linux/drivers/net/ethernet/mediatek/mtk_wed.c
Dan Carpenter a00e41bf2f net: ethernet: mtk_eth_soc: add check for allocation failure
Check if the kzalloc() failed.

Fixes: 804775dfc2 ("net: ethernet: mtk_eth_soc: add support for Wireless Ethernet Dispatch (WED)")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-04-25 11:26:30 +01:00

881 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2021 Felix Fietkau <nbd@nbd.name> */
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/bitfield.h>
#include <linux/dma-mapping.h>
#include <linux/skbuff.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/mfd/syscon.h>
#include <linux/debugfs.h>
#include <linux/soc/mediatek/mtk_wed.h>
#include "mtk_eth_soc.h"
#include "mtk_wed_regs.h"
#include "mtk_wed.h"
#include "mtk_ppe.h"
#define MTK_PCIE_BASE(n) (0x1a143000 + (n) * 0x2000)
#define MTK_WED_PKT_SIZE 1900
#define MTK_WED_BUF_SIZE 2048
#define MTK_WED_BUF_PER_PAGE (PAGE_SIZE / 2048)
#define MTK_WED_TX_RING_SIZE 2048
#define MTK_WED_WDMA_RING_SIZE 1024
static struct mtk_wed_hw *hw_list[2];
static DEFINE_MUTEX(hw_lock);
static void
wed_m32(struct mtk_wed_device *dev, u32 reg, u32 mask, u32 val)
{
regmap_update_bits(dev->hw->regs, reg, mask | val, val);
}
static void
wed_set(struct mtk_wed_device *dev, u32 reg, u32 mask)
{
return wed_m32(dev, reg, 0, mask);
}
static void
wed_clr(struct mtk_wed_device *dev, u32 reg, u32 mask)
{
return wed_m32(dev, reg, mask, 0);
}
static void
wdma_m32(struct mtk_wed_device *dev, u32 reg, u32 mask, u32 val)
{
wdma_w32(dev, reg, (wdma_r32(dev, reg) & ~mask) | val);
}
static void
wdma_set(struct mtk_wed_device *dev, u32 reg, u32 mask)
{
wdma_m32(dev, reg, 0, mask);
}
static u32
mtk_wed_read_reset(struct mtk_wed_device *dev)
{
return wed_r32(dev, MTK_WED_RESET);
}
static void
mtk_wed_reset(struct mtk_wed_device *dev, u32 mask)
{
u32 status;
wed_w32(dev, MTK_WED_RESET, mask);
if (readx_poll_timeout(mtk_wed_read_reset, dev, status,
!(status & mask), 0, 1000))
WARN_ON_ONCE(1);
}
static struct mtk_wed_hw *
mtk_wed_assign(struct mtk_wed_device *dev)
{
struct mtk_wed_hw *hw;
hw = hw_list[pci_domain_nr(dev->wlan.pci_dev->bus)];
if (!hw || hw->wed_dev)
return NULL;
hw->wed_dev = dev;
return hw;
}
static int
mtk_wed_buffer_alloc(struct mtk_wed_device *dev)
{
struct mtk_wdma_desc *desc;
dma_addr_t desc_phys;
void **page_list;
int token = dev->wlan.token_start;
int ring_size;
int n_pages;
int i, page_idx;
ring_size = dev->wlan.nbuf & ~(MTK_WED_BUF_PER_PAGE - 1);
n_pages = ring_size / MTK_WED_BUF_PER_PAGE;
