sta_priv;
struct iwl_lq_sta *lq_sta;
struct ieee80211_supported_band *sband;
unsigned long supp; /* must be unsigned long for for_each_set_bit */
sta_priv = (struct iwl_mvm_sta *)sta->drv_priv;
lq_sta = &sta_priv->lq_sta;
memset(lq_sta, 0, sizeof(*lq_sta));
sband = hw->wiphy->bands[band];
lq_sta->lq.sta_id = sta_priv->sta_id;
for (j = 0; j < LQ_SIZE; j++)
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&lq_sta->lq_info[j].win[i]);
lq_sta->flush_timer = 0;
IWL_DEBUG_RATE(mvm,
"LQ: *** rate scale station global init for station %d ***\n",
sta_priv->sta_id);
/* TODO: what is a good starting rate for STA? About middle? Maybe not
* the lowest or the highest rate.. Could consider using RSSI from
* previous packets? Need to have IEEE 802.1X auth succeed immediately
* after assoc.. */
lq_sta->max_rate_idx = -1;
lq_sta->missed_rate_counter = IWL_MISSED_RATE_MAX;
lq_sta->band = sband->band;
/*
* active legacy rates as per supported rates bitmap
*/
supp = sta->supp_rates[sband->band];
lq_sta->active_legacy_rate = 0;
for_each_set_bit(i, &supp, BITS_PER_LONG)
lq_sta->active_legacy_rate |= BIT(sband->bitrates[i].hw_value);
/* TODO: should probably account for rx_highest for both HT/VHT */
if (!vht_cap || !vht_cap->vht_supported) {
/* active_siso_rate mask includes 9 MBits (bit 5),
* and CCK (bits 0-3), supp_rates[] does not;
* shift to convert format, force 9 MBits off.
*/
lq_sta->active_siso_rate = ht_cap->mcs.rx_mask[0] << 1;
lq_sta->active_siso_rate |= ht_cap->mcs.rx_mask[0] & 0x1;
lq_sta->active_siso_rate &= ~((u16)0x2);
lq_sta->active_siso_rate <<= IWL_FIRST_OFDM_RATE;
/* Same here */
lq_sta->active_mimo2_rate = ht_cap->mcs.rx_mask[1] << 1;
lq_sta->active_mimo2_rate |= ht_cap->mcs.rx_mask[1] & 0x1;
lq_sta->active_mimo2_rate &= ~((u16)0x2);
lq_sta->active_mimo2_rate <<= IWL_FIRST_OFDM_RATE;
lq_sta->is_vht = false;
} else {
rs_vht_set_enabled_rates(sta, vht_cap, lq_sta);
lq_sta->is_vht = true;
}
IWL_DEBUG_RATE(mvm,
"SISO-RATE=%X MIMO2-RATE=%X VHT=%d\n",
lq_sta->active_siso_rate,
lq_sta->active_mimo2_rate,
lq_sta->is_vht);
/* These values will be overridden later */
lq_sta->lq.single_stream_ant_msk =
first_antenna(iwl_fw_valid_tx_ant(mvm->fw));
lq_sta->lq.dual_stream_ant_msk = ANT_AB;
/* as default allow aggregation for all tids */
lq_sta->tx_agg_tid_en = IWL_AGG_ALL_TID;
lq_sta->drv = mvm;
/* Set last_txrate_idx to lowest rate */
lq_sta->last_txrate_idx = rate_lowest_index(sband, sta);
if (sband->band == IEEE80211_BAND_5GHZ)
lq_sta->last_txrate_idx += IWL_FIRST_OFDM_RATE;
lq_sta->is_agg = 0;
#ifdef CONFIG_MAC80211_DEBUGFS
lq_sta->dbg_fixed_rate = 0;
#endif
rs_initialize_lq(mvm, sta, lq_sta, band, init);
}
static void rs_rate_update(void *mvm_r,
struct ieee80211_supported_band *sband,
struct cfg80211_chan_def *chandef,
struct ieee80211_sta *sta, void *priv_sta,
u32 changed)
