forked from Minki/linux
75cbec033c
Any write in any display register was causing HW to exit PSR, masking it to allow more power savings. Writes to pipe related registers will still cause HW to exit PSR. This is already masked for PSR2. It also do not break the Display WA #0884, writes to CURSURFLIVE are still causing hardware to exit PSR. This was tested in CNL machine by triggering a write to CURSURFLIVE when a debugfs was read by user. Bspec: 7721 and 8042 v4: Checked that it do not breaks WA #0884 and added this information to the commit message. Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Reviewed-by: Dhinakaran Pandiyan <dhinakaran.pandiyan@intel.com> Signed-off-by: José Roberto de Souza <jose.souza@intel.com> Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180425212334.21109-1-jose.souza@intel.com
1175 lines
36 KiB
C
1175 lines
36 KiB
C
/*
|
|
* Copyright © 2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Panel Self Refresh (PSR/SRD)
|
|
*
|
|
* Since Haswell Display controller supports Panel Self-Refresh on display
|
|
* panels witch have a remote frame buffer (RFB) implemented according to PSR
|
|
* spec in eDP1.3. PSR feature allows the display to go to lower standby states
|
|
* when system is idle but display is on as it eliminates display refresh
|
|
* request to DDR memory completely as long as the frame buffer for that
|
|
* display is unchanged.
|
|
*
|
|
* Panel Self Refresh must be supported by both Hardware (source) and
|
|
* Panel (sink).
|
|
*
|
|
* PSR saves power by caching the framebuffer in the panel RFB, which allows us
|
|
* to power down the link and memory controller. For DSI panels the same idea
|
|
* is called "manual mode".
|
|
*
|
|
* The implementation uses the hardware-based PSR support which automatically
|
|
* enters/exits self-refresh mode. The hardware takes care of sending the
|
|
* required DP aux message and could even retrain the link (that part isn't
|
|
* enabled yet though). The hardware also keeps track of any frontbuffer
|
|
* changes to know when to exit self-refresh mode again. Unfortunately that
|
|
* part doesn't work too well, hence why the i915 PSR support uses the
|
|
* software frontbuffer tracking to make sure it doesn't miss a screen
|
|
* update. For this integration intel_psr_invalidate() and intel_psr_flush()
|
|
* get called by the frontbuffer tracking code. Note that because of locking
|
|
* issues the self-refresh re-enable code is done from a work queue, which
|
|
* must be correctly synchronized/cancelled when shutting down the pipe."
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
|
|
#include "intel_drv.h"
|
|
#include "i915_drv.h"
|
|
|
|
static inline enum intel_display_power_domain
|
|
psr_aux_domain(struct intel_dp *intel_dp)
|
|
{
|
|
/* CNL HW requires corresponding AUX IOs to be powered up for PSR.
|
|
* However, for non-A AUX ports the corresponding non-EDP transcoders
|
|
* would have already enabled power well 2 and DC_OFF. This means we can
|
|
* acquire a wider POWER_DOMAIN_AUX_{B,C,D,F} reference instead of a
|
|
* specific AUX_IO reference without powering up any extra wells.
|
|
* Note that PSR is enabled only on Port A even though this function
|
|
* returns the correct domain for other ports too.
|
|
*/
|
|
return intel_dp->aux_ch == AUX_CH_A ? POWER_DOMAIN_AUX_IO_A :
|
|
intel_dp->aux_power_domain;
|
|
}
|
|
|
|
static void psr_aux_io_power_get(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
|
|
|
|
if (INTEL_GEN(dev_priv) < 10)
|
|
return;
|
|
|
|
intel_display_power_get(dev_priv, psr_aux_domain(intel_dp));
|
|
}
|
|
|
|
static void psr_aux_io_power_put(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
|
|
|
|
if (INTEL_GEN(dev_priv) < 10)
|
|
return;
|
|
|
|
intel_display_power_put(dev_priv, psr_aux_domain(intel_dp));
|
|
}
|
|
|
|
void intel_psr_irq_control(struct drm_i915_private *dev_priv, bool debug)