page_list = kcalloc(n_pages, sizeof(*page_list), GFP_KERNEL);
if (!page_list)
return -ENOMEM;
dev->buf_ring.size = ring_size;
dev->buf_ring.pages = page_list;
desc = dma_alloc_coherent(dev->hw->dev, ring_size * sizeof(*desc),
&desc_phys, GFP_KERNEL);
if (!desc)
return -ENOMEM;
dev->buf_ring.desc = desc;
dev->buf_ring.desc_phys = desc_phys;
for (i = 0, page_idx = 0; i < ring_size; i += MTK_WED_BUF_PER_PAGE) {
dma_addr_t page_phys, buf_phys;
struct page *page;
void *buf;
int s;
page = __dev_alloc_pages(GFP_KERNEL, 0);
if (!page)
return -ENOMEM;
page_phys = dma_map_page(dev->hw->dev, page, 0, PAGE_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev->hw->dev, page_phys)) {
__free_page(page);
return -ENOMEM;
}
page_list[page_idx++] = page;
dma_sync_single_for_cpu(dev->hw->dev, page_phys, PAGE_SIZE,
DMA_BIDIRECTIONAL);
buf = page_to_virt(page);
buf_phys = page_phys;
for (s = 0; s < MTK_WED_BUF_PER_PAGE; s++) {
u32 txd_size;
u32 ctrl;
txd_size = dev->wlan.init_buf(buf, buf_phys, token++);
desc->buf0 = cpu_to_le32(buf_phys);
desc->buf1 = cpu_to_le32(buf_phys + txd_size);
ctrl = FIELD_PREP(MTK_WDMA_DESC_CTRL_LEN0, txd_size) |
FIELD_PREP(MTK_WDMA_DESC_CTRL_LEN1,
MTK_WED_BUF_SIZE - txd_size) |
MTK_WDMA_DESC_CTRL_LAST_SEG1;
desc->ctrl = cpu_to_le32(ctrl);
desc->info = 0;
desc++;
buf += MTK_WED_BUF_SIZE;
buf_phys += MTK_WED_BUF_SIZE;
}
dma_sync_single_for_device(dev->hw->dev, page_phys, PAGE_SIZE,
DMA_BIDIRECTIONAL);
}
return 0;
}
static void
mtk_wed_free_buffer(struct mtk_wed_device *dev)
{
struct mtk_wdma_desc *desc = dev->buf_ring.desc;
void **page_list = dev->buf_ring.pages;
int page_idx;
int i;
if (!page_list)
return;
if (!desc)
goto free_pagelist;
for (i = 0, page_idx = 0; i < dev->buf_ring.size; i += MTK_WED_BUF_PER_PAGE) {
void *page = page_list[page_idx++];
dma_addr_t buf_addr;
if (!page)
break;
buf_addr = le32_to_cpu(desc[i].buf0);
dma_unmap_page(dev->hw->dev, buf_addr, PAGE_SIZE,
DMA_BIDIRECTIONAL);
__free_page(page);
}
dma_free_coherent(dev->hw->dev, dev->buf_ring.size * sizeof(*desc),
desc, dev->buf_ring.desc_phys);
free_pagelist:
kfree(page_list);
}
static void
mtk_wed_free_ring(struct mtk_wed_device *dev, struct mtk_wed_ring *ring)
{
if (!ring->desc)
return;
dma_free_coherent(dev->hw->dev, ring->size * sizeof(*ring->desc),
ring->desc, ring->desc_phys);
}
static void
mtk_wed_free_tx_rings(struct mtk_wed_device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(dev->tx_ring); i++)
mtk_wed_free_ring(dev, &dev->tx_ring[i]);