{
u8 tid;
struct iwl_op_mode *op_mode =
(struct iwl_op_mode *)mvm_r;
struct iwl_mvm *mvm = IWL_OP_MODE_GET_MVM(op_mode);
/* Stop any ongoing aggregations as rs starts off assuming no agg */
for (tid = 0; tid < IWL_MAX_TID_COUNT; tid++)
ieee80211_stop_tx_ba_session(sta, tid);
iwl_mvm_rs_rate_init(mvm, sta, sband->band, false);
}
#ifdef CONFIG_MAC80211_DEBUGFS
static void rs_build_rates_table_from_fixed(struct iwl_mvm *mvm,
struct iwl_lq_cmd *lq_cmd,
enum ieee80211_band band,
u32 ucode_rate)
{
struct rs_rate rate;
int i;
int num_rates = ARRAY_SIZE(lq_cmd->rs_table);
__le32 ucode_rate_le32 = cpu_to_le32(ucode_rate);
for (i = 0; i < num_rates; i++)
lq_cmd->rs_table[i] = ucode_rate_le32;
rs_rate_from_ucode_rate(ucode_rate, band, &rate);
if (is_mimo(&rate))
lq_cmd->mimo_delim = num_rates - 1;
else
lq_cmd->mimo_delim = 0;
}
#endif /* CONFIG_MAC80211_DEBUGFS */
static void rs_fill_rates_for_column(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
struct rs_rate *rate,
__le32 *rs_table, int *rs_table_index,
int num_rates, int num_retries,
u8 valid_tx_ant, bool toggle_ant)
{
int i, j;
__le32 ucode_rate;
bool bottom_reached = false;
int prev_rate_idx = rate->index;
int end = LINK_QUAL_MAX_RETRY_NUM;
int index = *rs_table_index;
for (i = 0; i < num_rates && index < end; i++) {
ucode_rate = cpu_to_le32(ucode_rate_from_rs_rate(mvm, rate));
for (j = 0; j < num_retries && index < end; j++, index++)
rs_table[index] = ucode_rate;
if (toggle_ant)
rs_toggle_antenna(valid_tx_ant, rate);
prev_rate_idx = rate->index;
bottom_reached = rs_get_lower_rate_in_column(lq_sta, rate);
if (bottom_reached && !is_legacy(rate))
break;
}
if (!bottom_reached)
rate->index = prev_rate_idx;
*rs_table_index = index;
}
/* Building the rate table is non trivial. When we're in MIMO2/VHT/80Mhz/SGI
* column the rate table should look like this:
*
* rate[0] 0x400D019 VHT | ANT: AB BW: 80Mhz MCS: 9 NSS: 2 SGI
* rate[1] 0x400D019 VHT | ANT: AB BW: 80Mhz MCS: 9 NSS: 2 SGI
* rate[2] 0x400D018 VHT | ANT: AB BW: 80Mhz MCS: 8 NSS: 2 SGI
* rate[3] 0x400D018 VHT | ANT: AB BW: 80Mhz MCS: 8 NSS: 2 SGI
* rate[4] 0x400D017 VHT | ANT: AB BW: 80Mhz MCS: 7 NSS: 2 SGI
* rate[5] 0x400D017 VHT | ANT: AB BW: 80Mhz MCS: 7 NSS: 2 SGI
* rate[6] 0x4005007 VHT | ANT: A BW: 80Mhz MCS: 7 NSS: 1 NGI
* rate[7] 0x4009006 VHT | ANT: B BW: 80Mhz MCS: 6 NSS: 1 NGI
* rate[8] 0x4005005 VHT | ANT: A BW: 80Mhz MCS: 5 NSS: 1 NGI
* rate[9] 0x800B Legacy | ANT: B Rate: 36 Mbps
* rate[10] 0x4009 Legacy | ANT: A Rate: 24 Mbps
* rate[11] 0x8007 Legacy | ANT: B Rate: 18 Mbps
* rate[12] 0x4005 Legacy | ANT: A Rate: 12 Mbps
* rate[13] 0x800F Legacy | ANT: B Rate: 9 Mbps
* rate[14] 0x400D Legacy | ANT: A Rate: 6 Mbps
* rate[15] 0x800D Legacy | ANT: B Rate: 6 Mbps
*/
static void rs_build_rates_table(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