|
|
{
|
|
u32 debug_mask, mask;
|
|
|
|
/* No PSR interrupts on VLV/CHV */
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
return;
|
|
|
|
mask = EDP_PSR_ERROR(TRANSCODER_EDP);
|
|
debug_mask = EDP_PSR_POST_EXIT(TRANSCODER_EDP) |
|
|
EDP_PSR_PRE_ENTRY(TRANSCODER_EDP);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 8) {
|
|
mask |= EDP_PSR_ERROR(TRANSCODER_A) |
|
|
EDP_PSR_ERROR(TRANSCODER_B) |
|
|
EDP_PSR_ERROR(TRANSCODER_C);
|
|
|
|
debug_mask |= EDP_PSR_POST_EXIT(TRANSCODER_A) |
|
|
EDP_PSR_PRE_ENTRY(TRANSCODER_A) |
|
|
EDP_PSR_POST_EXIT(TRANSCODER_B) |
|
|
EDP_PSR_PRE_ENTRY(TRANSCODER_B) |
|
|
EDP_PSR_POST_EXIT(TRANSCODER_C) |
|
|
EDP_PSR_PRE_ENTRY(TRANSCODER_C);
|
|
}
|
|
|
|
if (debug)
|
|
mask |= debug_mask;
|
|
|
|
WRITE_ONCE(dev_priv->psr.debug, debug);
|
|
I915_WRITE(EDP_PSR_IMR, ~mask);
|
|
}
|
|
|
|
void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
|
|
{
|
|
u32 transcoders = BIT(TRANSCODER_EDP);
|
|
enum transcoder cpu_transcoder;
|
|
ktime_t time_ns = ktime_get();
|
|
|
|
if (INTEL_GEN(dev_priv) >= 8)
|
|
transcoders |= BIT(TRANSCODER_A) |
|
|
BIT(TRANSCODER_B) |
|
|
BIT(TRANSCODER_C);
|
|
|
|
for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
|
|
/* FIXME: Exit PSR and link train manually when this happens. */
|
|
if (psr_iir & EDP_PSR_ERROR(cpu_transcoder))
|
|
DRM_DEBUG_KMS("[transcoder %s] PSR aux error\n",
|
|
transcoder_name(cpu_transcoder));
|
|
|
|
if (psr_iir & EDP_PSR_PRE_ENTRY(cpu_transcoder)) {
|
|
dev_priv->psr.last_entry_attempt = time_ns;
|
|
DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
|
|
transcoder_name(cpu_transcoder));
|
|
}
|
|
|
|
if (psr_iir & EDP_PSR_POST_EXIT(cpu_transcoder)) {
|
|
dev_priv->psr.last_exit = time_ns;
|
|
DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
|
|
transcoder_name(cpu_transcoder));
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool intel_dp_get_y_coord_required(struct intel_dp *intel_dp)
|
|
{
|
|
uint8_t psr_caps = 0;
|
|
|
|
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_CAPS, &psr_caps) != 1)
|
|
return false;
|
|
return psr_caps & DP_PSR2_SU_Y_COORDINATE_REQUIRED;
|
|
}
|
|
|
|
static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
|
|
{
|
|
uint8_t dprx = 0;
|
|
|
|
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
|
|
&dprx) != 1)
|
|
return false;
|
|
return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
|
|
}
|
|
|
|
static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
|
|
{
|
|
uint8_t alpm_caps = 0;
|
|
|
|
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
|
|
&alpm_caps) != 1)
|
|
return false;
|
|
return alpm_caps & DP_ALPM_CAP;
|
|
}
|
|
|
|
static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
|
|
{
|
|
u8 val = 0;
|
|
|
|
if (drm_dp_dpcd_readb(&intel_dp->aux,
|
|
DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
|
|
val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
|
|
else
|
|
DRM_ERROR("Unable to get sink synchronization latency\n");
|
|
return val;
|
|
}
|
|
|
|
void intel_psr_init_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
|
|
|
|
drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
|
|
sizeof(intel_dp->psr_dpcd));
|
|
|
|
if (intel_dp->psr_dpcd[0]) {
|
|
dev_priv->psr.sink_support = true;
|
|
DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
|
|
}
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9 &&
|
|
(intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
|
|
/*
|
|
* All panels that supports PSR version 03h (PSR2 +
|
|
* Y-coordinate) can handle Y-coordinates in VSC but we are
|
|
* only sure that it is going to be used when required by the
|
|
* panel. This way panel is capable to do selective update
|
|
* without a aux frame sync.
|
|
*
|
|
* To support PSR version 02h and PSR version 03h without
|
|
* Y-coordinate requirement panels we would need to enable
|
|
* GTC first.