for (i = 0; i < ARRAY_SIZE(dev->tx_wdma); i++)
mtk_wed_free_ring(dev, &dev->tx_wdma[i]);
}
static void
mtk_wed_set_ext_int(struct mtk_wed_device *dev, bool en)
{
u32 mask = MTK_WED_EXT_INT_STATUS_ERROR_MASK;
if (!dev->hw->num_flows)
mask &= ~MTK_WED_EXT_INT_STATUS_TKID_WO_PYLD;
wed_w32(dev, MTK_WED_EXT_INT_MASK, en ? mask : 0);
wed_r32(dev, MTK_WED_EXT_INT_MASK);
}
static void
mtk_wed_stop(struct mtk_wed_device *dev)
{
regmap_write(dev->hw->mirror, dev->hw->index * 4, 0);
mtk_wed_set_ext_int(dev, false);
wed_clr(dev, MTK_WED_CTRL,
MTK_WED_CTRL_WDMA_INT_AGENT_EN |
MTK_WED_CTRL_WPDMA_INT_AGENT_EN |
MTK_WED_CTRL_WED_TX_BM_EN |
MTK_WED_CTRL_WED_TX_FREE_AGENT_EN);
wed_w32(dev, MTK_WED_WPDMA_INT_TRIGGER, 0);
wed_w32(dev, MTK_WED_WDMA_INT_TRIGGER, 0);
wdma_w32(dev, MTK_WDMA_INT_MASK, 0);
wdma_w32(dev, MTK_WDMA_INT_GRP2, 0);
wed_w32(dev, MTK_WED_WPDMA_INT_MASK, 0);
wed_clr(dev, MTK_WED_GLO_CFG,
MTK_WED_GLO_CFG_TX_DMA_EN |
MTK_WED_GLO_CFG_RX_DMA_EN);
wed_clr(dev, MTK_WED_WPDMA_GLO_CFG,
MTK_WED_WPDMA_GLO_CFG_TX_DRV_EN |
MTK_WED_WPDMA_GLO_CFG_RX_DRV_EN);
wed_clr(dev, MTK_WED_WDMA_GLO_CFG,
MTK_WED_WDMA_GLO_CFG_RX_DRV_EN);
}
static void
mtk_wed_detach(struct mtk_wed_device *dev)
{
struct device_node *wlan_node = dev->wlan.pci_dev->dev.of_node;
struct mtk_wed_hw *hw = dev->hw;
mutex_lock(&hw_lock);
mtk_wed_stop(dev);
wdma_w32(dev, MTK_WDMA_RESET_IDX, MTK_WDMA_RESET_IDX_RX);
wdma_w32(dev, MTK_WDMA_RESET_IDX, 0);
mtk_wed_reset(dev, MTK_WED_RESET_WED);
mtk_wed_free_buffer(dev);
mtk_wed_free_tx_rings(dev);
if (of_dma_is_coherent(wlan_node))
regmap_update_bits(hw->hifsys, HIFSYS_DMA_AG_MAP,
BIT(hw->index), BIT(hw->index));
if (!hw_list[!hw->index]->wed_dev &&
hw->eth->dma_dev != hw->eth->dev)
mtk_eth_set_dma_device(hw->eth, hw->eth->dev);
memset(dev, 0, sizeof(*dev));
module_put(THIS_MODULE);
hw->wed_dev = NULL;
mutex_unlock(&hw_lock);
}
static void
mtk_wed_hw_init_early(struct mtk_wed_device *dev)
{
u32 mask, set;
u32 offset;
mtk_wed_stop(dev);
mtk_wed_reset(dev, MTK_WED_RESET_WED);
mask = MTK_WED_WDMA_GLO_CFG_BT_SIZE |
MTK_WED_WDMA_GLO_CFG_DYNAMIC_DMAD_RECYCLE |
MTK_WED_WDMA_GLO_CFG_RX_DIS_FSM_AUTO_IDLE;
set = FIELD_PREP(MTK_WED_WDMA_GLO_CFG_BT_SIZE, 2) |
MTK_WED_WDMA_GLO_CFG_DYNAMIC_SKIP_DMAD_PREP |
MTK_WED_WDMA_GLO_CFG_IDLE_DMAD_SUPPLY;
wed_m32(dev, MTK_WED_WDMA_GLO_CFG, mask, set);
wdma_set(dev, MTK_WDMA_GLO_CFG, MTK_WDMA_GLO_CFG_RX_INFO_PRERES);
offset = dev->hw->index ? 0x04000400 : 0;
wed_w32(dev, MTK_WED_WDMA_OFFSET0, 0x2a042a20 + offset);