const struct rs_rate *initial_rate)
{
struct rs_rate rate;
int num_rates, num_retries, index = 0;
u8 valid_tx_ant = 0;
struct iwl_lq_cmd *lq_cmd = &lq_sta->lq;
bool toggle_ant = false;
memcpy(&rate, initial_rate, sizeof(rate));
valid_tx_ant = iwl_fw_valid_tx_ant(mvm->fw);
if (is_siso(&rate)) {
num_rates = RS_INITIAL_SISO_NUM_RATES;
num_retries = RS_HT_VHT_RETRIES_PER_RATE;
} else if (is_mimo(&rate)) {
num_rates = RS_INITIAL_MIMO_NUM_RATES;
num_retries = RS_HT_VHT_RETRIES_PER_RATE;
} else {
num_rates = RS_INITIAL_LEGACY_NUM_RATES;
num_retries = RS_LEGACY_RETRIES_PER_RATE;
toggle_ant = true;
}
rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index,
num_rates, num_retries, valid_tx_ant,
toggle_ant);
rs_get_lower_rate_down_column(lq_sta, &rate);
if (is_siso(&rate)) {
num_rates = RS_SECONDARY_SISO_NUM_RATES;
num_retries = RS_SECONDARY_SISO_RETRIES;
} else if (is_legacy(&rate)) {
num_rates = RS_SECONDARY_LEGACY_NUM_RATES;
num_retries = RS_LEGACY_RETRIES_PER_RATE;
} else {
WARN_ON_ONCE(1);
}
toggle_ant = true;
rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index,
num_rates, num_retries, valid_tx_ant,
toggle_ant);
rs_get_lower_rate_down_column(lq_sta, &rate);
num_rates = RS_SECONDARY_LEGACY_NUM_RATES;
num_retries = RS_LEGACY_RETRIES_PER_RATE;
rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index,
num_rates, num_retries, valid_tx_ant,
toggle_ant);
}
static void rs_fill_lq_cmd(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
const struct rs_rate *initial_rate)
{
struct iwl_lq_cmd *lq_cmd = &lq_sta->lq;
u8 ant = initial_rate->ant;
#ifdef CONFIG_MAC80211_DEBUGFS
if (lq_sta->dbg_fixed_rate) {
rs_build_rates_table_from_fixed(mvm, lq_cmd,
lq_sta->band,
lq_sta->dbg_fixed_rate);
ant = (lq_sta->dbg_fixed_rate & RATE_MCS_ANT_ABC_MSK) >>
RATE_MCS_ANT_POS;
} else
#endif
rs_build_rates_table(mvm, lq_sta, initial_rate);
if (num_of_ant(ant) == 1)
lq_cmd->single_stream_ant_msk = ant;
lq_cmd->agg_frame_cnt_limit = LINK_QUAL_AGG_FRAME_LIMIT_DEF;
lq_cmd->agg_disable_start_th = LINK_QUAL_AGG_DISABLE_START_DEF;
lq_cmd->agg_time_limit =
cpu_to_le16(LINK_QUAL_AGG_TIME_LIMIT_DEF);
if (sta)
lq_cmd->agg_time_limit =
cpu_to_le16(iwl_mvm_bt_coex_agg_time_limit(mvm, sta));
}
static void *rs_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
return hw->priv;
}
/* rate scale requires free function to be implemented */
static void rs_free(void *mvm_rate)
{
return;
}
static void rs_free_sta(void *mvm_r, struct ieee80211_sta *sta,
void *mvm_sta)
{
struct iwl_op_mode *op_mode __maybe_unused = mvm_r;
struct iwl_mvm *mvm __maybe_unused = IWL_OP_MODE_GET_MVM(op_mode);
IWL_DEBUG_RATE(mvm, "enter\n");
IWL_DEBUG_RATE(mvm, "leave\n");
}
#ifdef CONFIG_MAC80211_DEBUGFS
static int rs_pretty_print_rate(char *buf, const u32 rate)
{
char *type, *bw;
u8 mcs = 0, nss = 0;