|
|
*/
|
|
dev_priv->psr.sink_psr2_support =
|
|
intel_dp_get_y_coord_required(intel_dp);
|
|
DRM_DEBUG_KMS("PSR2 %s on sink", dev_priv->psr.sink_psr2_support
|
|
? "supported" : "not supported");
|
|
|
|
if (dev_priv->psr.sink_psr2_support) {
|
|
dev_priv->psr.colorimetry_support =
|
|
intel_dp_get_colorimetry_status(intel_dp);
|
|
dev_priv->psr.alpm =
|
|
intel_dp_get_alpm_status(intel_dp);
|
|
dev_priv->psr.sink_sync_latency =
|
|
intel_dp_get_sink_sync_latency(intel_dp);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t val;
|
|
|
|
val = I915_READ(VLV_PSRSTAT(pipe)) &
|
|
VLV_EDP_PSR_CURR_STATE_MASK;
|
|
return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
|
|
(val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
|
|
}
|
|
|
|
static void vlv_psr_setup_vsc(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
uint32_t val;
|
|
|
|
/* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
|
|
val = I915_READ(VLV_VSCSDP(crtc->pipe));
|
|
val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
|
|
val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
|
|
I915_WRITE(VLV_VSCSDP(crtc->pipe), val);
|
|
}
|
|
|
|
static void hsw_psr_setup_vsc(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
|
|
struct edp_vsc_psr psr_vsc;
|
|
|
|
if (dev_priv->psr.psr2_enabled) {
|
|
/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
|
|
memset(&psr_vsc, 0, sizeof(psr_vsc));
|
|
psr_vsc.sdp_header.HB0 = 0;
|
|
psr_vsc.sdp_header.HB1 = 0x7;
|
|
if (dev_priv->psr.colorimetry_support) {
|
|
psr_vsc.sdp_header.HB2 = 0x5;
|
|
psr_vsc.sdp_header.HB3 = 0x13;
|
|
} else {
|
|
psr_vsc.sdp_header.HB2 = 0x4;
|
|
psr_vsc.sdp_header.HB3 = 0xe;
|
|
}
|
|
} else {
|
|
/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
|
|
memset(&psr_vsc, 0, sizeof(psr_vsc));
|
|
psr_vsc.sdp_header.HB0 = 0;
|
|
psr_vsc.sdp_header.HB1 = 0x7;
|
|
psr_vsc.sdp_header.HB2 = 0x2;
|
|
psr_vsc.sdp_header.HB3 = 0x8;
|
|
}
|
|
|
|
intel_dig_port->write_infoframe(&intel_dig_port->base.base, crtc_state,
|
|
DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
|
|
}
|
|
|
|
static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
|
|
{
|
|
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
|
|
DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
|
|
}
|
|
|
|
static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
u32 aux_clock_divider, aux_ctl;
|
|
int i;
|
|
static const uint8_t aux_msg[] = {
|
|
[0] = DP_AUX_NATIVE_WRITE << 4,
|
|
[1] = DP_SET_POWER >> 8,
|
|
[2] = DP_SET_POWER & 0xff,
|
|
[3] = 1 - 1,
|
|
[4] = DP_SET_POWER_D0,
|
|
};
|
|
u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
|
|
EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
|
|
EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
|
|
EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
|
|
|
|
BUILD_BUG_ON(sizeof(aux_msg) > 20);
|
|
for (i = 0; i < sizeof(aux_msg); i += 4)
|
|
I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
|
|
intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
|
|
|
|
aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
|
|
|
|
/* Start with bits set for DDI_AUX_CTL register */
|
|
aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, 0, sizeof(aux_msg),
|
|
aux_clock_divider);
|
|
|
|
/* Select only valid bits for SRD_AUX_CTL */
|
|
aux_ctl &= psr_aux_mask;
|
|
I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
|
|
}
|
|
|
|
static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u8 dpcd_val = DP_PSR_ENABLE;
|
|
|
|
/* Enable ALPM at sink for psr2 */
|
|
if (dev_priv->psr.psr2_enabled && dev_priv->psr.alpm)
|
|
drm_dp_dpcd_writeb(&intel_dp->aux,
|
|
DP_RECEIVER_ALPM_CONFIG,
|
|
DP_ALPM_ENABLE);
|
|
|
|
if (dev_priv->psr.psr2_enabled)
|
|
dpcd_val |= DP_PSR_ENABLE_PSR2;
|
|
if (dev_priv->psr.link_standby)
|
|
dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
|
|
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
|
|
|
|
drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
|
|
}
|
|
|
|
static void vlv_psr_enable_source(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
|
|
/* Transition from PSR_state 0 (disabled) to PSR_state 1 (inactive) */
|
|
I915_WRITE(VLV_PSRCTL(crtc->pipe),
|
|
VLV_EDP_PSR_MODE_SW_TIMER |
|
|
VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
|
|
VLV_EDP_PSR_ENABLE);
|
|
}
|
|
|
|
static void vlv_psr_activate(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_crtc *crtc = dig_port->base.base.crtc;
|
|
enum pipe pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
/*
|
|
* Let's do the transition from PSR_state 1 (inactive) to
|
|
* PSR_state 2 (transition to active - static frame transmission).
|
|
* Then Hardware is responsible for the transition to
|
|
* PSR_state 3 (active - no Remote Frame Buffer (RFB) update).
|
|
*/
|
|
I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
|
|
VLV_EDP_PSR_ACTIVE_ENTRY);
|
|
}
|
|
|
|
static void hsw_activate_psr1(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
uint32_t max_sleep_time = 0x1f;
|
|
/*
|
|
* Let's respect VBT in case VBT asks a higher idle_frame value.
|
|
* Let's use 6 as the minimum to cover all known cases including
|
|
* the off-by-one issue that HW has in some cases. Also there are
|
|
* cases where sink should be able to train
|
|
* with the 5 or 6 idle patterns.