wed_w32(dev, MTK_WED_WDMA_OFFSET1, 0x29002800 + offset);
wed_w32(dev, MTK_WED_PCIE_CFG_BASE, MTK_PCIE_BASE(dev->hw->index));
wed_w32(dev, MTK_WED_WPDMA_CFG_BASE, dev->wlan.wpdma_phys);
}
static void
mtk_wed_hw_init(struct mtk_wed_device *dev)
{
if (dev->init_done)
return;
dev->init_done = true;
mtk_wed_set_ext_int(dev, false);
wed_w32(dev, MTK_WED_TX_BM_CTRL,
MTK_WED_TX_BM_CTRL_PAUSE |
FIELD_PREP(MTK_WED_TX_BM_CTRL_VLD_GRP_NUM,
dev->buf_ring.size / 128) |
FIELD_PREP(MTK_WED_TX_BM_CTRL_RSV_GRP_NUM,
MTK_WED_TX_RING_SIZE / 256));
wed_w32(dev, MTK_WED_TX_BM_BASE, dev->buf_ring.desc_phys);
wed_w32(dev, MTK_WED_TX_BM_TKID,
FIELD_PREP(MTK_WED_TX_BM_TKID_START,
dev->wlan.token_start) |
FIELD_PREP(MTK_WED_TX_BM_TKID_END,
dev->wlan.token_start + dev->wlan.nbuf - 1));
wed_w32(dev, MTK_WED_TX_BM_BUF_LEN, MTK_WED_PKT_SIZE);
wed_w32(dev, MTK_WED_TX_BM_DYN_THR,
FIELD_PREP(MTK_WED_TX_BM_DYN_THR_LO, 1) |
MTK_WED_TX_BM_DYN_THR_HI);
mtk_wed_reset(dev, MTK_WED_RESET_TX_BM);
wed_set(dev, MTK_WED_CTRL,
MTK_WED_CTRL_WED_TX_BM_EN |
MTK_WED_CTRL_WED_TX_FREE_AGENT_EN);
wed_clr(dev, MTK_WED_TX_BM_CTRL, MTK_WED_TX_BM_CTRL_PAUSE);
}
static void
mtk_wed_ring_reset(struct mtk_wdma_desc *desc, int size)
{
int i;
for (i = 0; i < size; i++) {
desc[i].buf0 = 0;
desc[i].ctrl = cpu_to_le32(MTK_WDMA_DESC_CTRL_DMA_DONE);
desc[i].buf1 = 0;
desc[i].info = 0;
}
}
static u32
mtk_wed_check_busy(struct mtk_wed_device *dev)
{
if (wed_r32(dev, MTK_WED_GLO_CFG) & MTK_WED_GLO_CFG_TX_DMA_BUSY)
return true;
if (wed_r32(dev, MTK_WED_WPDMA_GLO_CFG) &
MTK_WED_WPDMA_GLO_CFG_TX_DRV_BUSY)
return true;
if (wed_r32(dev, MTK_WED_CTRL) & MTK_WED_CTRL_WDMA_INT_AGENT_BUSY)
return true;
if (wed_r32(dev, MTK_WED_WDMA_GLO_CFG) &
MTK_WED_WDMA_GLO_CFG_RX_DRV_BUSY)
return true;
if (wdma_r32(dev, MTK_WDMA_GLO_CFG) &
MTK_WED_WDMA_GLO_CFG_RX_DRV_BUSY)
return true;
if (wed_r32(dev, MTK_WED_CTRL) &
(MTK_WED_CTRL_WED_TX_BM_BUSY | MTK_WED_CTRL_WED_TX_FREE_AGENT_BUSY))
return true;
return false;
}
static int
mtk_wed_poll_busy(struct mtk_wed_device *dev)
{
int sleep = 15000;
int timeout = 100 * sleep;
u32 val;
return read_poll_timeout(mtk_wed_check_busy, val, !val, sleep,
timeout, false, dev);
}
static void
mtk_wed_reset_dma(struct mtk_wed_device *dev)
{
bool busy = false;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(dev->tx_ring); i++) {
struct mtk_wdma_desc *desc = dev->tx_ring[i].desc;
if (!desc)
continue;
mtk_wed_ring_reset(desc, MTK_WED_TX_RING_SIZE);
}
if (mtk_wed_poll_busy(dev))
busy = mtk_wed_check_busy(dev);
if (busy) {