u8 ant = (rate & RATE_MCS_ANT_ABC_MSK) >> RATE_MCS_ANT_POS;
if (!(rate & RATE_MCS_HT_MSK) &&
!(rate & RATE_MCS_VHT_MSK)) {
int index = iwl_hwrate_to_plcp_idx(rate);
return sprintf(buf, "Legacy | ANT: %s Rate: %s Mbps\n",
rs_pretty_ant(ant), iwl_rate_mcs[index].mbps);
}
if (rate & RATE_MCS_VHT_MSK) {
type = "VHT";
mcs = rate & RATE_VHT_MCS_RATE_CODE_MSK;
nss = ((rate & RATE_VHT_MCS_NSS_MSK)
>> RATE_VHT_MCS_NSS_POS) + 1;
} else if (rate & RATE_MCS_HT_MSK) {
type = "HT";
mcs = rate & RATE_HT_MCS_INDEX_MSK;
} else {
type = "Unknown"; /* shouldn't happen */
}
switch (rate & RATE_MCS_CHAN_WIDTH_MSK) {
case RATE_MCS_CHAN_WIDTH_20:
bw = "20Mhz";
break;
case RATE_MCS_CHAN_WIDTH_40:
bw = "40Mhz";
break;
case RATE_MCS_CHAN_WIDTH_80:
bw = "80Mhz";
break;
case RATE_MCS_CHAN_WIDTH_160:
bw = "160Mhz";
break;
default:
bw = "BAD BW";
}
return sprintf(buf, "%s | ANT: %s BW: %s MCS: %d NSS: %d %s%s%s%s%s\n",
type, rs_pretty_ant(ant), bw, mcs, nss,
(rate & RATE_MCS_SGI_MSK) ? "SGI " : "NGI ",
(rate & RATE_MCS_STBC_MSK) ? "STBC " : "",
(rate & RATE_MCS_LDPC_MSK) ? "LDPC " : "",
(rate & RATE_MCS_BF_MSK) ? "BF " : "",
(rate & RATE_MCS_ZLF_MSK) ? "ZLF " : "");
}
/**
* Program the device to use fixed rate for frame transmit
* This is for debugging/testing only
* once the device start use fixed rate, we need to reload the module
* to being back the normal operation.
*/
static void rs_program_fix_rate(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta)
{
lq_sta->active_legacy_rate = 0x0FFF; /* 1 - 54 MBits, includes CCK */
lq_sta->active_siso_rate = 0x1FD0; /* 6 - 60 MBits, no 9, no CCK */
lq_sta->active_mimo2_rate = 0x1FD0; /* 6 - 60 MBits, no 9, no CCK */
IWL_DEBUG_RATE(mvm, "sta_id %d rate 0x%X\n",
lq_sta->lq.sta_id, lq_sta->dbg_fixed_rate);
if (lq_sta->dbg_fixed_rate) {
struct rs_rate rate;
rs_rate_from_ucode_rate(lq_sta->dbg_fixed_rate,
lq_sta->band, &rate);
rs_fill_lq_cmd(mvm, NULL, lq_sta, &rate);
iwl_mvm_send_lq_cmd(lq_sta->drv, &lq_sta->lq, false);
}
}
static ssize_t rs_sta_dbgfs_scale_table_write(struct file *file,
const char __user *user_buf, size_t count, loff_t *ppos)
{
struct iwl_lq_sta *lq_sta = file->private_data;
struct iwl_mvm *mvm;
char buf[64];
size_t buf_size;
u32 parsed_rate;
mvm = lq_sta->drv;
memset(buf, 0, sizeof(buf));
buf_size = min(count, sizeof(buf) - 1);
if (copy_from_user(buf, user_buf, buf_size))
return -EFAULT;
if (sscanf(buf, "%x", &parsed_rate) == 1)
lq_sta->dbg_fixed_rate = parsed_rate;
else
lq_sta->dbg_fixed_rate = 0;
rs_program_fix_rate(mvm, lq_sta);
return count;
}
static ssize_t rs_sta_dbgfs_scale_table_read(struct file *file,
char __user *user_buf, size_t count, loff_t *ppos)
{
char *buff;
int desc = 0;
int i = 0;
ssize_t ret;
struct iwl_lq_sta *lq_sta = file->private_data;
struct iwl_mvm *mvm;
struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