|
|
*/
|
|
uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
|
|
uint32_t val = EDP_PSR_ENABLE;
|
|
|
|
val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
|
|
val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
|
|
|
|
if (IS_HASWELL(dev_priv))
|
|
val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
|
|
|
|
if (dev_priv->psr.link_standby)
|
|
val |= EDP_PSR_LINK_STANDBY;
|
|
|
|
if (dev_priv->vbt.psr.tp1_wakeup_time > 5)
|
|
val |= EDP_PSR_TP1_TIME_2500us;
|
|
else if (dev_priv->vbt.psr.tp1_wakeup_time > 1)
|
|
val |= EDP_PSR_TP1_TIME_500us;
|
|
else if (dev_priv->vbt.psr.tp1_wakeup_time > 0)
|
|
val |= EDP_PSR_TP1_TIME_100us;
|
|
else
|
|
val |= EDP_PSR_TP1_TIME_0us;
|
|
|
|
if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
|
|
val |= EDP_PSR_TP2_TP3_TIME_2500us;
|
|
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
|
|
val |= EDP_PSR_TP2_TP3_TIME_500us;
|
|
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
|
|
val |= EDP_PSR_TP2_TP3_TIME_100us;
|
|
else
|
|
val |= EDP_PSR_TP2_TP3_TIME_0us;
|
|
|
|
if (intel_dp_source_supports_hbr2(intel_dp) &&
|
|
drm_dp_tps3_supported(intel_dp->dpcd))
|
|
val |= EDP_PSR_TP1_TP3_SEL;
|
|
else
|
|
val |= EDP_PSR_TP1_TP2_SEL;
|
|
|
|
val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
|
|
I915_WRITE(EDP_PSR_CTL, val);
|
|
}
|
|
|
|
static void hsw_activate_psr2(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
/*
|
|
* Let's respect VBT in case VBT asks a higher idle_frame value.
|
|
* Let's use 6 as the minimum to cover all known cases including
|
|
* the off-by-one issue that HW has in some cases. Also there are
|
|
* cases where sink should be able to train
|
|
* with the 5 or 6 idle patterns.
|
|
*/
|
|
uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
|
|
u32 val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
|
|
|
|
/* FIXME: selective update is probably totally broken because it doesn't
|
|
* mesh at all with our frontbuffer tracking. And the hw alone isn't
|
|
* good enough. */
|
|
val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
|
|
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
|
|
val |= EDP_Y_COORDINATE_VALID | EDP_Y_COORDINATE_ENABLE;
|
|
}
|
|
|
|
val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
|
|
|
|
if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
|
|
val |= EDP_PSR2_TP2_TIME_2500;
|
|
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
|
|
val |= EDP_PSR2_TP2_TIME_500;
|
|
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
|
|
val |= EDP_PSR2_TP2_TIME_100;
|
|
else
|
|
val |= EDP_PSR2_TP2_TIME_50;
|
|
|
|
I915_WRITE(EDP_PSR2_CTL, val);
|
|
}
|
|
|
|
static void hsw_psr_activate(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
/* On HSW+ after we enable PSR on source it will activate it
|
|
* as soon as it match configure idle_frame count. So
|
|
* we just actually enable it here on activation time.
|
|
*/
|
|
|
|
/* psr1 and psr2 are mutually exclusive.*/
|
|
if (dev_priv->psr.psr2_enabled)
|
|
hsw_activate_psr2(intel_dp);
|
|
else
|
|
hsw_activate_psr1(intel_dp);
|
|
}
|
|
|
|
static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
|
|
int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
|
|
int psr_max_h = 0, psr_max_v = 0;
|
|
|
|
/*
|
|
* FIXME psr2_support is messed up. It's both computed
|
|
* dynamically during PSR enable, and extracted from sink
|
|
* caps during eDP detection.
|
|
*/
|
|
if (!dev_priv->psr.sink_psr2_support)
|
|
return false;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
|
|
psr_max_h = 4096;
|
|
psr_max_v = 2304;
|
|
} else if (IS_GEN9(dev_priv)) {
|
|
psr_max_h = 3640;
|
|
psr_max_v = 2304;
|
|
}
|
|
|
|
if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
|
|
DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
|
|
crtc_hdisplay, crtc_vdisplay,
|
|
psr_max_h, psr_max_v);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void intel_psr_compute_config(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&crtc_state->base.adjusted_mode;
|
|
int psr_setup_time;
|
|
|
|
if (!CAN_PSR(dev_priv))
|
|
return;
|
|
|
|
if (!i915_modparams.enable_psr) {
|
|
DRM_DEBUG_KMS("PSR disable by flag\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* HSW spec explicitly says PSR is tied to port A.
|
|
* BDW+ platforms with DDI implementation of PSR have different
|
|
* PSR registers per transcoder and we only implement transcoder EDP
|
|
* ones. Since by Display design transcoder EDP is tied to port A
|
|
* we can safely escape based on the port A.