mtk_wed_reset(dev, MTK_WED_RESET_WED_TX_DMA);
} else {
wed_w32(dev, MTK_WED_RESET_IDX,
MTK_WED_RESET_IDX_TX |
MTK_WED_RESET_IDX_RX);
wed_w32(dev, MTK_WED_RESET_IDX, 0);
}
wdma_w32(dev, MTK_WDMA_RESET_IDX, MTK_WDMA_RESET_IDX_RX);
wdma_w32(dev, MTK_WDMA_RESET_IDX, 0);
if (busy) {
mtk_wed_reset(dev, MTK_WED_RESET_WDMA_INT_AGENT);
mtk_wed_reset(dev, MTK_WED_RESET_WDMA_RX_DRV);
} else {
wed_w32(dev, MTK_WED_WDMA_RESET_IDX,
MTK_WED_WDMA_RESET_IDX_RX | MTK_WED_WDMA_RESET_IDX_DRV);
wed_w32(dev, MTK_WED_WDMA_RESET_IDX, 0);
wed_set(dev, MTK_WED_WDMA_GLO_CFG,
MTK_WED_WDMA_GLO_CFG_RST_INIT_COMPLETE);
wed_clr(dev, MTK_WED_WDMA_GLO_CFG,
MTK_WED_WDMA_GLO_CFG_RST_INIT_COMPLETE);
}
for (i = 0; i < 100; i++) {
val = wed_r32(dev, MTK_WED_TX_BM_INTF);
if (FIELD_GET(MTK_WED_TX_BM_INTF_TKFIFO_FDEP, val) == 0x40)
break;
}
mtk_wed_reset(dev, MTK_WED_RESET_TX_FREE_AGENT);
mtk_wed_reset(dev, MTK_WED_RESET_TX_BM);
if (busy) {
mtk_wed_reset(dev, MTK_WED_RESET_WPDMA_INT_AGENT);
mtk_wed_reset(dev, MTK_WED_RESET_WPDMA_TX_DRV);
mtk_wed_reset(dev, MTK_WED_RESET_WPDMA_RX_DRV);
} else {
wed_w32(dev, MTK_WED_WPDMA_RESET_IDX,
MTK_WED_WPDMA_RESET_IDX_TX |
MTK_WED_WPDMA_RESET_IDX_RX);
wed_w32(dev, MTK_WED_WPDMA_RESET_IDX, 0);
}
}
static int
mtk_wed_ring_alloc(struct mtk_wed_device *dev, struct mtk_wed_ring *ring,
int size)
{
ring->desc = dma_alloc_coherent(dev->hw->dev,
size * sizeof(*ring->desc),
&ring->desc_phys, GFP_KERNEL);
if (!ring->desc)
return -ENOMEM;
ring->size = size;
mtk_wed_ring_reset(ring->desc, size);
return 0;
}
static int
mtk_wed_wdma_ring_setup(struct mtk_wed_device *dev, int idx, int size)
{
struct mtk_wed_ring *wdma = &dev->tx_wdma[idx];
if (mtk_wed_ring_alloc(dev, wdma, MTK_WED_WDMA_RING_SIZE))
return -ENOMEM;
wdma_w32(dev, MTK_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_BASE,
wdma->desc_phys);
wdma_w32(dev, MTK_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_COUNT,
size);
wdma_w32(dev, MTK_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_CPU_IDX, 0);
wed_w32(dev, MTK_WED_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_BASE,
wdma->desc_phys);
wed_w32(dev, MTK_WED_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_COUNT,
size);
return 0;
}
static void
mtk_wed_start(struct mtk_wed_device *dev, u32 irq_mask)
{
u32 wdma_mask;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(dev->tx_wdma); i++)
if (!dev->tx_wdma[i].desc)
mtk_wed_wdma_ring_setup(dev, i, 16);
wdma_mask = FIELD_PREP(MTK_WDMA_INT_MASK_RX_DONE, GENMASK(1, 0));
mtk_wed_hw_init(dev);