struct rs_rate *rate = &tbl->rate;
mvm = lq_sta->drv;
buff = kmalloc(2048, GFP_KERNEL);
if (!buff)
return -ENOMEM;
desc += sprintf(buff+desc, "sta_id %d\n", lq_sta->lq.sta_id);
desc += sprintf(buff+desc, "failed=%d success=%d rate=0%X\n",
lq_sta->total_failed, lq_sta->total_success,
lq_sta->active_legacy_rate);
desc += sprintf(buff+desc, "fixed rate 0x%X\n",
lq_sta->dbg_fixed_rate);
desc += sprintf(buff+desc, "valid_tx_ant %s%s%s\n",
(iwl_fw_valid_tx_ant(mvm->fw) & ANT_A) ? "ANT_A," : "",
(iwl_fw_valid_tx_ant(mvm->fw) & ANT_B) ? "ANT_B," : "",
(iwl_fw_valid_tx_ant(mvm->fw) & ANT_C) ? "ANT_C" : "");
desc += sprintf(buff+desc, "lq type %s\n",
(is_legacy(rate)) ? "legacy" :
is_vht(rate) ? "VHT" : "HT");
if (!is_legacy(rate)) {
desc += sprintf(buff+desc, " %s",
(is_siso(rate)) ? "SISO" : "MIMO2");
desc += sprintf(buff+desc, " %s",
(is_ht20(rate)) ? "20MHz" :
(is_ht40(rate)) ? "40MHz" :
(is_ht80(rate)) ? "80Mhz" : "BAD BW");
desc += sprintf(buff+desc, " %s %s\n",
(rate->sgi) ? "SGI" : "NGI",
(lq_sta->is_agg) ? "AGG on" : "");
}
desc += sprintf(buff+desc, "last tx rate=0x%X\n",
lq_sta->last_rate_n_flags);
desc += sprintf(buff+desc,
"general: flags=0x%X mimo-d=%d s-ant=0x%x d-ant=0x%x\n",
lq_sta->lq.flags,
lq_sta->lq.mimo_delim,
lq_sta->lq.single_stream_ant_msk,
lq_sta->lq.dual_stream_ant_msk);
desc += sprintf(buff+desc,
"agg: time_limit=%d dist_start_th=%d frame_cnt_limit=%d\n",
le16_to_cpu(lq_sta->lq.agg_time_limit),
lq_sta->lq.agg_disable_start_th,
lq_sta->lq.agg_frame_cnt_limit);
desc += sprintf(buff+desc,
"Start idx [0]=0x%x [1]=0x%x [2]=0x%x [3]=0x%x\n",
lq_sta->lq.initial_rate_index[0],
lq_sta->lq.initial_rate_index[1],
lq_sta->lq.initial_rate_index[2],
lq_sta->lq.initial_rate_index[3]);
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
u32 r = le32_to_cpu(lq_sta->lq.rs_table[i]);
desc += sprintf(buff+desc, " rate[%d] 0x%X ", i, r);
desc += rs_pretty_print_rate(buff+desc, r);
}
ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc);
kfree(buff);
return ret;
}
static const struct file_operations rs_sta_dbgfs_scale_table_ops = {
.write = rs_sta_dbgfs_scale_table_write,
.read = rs_sta_dbgfs_scale_table_read,
.open = simple_open,
.llseek = default_llseek,
};
static ssize_t rs_sta_dbgfs_stats_table_read(struct file *file,
char __user *user_buf, size_t count, loff_t *ppos)
{
char *buff;
int desc = 0;
int i, j;
ssize_t ret;
struct iwl_scale_tbl_info *tbl;
struct rs_rate *rate;
struct iwl_lq_sta *lq_sta = file->private_data;
buff = kmalloc(1024, GFP_KERNEL);
if (!buff)
return -ENOMEM;
for (i = 0; i < LQ_SIZE; i++) {
tbl = &(lq_sta->lq_info[i]);
rate = &tbl->rate;
desc += sprintf(buff+desc,
"%s type=%d SGI=%d BW=%s DUP=0\n"
"index=%d\n",
lq_sta->active_tbl == i ? "*" : "x",
rate->type,
rate->sgi,
is_ht20(rate) ? "20Mhz" :
is_ht40(rate) ? "40Mhz" :
is_ht80(rate) ? "80Mhz" : "ERR",