|
|
*/
|
|
if (HAS_DDI(dev_priv) && dig_port->base.port != PORT_A) {
|
|
DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
|
|
return;
|
|
}
|
|
|
|
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
|
|
!dev_priv->psr.link_standby) {
|
|
DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n");
|
|
return;
|
|
}
|
|
|
|
if (IS_HASWELL(dev_priv) &&
|
|
I915_READ(HSW_STEREO_3D_CTL(crtc_state->cpu_transcoder)) &
|
|
S3D_ENABLE) {
|
|
DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
|
|
return;
|
|
}
|
|
|
|
if (IS_HASWELL(dev_priv) &&
|
|
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
|
|
return;
|
|
}
|
|
|
|
psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
|
|
if (psr_setup_time < 0) {
|
|
DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
|
|
intel_dp->psr_dpcd[1]);
|
|
return;
|
|
}
|
|
|
|
if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
|
|
adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
|
|
DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
|
|
psr_setup_time);
|
|
return;
|
|
}
|
|
|
|
if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
|
|
DRM_DEBUG_KMS("PSR condition failed: panel lacks power state control\n");
|
|
return;
|
|
}
|
|
|
|
crtc_state->has_psr = true;
|
|
crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
|
|
DRM_DEBUG_KMS("Enabling PSR%s\n", crtc_state->has_psr2 ? "2" : "");
|
|
}
|
|
|
|
static void intel_psr_activate(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (dev_priv->psr.psr2_enabled)
|
|
WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
|
|
else
|
|
WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
|
|
WARN_ON(dev_priv->psr.active);
|
|
lockdep_assert_held(&dev_priv->psr.lock);
|
|
|
|
dev_priv->psr.activate(intel_dp);
|
|
dev_priv->psr.active = true;
|
|
}
|
|
|
|
static void hsw_psr_enable_source(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
|
|
|
|
psr_aux_io_power_get(intel_dp);
|
|
|
|
/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
|
|
* use hardcoded values PSR AUX transactions
|
|
*/
|
|
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
hsw_psr_setup_aux(intel_dp);
|
|
|
|
if (dev_priv->psr.psr2_enabled) {
|
|
u32 chicken = I915_READ(CHICKEN_TRANS(cpu_transcoder));
|
|
|
|
if (INTEL_GEN(dev_priv) == 9 && !IS_GEMINILAKE(dev_priv))
|
|
chicken |= (PSR2_VSC_ENABLE_PROG_HEADER
|
|
| PSR2_ADD_VERTICAL_LINE_COUNT);
|
|
|
|
else
|
|
chicken &= ~VSC_DATA_SEL_SOFTWARE_CONTROL;
|
|
I915_WRITE(CHICKEN_TRANS(cpu_transcoder), chicken);
|
|
|
|
I915_WRITE(EDP_PSR_DEBUG,
|
|
EDP_PSR_DEBUG_MASK_MEMUP |
|
|
EDP_PSR_DEBUG_MASK_HPD |
|
|
EDP_PSR_DEBUG_MASK_LPSP |
|
|
EDP_PSR_DEBUG_MASK_MAX_SLEEP |
|
|
EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
|
|
} else {
|
|
/*
|
|
* Per Spec: Avoid continuous PSR exit by masking MEMUP
|
|
* and HPD. also mask LPSP to avoid dependency on other
|
|
* drivers that might block runtime_pm besides
|
|
* preventing other hw tracking issues now we can rely
|
|
* on frontbuffer tracking.
|
|
*/
|
|
I915_WRITE(EDP_PSR_DEBUG,
|
|
EDP_PSR_DEBUG_MASK_MEMUP |
|
|
EDP_PSR_DEBUG_MASK_HPD |
|
|
EDP_PSR_DEBUG_MASK_LPSP |
|
|
EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* intel_psr_enable - Enable PSR
|
|
* @intel_dp: Intel DP
|
|
* @crtc_state: new CRTC state
|
|
*
|
|
* This function can only be called after the pipe is fully trained and enabled.
|
|
*/
|
|
void intel_psr_enable(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (!crtc_state->has_psr)
|
|
return;
|
|
|
|
if (WARN_ON(!CAN_PSR(dev_priv)))
|
|
return;
|
|
|
|
WARN_ON(dev_priv->drrs.dp);
|
|
mutex_lock(&dev_priv->psr.lock);
|
|
if (dev_priv->psr.enabled) {
|
|
DRM_DEBUG_KMS("PSR already in use\n");
|
|
goto unlock;
|
|
}
|
|
|
|
dev_priv->psr.psr2_enabled = crtc_state->has_psr2;
|
|
dev_priv->psr.busy_frontbuffer_bits = 0;
|
|
|
|
dev_priv->psr.setup_vsc(intel_dp, crtc_state);
|
|
dev_priv->psr.enable_sink(intel_dp);
|
|
dev_priv->psr.enable_source(intel_dp, crtc_state);
|
|
dev_priv->psr.enabled = intel_dp;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9) {
|
|
intel_psr_activate(intel_dp);
|
|
} else {
|
|
/*
|
|
* FIXME: Activation should happen immediately since this
|
|
* function is just called after pipe is fully trained and
|
|
* enabled.
|
|
* However on some platforms we face issues when first
|
|
* activation follows a modeset so quickly.
|
|
* - On VLV/CHV we get bank screen on first activation
|
|
* - On HSW/BDW we get a recoverable frozen screen until
|
|
* next exit-activate sequence.