wed_set(dev, MTK_WED_CTRL,
MTK_WED_CTRL_WDMA_INT_AGENT_EN |
MTK_WED_CTRL_WPDMA_INT_AGENT_EN |
MTK_WED_CTRL_WED_TX_BM_EN |
MTK_WED_CTRL_WED_TX_FREE_AGENT_EN);
wed_w32(dev, MTK_WED_PCIE_INT_TRIGGER, MTK_WED_PCIE_INT_TRIGGER_STATUS);
wed_w32(dev, MTK_WED_WPDMA_INT_TRIGGER,
MTK_WED_WPDMA_INT_TRIGGER_RX_DONE |
MTK_WED_WPDMA_INT_TRIGGER_TX_DONE);
wed_set(dev, MTK_WED_WPDMA_INT_CTRL,
MTK_WED_WPDMA_INT_CTRL_SUBRT_ADV);
wed_w32(dev, MTK_WED_WDMA_INT_TRIGGER, wdma_mask);
wed_clr(dev, MTK_WED_WDMA_INT_CTRL, wdma_mask);
wdma_w32(dev, MTK_WDMA_INT_MASK, wdma_mask);
wdma_w32(dev, MTK_WDMA_INT_GRP2, wdma_mask);
wed_w32(dev, MTK_WED_WPDMA_INT_MASK, irq_mask);
wed_w32(dev, MTK_WED_INT_MASK, irq_mask);
wed_set(dev, MTK_WED_GLO_CFG,
MTK_WED_GLO_CFG_TX_DMA_EN |
MTK_WED_GLO_CFG_RX_DMA_EN);
wed_set(dev, MTK_WED_WPDMA_GLO_CFG,
MTK_WED_WPDMA_GLO_CFG_TX_DRV_EN |
MTK_WED_WPDMA_GLO_CFG_RX_DRV_EN);
wed_set(dev, MTK_WED_WDMA_GLO_CFG,
MTK_WED_WDMA_GLO_CFG_RX_DRV_EN);
mtk_wed_set_ext_int(dev, true);
val = dev->wlan.wpdma_phys |
MTK_PCIE_MIRROR_MAP_EN |
FIELD_PREP(MTK_PCIE_MIRROR_MAP_WED_ID, dev->hw->index);
if (dev->hw->index)
val |= BIT(1);
val |= BIT(0);
regmap_write(dev->hw->mirror, dev->hw->index * 4, val);
dev->running = true;
}
static int
mtk_wed_attach(struct mtk_wed_device *dev)
__releases(RCU)
{
struct mtk_wed_hw *hw;
int ret = 0;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
"mtk_wed_attach without holding the RCU read lock");
if (pci_domain_nr(dev->wlan.pci_dev->bus) > 1 ||
!try_module_get(THIS_MODULE))
ret = -ENODEV;
rcu_read_unlock();
if (ret)
return ret;
mutex_lock(&hw_lock);
hw = mtk_wed_assign(dev);
if (!hw) {
module_put(THIS_MODULE);
ret = -ENODEV;
goto out;
}
dev_info(&dev->wlan.pci_dev->dev, "attaching wed device %d\n", hw->index);
dev->hw = hw;
dev->dev = hw->dev;
dev->irq = hw->irq;
dev->wdma_idx = hw->index;
if (hw->eth->dma_dev == hw->eth->dev &&
of_dma_is_coherent(hw->eth->dev->of_node))
mtk_eth_set_dma_device(hw->eth, hw->dev);
ret = mtk_wed_buffer_alloc(dev);
if (ret) {
mtk_wed_detach(dev);
goto out;
}
mtk_wed_hw_init_early(dev);
regmap_update_bits(hw->hifsys, HIFSYS_DMA_AG_MAP, BIT(hw->index), 0);
out:
mutex_unlock(&hw_lock);
return ret;
}
static int
mtk_wed_tx_ring_setup(struct mtk_wed_device *dev, int idx, void __iomem *regs)
{
struct mtk_wed_ring *ring = &dev->tx_ring[idx];
/*
* Tx ring redirection:
* Instead of configuring the WLAN PDMA TX ring directly, the WLAN
* driver allocated DMA ring gets configured into WED MTK_WED_RING_TX(n)
* registers.