rate->index);
for (j = 0; j < IWL_RATE_COUNT; j++) {
desc += sprintf(buff+desc,
"counter=%d success=%d %%=%d\n",
tbl->win[j].counter,
tbl->win[j].success_counter,
tbl->win[j].success_ratio);
}
}
ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc);
kfree(buff);
return ret;
}
static const struct file_operations rs_sta_dbgfs_stats_table_ops = {
.read = rs_sta_dbgfs_stats_table_read,
.open = simple_open,
.llseek = default_llseek,
};
static void rs_add_debugfs(void *mvm, void *mvm_sta, struct dentry *dir)
{
struct iwl_lq_sta *lq_sta = mvm_sta;
lq_sta->rs_sta_dbgfs_scale_table_file =
debugfs_create_file("rate_scale_table", S_IRUSR | S_IWUSR, dir,
lq_sta, &rs_sta_dbgfs_scale_table_ops);
lq_sta->rs_sta_dbgfs_stats_table_file =
debugfs_create_file("rate_stats_table", S_IRUSR, dir,
lq_sta, &rs_sta_dbgfs_stats_table_ops);
lq_sta->rs_sta_dbgfs_tx_agg_tid_en_file =
debugfs_create_u8("tx_agg_tid_enable", S_IRUSR | S_IWUSR, dir,
&lq_sta->tx_agg_tid_en);
}
static void rs_remove_debugfs(void *mvm, void *mvm_sta)
{
struct iwl_lq_sta *lq_sta = mvm_sta;
debugfs_remove(lq_sta->rs_sta_dbgfs_scale_table_file);
debugfs_remove(lq_sta->rs_sta_dbgfs_stats_table_file);
debugfs_remove(lq_sta->rs_sta_dbgfs_tx_agg_tid_en_file);
}
#endif
/*
* Initialization of rate scaling information is done by driver after
* the station is added. Since mac80211 calls this function before a
* station is added we ignore it.
*/
static void rs_rate_init_stub(void *mvm_r,
struct ieee80211_supported_band *sband,
struct cfg80211_chan_def *chandef,
struct ieee80211_sta *sta, void *mvm_sta)
{
}
static struct rate_control_ops rs_mvm_ops = {
.module = NULL,
.name = RS_NAME,
.tx_status = rs_tx_status,
.get_rate = rs_get_rate,
.rate_init = rs_rate_init_stub,
.alloc = rs_alloc,
.free = rs_free,
.alloc_sta = rs_alloc_sta,
.free_sta = rs_free_sta,
.rate_update = rs_rate_update,
#ifdef CONFIG_MAC80211_DEBUGFS
.add_sta_debugfs = rs_add_debugfs,
.remove_sta_debugfs = rs_remove_debugfs,
#endif
};
int iwl_mvm_rate_control_register(void)
{
return ieee80211_rate_control_register(&rs_mvm_ops);
}
void iwl_mvm_rate_control_unregister(void)
{
ieee80211_rate_control_unregister(&rs_mvm_ops);
}
/**
* iwl_mvm_tx_protection - Gets LQ command, change it to enable/disable
* Tx protection, according to this rquest and previous requests,
* and send the LQ command.
* @mvmsta: The station
* @enable: Enable Tx protection?
*/
int iwl_mvm_tx_protection(struct iwl_mvm *mvm, struct iwl_mvm_sta *mvmsta,
bool enable)
{
struct iwl_lq_cmd *lq = &mvmsta->lq_sta.lq;
lockdep_assert_held(&mvm->mutex);
if (enable) {
if (mvmsta->tx_protection == 0)
lq->flags |= LQ_FLAG_USE_RTS_MSK;
mvmsta->tx_protection++;
} else {
mvmsta->tx_protection--;
if (mvmsta->tx_protection == 0)
lq->flags &= ~LQ_FLAG_USE_RTS_MSK;
}
return iwl_mvm_send_lq_cmd(mvm, lq, false);
}