|
|
*/
|
|
schedule_delayed_work(&dev_priv->psr.work,
|
|
msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&dev_priv->psr.lock);
|
|
}
|
|
|
|
static void vlv_psr_disable(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
|
|
uint32_t val;
|
|
|
|
if (dev_priv->psr.active) {
|
|
/* Put VLV PSR back to PSR_state 0 (disabled). */
|
|
if (intel_wait_for_register(dev_priv,
|
|
VLV_PSRSTAT(crtc->pipe),
|
|
VLV_EDP_PSR_IN_TRANS,
|
|
0,
|
|
1))
|
|
WARN(1, "PSR transition took longer than expected\n");
|
|
|
|
val = I915_READ(VLV_PSRCTL(crtc->pipe));
|
|
val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
|
|
val &= ~VLV_EDP_PSR_ENABLE;
|
|
val &= ~VLV_EDP_PSR_MODE_MASK;
|
|
I915_WRITE(VLV_PSRCTL(crtc->pipe), val);
|
|
|
|
dev_priv->psr.active = false;
|
|
} else {
|
|
WARN_ON(vlv_is_psr_active_on_pipe(dev, crtc->pipe));
|
|
}
|
|
}
|
|
|
|
static void hsw_psr_disable(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (dev_priv->psr.active) {
|
|
i915_reg_t psr_status;
|
|
u32 psr_status_mask;
|
|
|
|
if (dev_priv->psr.psr2_enabled) {
|
|
psr_status = EDP_PSR2_STATUS;
|
|
psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
|
|
|
|
I915_WRITE(EDP_PSR2_CTL,
|
|
I915_READ(EDP_PSR2_CTL) &
|
|
~(EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE));
|
|
|
|
} else {
|
|
psr_status = EDP_PSR_STATUS;
|
|
psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
|
|
|
|
I915_WRITE(EDP_PSR_CTL,
|
|
I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
|
|
}
|
|
|
|
/* Wait till PSR is idle */
|
|
if (intel_wait_for_register(dev_priv,
|
|
psr_status, psr_status_mask, 0,
|
|
2000))
|
|
DRM_ERROR("Timed out waiting for PSR Idle State\n");
|
|
|
|
dev_priv->psr.active = false;
|
|
} else {
|
|
if (dev_priv->psr.psr2_enabled)
|
|
WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
|
|
else
|
|
WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
|
|
}
|
|
|
|
psr_aux_io_power_put(intel_dp);
|
|
}
|
|
|
|
/**
|
|
* intel_psr_disable - Disable PSR
|
|
* @intel_dp: Intel DP
|
|
* @old_crtc_state: old CRTC state
|
|
*
|
|
* This function needs to be called before disabling pipe.
|
|
*/
|
|
void intel_psr_disable(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (!old_crtc_state->has_psr)
|
|
return;
|
|
|
|
if (WARN_ON(!CAN_PSR(dev_priv)))
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->psr.lock);
|
|
if (!dev_priv->psr.enabled) {
|
|
mutex_unlock(&dev_priv->psr.lock);
|
|
return;
|
|
}
|
|
|
|
dev_priv->psr.disable_source(intel_dp, old_crtc_state);
|
|
|
|
/* Disable PSR on Sink */
|
|
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
|
|
|
|
dev_priv->psr.enabled = NULL;
|
|
mutex_unlock(&dev_priv->psr.lock);
|
|
|
|
cancel_delayed_work_sync(&dev_priv->psr.work);
|
|
}
|
|
|
|
static bool psr_wait_for_idle(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_dp *intel_dp;
|
|
i915_reg_t reg;
|
|
u32 mask;
|
|
int err;
|
|
|
|
intel_dp = dev_priv->psr.enabled;
|
|
if (!intel_dp)
|
|
return false;
|
|
|
|
if (HAS_DDI(dev_priv)) {
|
|
if (dev_priv->psr.psr2_enabled) {
|
|
reg = EDP_PSR2_STATUS;
|
|
mask = EDP_PSR2_STATUS_STATE_MASK;
|
|
} else {
|
|
reg = EDP_PSR_STATUS;
|
|
mask = EDP_PSR_STATUS_STATE_MASK;
|
|
}
|
|
} else {
|
|
struct drm_crtc *crtc =
|
|
dp_to_dig_port(intel_dp)->base.base.crtc;
|
|
enum pipe pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
reg = VLV_PSRSTAT(pipe);
|
|
mask = VLV_EDP_PSR_IN_TRANS;
|
|
}
|
|
|
|
mutex_unlock(&dev_priv->psr.lock);
|
|
|
|
err = intel_wait_for_register(dev_priv, reg, mask, 0, 50);
|
|
if (err)
|
|
DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
|
|
|
|
/* After the unlocked wait, verify that PSR is still wanted! */
|
|
mutex_lock(&dev_priv->psr.lock);
|
|
return err == 0 && dev_priv->psr.enabled;
|
|
}
|
|
|
|
static void intel_psr_work(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(work, typeof(*dev_priv), psr.work.work);
|
|
|
|
mutex_lock(&dev_priv->psr.lock);
|
|
|
|
/*
|
|
* We have to make sure PSR is ready for re-enable
|
|
* otherwise it keeps disabled until next full enable/disable cycle.
|
|
* PSR might take some time to get fully disabled
|
|
* and be ready for re-enable.