*
* WED driver posts its own DMA ring as WLAN PDMA TX and configures it
* into MTK_WED_WPDMA_RING_TX(n) registers.
* It gets filled with packets picked up from WED TX ring and from
* WDMA RX.
*/
BUG_ON(idx > ARRAY_SIZE(dev->tx_ring));
if (mtk_wed_ring_alloc(dev, ring, MTK_WED_TX_RING_SIZE))
return -ENOMEM;
if (mtk_wed_wdma_ring_setup(dev, idx, MTK_WED_WDMA_RING_SIZE))
return -ENOMEM;
ring->reg_base = MTK_WED_RING_TX(idx);
ring->wpdma = regs;
/* WED -> WPDMA */
wpdma_tx_w32(dev, idx, MTK_WED_RING_OFS_BASE, ring->desc_phys);
wpdma_tx_w32(dev, idx, MTK_WED_RING_OFS_COUNT, MTK_WED_TX_RING_SIZE);
wpdma_tx_w32(dev, idx, MTK_WED_RING_OFS_CPU_IDX, 0);
wed_w32(dev, MTK_WED_WPDMA_RING_TX(idx) + MTK_WED_RING_OFS_BASE,
ring->desc_phys);
wed_w32(dev, MTK_WED_WPDMA_RING_TX(idx) + MTK_WED_RING_OFS_COUNT,
MTK_WED_TX_RING_SIZE);
wed_w32(dev, MTK_WED_WPDMA_RING_TX(idx) + MTK_WED_RING_OFS_CPU_IDX, 0);
return 0;
}
static int
mtk_wed_txfree_ring_setup(struct mtk_wed_device *dev, void __iomem *regs)
{
struct mtk_wed_ring *ring = &dev->txfree_ring;
int i;
/*
* For txfree event handling, the same DMA ring is shared between WED
* and WLAN. The WLAN driver accesses the ring index registers through
* WED
*/
ring->reg_base = MTK_WED_RING_RX(1);
ring->wpdma = regs;
for (i = 0; i < 12; i += 4) {
u32 val = readl(regs + i);
wed_w32(dev, MTK_WED_RING_RX(1) + i, val);
wed_w32(dev, MTK_WED_WPDMA_RING_RX(1) + i, val);
}
return 0;
}
static u32
mtk_wed_irq_get(struct mtk_wed_device *dev, u32 mask)
{
u32 val;
val = wed_r32(dev, MTK_WED_EXT_INT_STATUS);
wed_w32(dev, MTK_WED_EXT_INT_STATUS, val);
val &= MTK_WED_EXT_INT_STATUS_ERROR_MASK;
if (!dev->hw->num_flows)
val &= ~MTK_WED_EXT_INT_STATUS_TKID_WO_PYLD;
if (val && net_ratelimit())
pr_err("mtk_wed%d: error status=%08x\n", dev->hw->index, val);
val = wed_r32(dev, MTK_WED_INT_STATUS);
val &= mask;
wed_w32(dev, MTK_WED_INT_STATUS, val); /* ACK */
return val;
}
static void
mtk_wed_irq_set_mask(struct mtk_wed_device *dev, u32 mask)
{
if (!dev->running)
return;
mtk_wed_set_ext_int(dev, !!mask);
wed_w32(dev, MTK_WED_INT_MASK, mask);
}
int mtk_wed_flow_add(int index)
{
struct mtk_wed_hw *hw = hw_list[index];
int ret;
if (!hw || !hw->wed_dev)
return -ENODEV;
if (hw->num_flows) {
hw->num_flows++;
return 0;
}
mutex_lock(&hw_lock);
if (!hw->wed_dev) {