|
|
*/
|
|
if (!psr_wait_for_idle(dev_priv))
|
|
goto unlock;
|
|
|
|
/*
|
|
* The delayed work can race with an invalidate hence we need to
|
|
* recheck. Since psr_flush first clears this and then reschedules we
|
|
* won't ever miss a flush when bailing out here.
|
|
*/
|
|
if (dev_priv->psr.busy_frontbuffer_bits)
|
|
goto unlock;
|
|
|
|
intel_psr_activate(dev_priv->psr.enabled);
|
|
unlock:
|
|
mutex_unlock(&dev_priv->psr.lock);
|
|
}
|
|
|
|
static void intel_psr_exit(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_dp *intel_dp = dev_priv->psr.enabled;
|
|
struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
|
|
enum pipe pipe = to_intel_crtc(crtc)->pipe;
|
|
u32 val;
|
|
|
|
if (!dev_priv->psr.active)
|
|
return;
|
|
|
|
if (HAS_DDI(dev_priv)) {
|
|
if (dev_priv->psr.psr2_enabled) {
|
|
val = I915_READ(EDP_PSR2_CTL);
|
|
WARN_ON(!(val & EDP_PSR2_ENABLE));
|
|
I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
|
|
} else {
|
|
val = I915_READ(EDP_PSR_CTL);
|
|
WARN_ON(!(val & EDP_PSR_ENABLE));
|
|
I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
|
|
}
|
|
} else {
|
|
val = I915_READ(VLV_PSRCTL(pipe));
|
|
|
|
/*
|
|
* Here we do the transition drirectly from
|
|
* PSR_state 3 (active - no Remote Frame Buffer (RFB) update) to
|
|
* PSR_state 5 (exit).
|
|
* PSR State 4 (active with single frame update) can be skipped.
|
|
* On PSR_state 5 (exit) Hardware is responsible to transition
|
|
* back to PSR_state 1 (inactive).
|
|
* Now we are at Same state after vlv_psr_enable_source.
|
|
*/
|
|
val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
|
|
I915_WRITE(VLV_PSRCTL(pipe), val);
|
|
|
|
/*
|
|
* Send AUX wake up - Spec says after transitioning to PSR
|
|
* active we have to send AUX wake up by writing 01h in DPCD
|
|
* 600h of sink device.
|
|
* XXX: This might slow down the transition, but without this
|
|
* HW doesn't complete the transition to PSR_state 1 and we
|
|
* never get the screen updated.
|
|
*/
|
|
drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
|
|
DP_SET_POWER_D0);
|
|
}
|
|
|
|
dev_priv->psr.active = false;
|
|
}
|
|
|
|
/**
|
|
* intel_psr_single_frame_update - Single Frame Update
|
|
* @dev_priv: i915 device
|
|
* @frontbuffer_bits: frontbuffer plane tracking bits
|
|
*
|
|
* Some platforms support a single frame update feature that is used to
|
|
* send and update only one frame on Remote Frame Buffer.
|
|
* So far it is only implemented for Valleyview and Cherryview because
|
|
* hardware requires this to be done before a page flip.
|
|
*/
|
|
void intel_psr_single_frame_update(struct drm_i915_private *dev_priv,
|
|
unsigned frontbuffer_bits)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
enum pipe pipe;
|
|
u32 val;
|
|
|
|
if (!CAN_PSR(dev_priv))
|
|
return;
|
|
|
|
/*
|
|
* Single frame update is already supported on BDW+ but it requires
|
|
* many W/A and it isn't really needed.
|
|
*/
|
|
if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->psr.lock);
|
|
if (!dev_priv->psr.enabled) {
|
|
mutex_unlock(&dev_priv->psr.lock);
|
|
return;
|
|
}
|
|
|
|
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
|
|
pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
|
|
val = I915_READ(VLV_PSRCTL(pipe));
|
|
|
|
/*
|
|
* We need to set this bit before writing registers for a flip.
|
|
* This bit will be self-clear when it gets to the PSR active state.
|
|
*/
|
|
I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
|
|
}
|
|
mutex_unlock(&dev_priv->psr.lock);
|
|
}
|
|
|
|
/**
|
|
* intel_psr_invalidate - Invalidade PSR
|
|
* @dev_priv: i915 device
|
|
* @frontbuffer_bits: frontbuffer plane tracking bits
|
|
* @origin: which operation caused the invalidate
|
|
*
|
|
* Since the hardware frontbuffer tracking has gaps we need to integrate
|
|
* with the software frontbuffer tracking. This function gets called every
|
|
* time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
|
|
* disabled if the frontbuffer mask contains a buffer relevant to PSR.
|
|
*
|
|
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
|
|
*/
|
|
void intel_psr_invalidate(struct drm_i915_private *dev_priv,
|
|
unsigned frontbuffer_bits, enum fb_op_origin origin)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
enum pipe pipe;
|
|
|
|
if (!CAN_PSR(dev_priv))
|
|
return;
|
|
|
|
if (dev_priv->psr.has_hw_tracking && origin == ORIGIN_FLIP)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->psr.lock);
|
|
if (!dev_priv->psr.enabled) {
|
|
mutex_unlock(&dev_priv->psr.lock);
|
|
return;
|
|
}
|
|
|
|
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
|
|
pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
|
|
dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
|
|
|
|
if (frontbuffer_bits)
|
|
intel_psr_exit(dev_priv);
|
|
|
|
mutex_unlock(&dev_priv->psr.lock);
|
|
}
|
|
|
|
/**
|
|
* intel_psr_flush - Flush PSR
|
|
* @dev_priv: i915 device
|
|
* @frontbuffer_bits: frontbuffer plane tracking bits
|
|
* @origin: which operation caused the flush
|
|
*
|
|
* Since the hardware frontbuffer tracking has gaps we need to integrate
|
|
* with the software frontbuffer tracking. This function gets called every
|
|
* time frontbuffer rendering has completed and flushed out to memory. PSR
|
|
* can be enabled again if no other frontbuffer relevant to PSR is dirty.
|
|
*
|
|
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
|
|
*/
|
|
void intel_psr_flush(struct drm_i915_private *dev_priv,
|
|
unsigned frontbuffer_bits, enum fb_op_origin origin)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
enum pipe pipe;
|
|
|
|
if (!CAN_PSR(dev_priv))
|
|
return;
|
|
|
|
if (dev_priv->psr.has_hw_tracking && origin == ORIGIN_FLIP)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->psr.lock);
|
|
if (!dev_priv->psr.enabled) {
|
|
mutex_unlock(&dev_priv->psr.lock);
|
|
return;
|
|
}
|
|
|
|
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
|
|
pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
|
|
dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
|
|
|
|
/* By definition flush = invalidate + flush */
|
|
if (frontbuffer_bits) {
|
|
if (dev_priv->psr.psr2_enabled ||
|
|
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
intel_psr_exit(dev_priv);
|
|
} else {
|
|
/*
|
|
* Display WA #0884: all
|
|
* This documented WA for bxt can be safely applied
|
|
* broadly so we can force HW tracking to exit PSR
|
|
* instead of disabling and re-enabling.
|
|
* Workaround tells us to write 0 to CUR_SURFLIVE_A,
|
|
* but it makes more sense write to the current active
|
|
* pipe.
|
|
*/
|
|
I915_WRITE(CURSURFLIVE(pipe), 0);
|
|
}
|
|
}
|
|
|
|
if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
|
|
if (!work_busy(&dev_priv->psr.work.work))
|
|
schedule_delayed_work(&dev_priv->psr.work,
|
|
msecs_to_jiffies(100));
|
|
mutex_unlock(&dev_priv->psr.lock);
|
|
}
|
|
|
|
/**
|
|
* intel_psr_init - Init basic PSR work and mutex.
|
|
* @dev_priv: i915 device private
|
|
*
|
|
* This function is called only once at driver load to initialize basic
|
|
* PSR stuff.
|
|
*/
|
|
void intel_psr_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (!HAS_PSR(dev_priv))
|
|
return;
|
|
|
|
dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
|
|
HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
|
|
|
|
if (!dev_priv->psr.sink_support)
|
|
return;
|
|
|
|
/* Per platform default: all disabled. */
|
|
if (i915_modparams.enable_psr == -1)
|
|
i915_modparams.enable_psr = 0;
|
|
|
|
/* Set link_standby x link_off defaults */
|
|
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
/* HSW and BDW require workarounds that we don't implement. */
|
|
dev_priv->psr.link_standby = false;
|
|
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
/* On VLV and CHV only standby mode is supported. */
|
|
dev_priv->psr.link_standby = true;
|
|
else
|
|
/* For new platforms let's respect VBT back again */
|
|
dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
|
|
|
|
/* Override link_standby x link_off defaults */
|
|
if (i915_modparams.enable_psr == 2 && !dev_priv->psr.link_standby) {
|
|
DRM_DEBUG_KMS("PSR: Forcing link standby\n");
|
|
dev_priv->psr.link_standby = true;
|
|
}
|
|
if (i915_modparams.enable_psr == 3 && dev_priv->psr.link_standby) {
|
|
DRM_DEBUG_KMS("PSR: Forcing main link off\n");
|
|
dev_priv->psr.link_standby = false;
|
|
}
|
|
|
|
INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
|
|
mutex_init(&dev_priv->psr.lock);
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
dev_priv->psr.enable_source = vlv_psr_enable_source;
|
|
dev_priv->psr.disable_source = vlv_psr_disable;
|
|
dev_priv->psr.enable_sink = vlv_psr_enable_sink;
|
|
dev_priv->psr.activate = vlv_psr_activate;
|
|
dev_priv->psr.setup_vsc = vlv_psr_setup_vsc;
|
|
} else {
|
|
dev_priv->psr.has_hw_tracking = true;
|
|
dev_priv->psr.enable_source = hsw_psr_enable_source;
|
|
dev_priv->psr.disable_source = hsw_psr_disable;
|
|
dev_priv->psr.enable_sink = hsw_psr_enable_sink;
|
|
dev_priv->psr.activate = hsw_psr_activate;
|
|
dev_priv->psr.setup_vsc = hsw_psr_setup_vsc;
|
|
}
|
|
}
|