ret = -ENODEV;
goto out;
}
ret = hw->wed_dev->wlan.offload_enable(hw->wed_dev);
if (!ret)
hw->num_flows++;
mtk_wed_set_ext_int(hw->wed_dev, true);
out:
mutex_unlock(&hw_lock);
return ret;
}
void mtk_wed_flow_remove(int index)
{
struct mtk_wed_hw *hw = hw_list[index];
if (!hw)
return;
if (--hw->num_flows)
return;
mutex_lock(&hw_lock);
if (!hw->wed_dev)
goto out;
hw->wed_dev->wlan.offload_disable(hw->wed_dev);
mtk_wed_set_ext_int(hw->wed_dev, true);
out:
mutex_unlock(&hw_lock);
}
void mtk_wed_add_hw(struct device_node *np, struct mtk_eth *eth,
void __iomem *wdma, int index)
{
static const struct mtk_wed_ops wed_ops = {
.attach = mtk_wed_attach,
.tx_ring_setup = mtk_wed_tx_ring_setup,
.txfree_ring_setup = mtk_wed_txfree_ring_setup,
.start = mtk_wed_start,
.stop = mtk_wed_stop,
.reset_dma = mtk_wed_reset_dma,
.reg_read = wed_r32,
.reg_write = wed_w32,
.irq_get = mtk_wed_irq_get,
.irq_set_mask = mtk_wed_irq_set_mask,
.detach = mtk_wed_detach,
};
struct device_node *eth_np = eth->dev->of_node;
struct platform_device *pdev;
struct mtk_wed_hw *hw;
struct regmap *regs;
int irq;
if (!np)
return;
pdev = of_find_device_by_node(np);
if (!pdev)
return;
get_device(&pdev->dev);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return;
regs = syscon_regmap_lookup_by_phandle(np, NULL);
if (IS_ERR(regs))
return;
rcu_assign_pointer(mtk_soc_wed_ops, &wed_ops);
mutex_lock(&hw_lock);
if (WARN_ON(hw_list[index]))
goto unlock;
hw = kzalloc(sizeof(*hw), GFP_KERNEL);
if (!hw)
goto unlock;
hw->node = np;
hw->regs = regs;
hw->eth = eth;
hw->dev = &pdev->dev;
hw->wdma = wdma;
hw->index = index;
hw->irq = irq;
hw->mirror = syscon_regmap_lookup_by_phandle(eth_np,
"mediatek,pcie-mirror");
hw->hifsys = syscon_regmap_lookup_by_phandle(eth_np,
"mediatek,hifsys");
if (IS_ERR(hw->mirror) || IS_ERR(hw->hifsys)) {
kfree(hw);
goto unlock;
}
if (!index) {
regmap_write(hw->mirror, 0, 0);
regmap_write(hw->mirror, 4, 0);
}
mtk_wed_hw_add_debugfs(hw);
hw_list[index] = hw;
unlock:
mutex_unlock(&hw_lock);
}
void mtk_wed_exit(void)
{
int i;
rcu_assign_pointer(mtk_soc_wed_ops, NULL);
synchronize_rcu();
for (i = 0; i < ARRAY_SIZE(hw_list); i++) {
struct mtk_wed_hw *hw;
hw = hw_list[i];
if (!hw)
continue;
hw_list[i] = NULL;
debugfs_remove(hw->debugfs_dir);
put_device(hw->dev);
kfree(hw);
}
}