linux/arch/x86/include/asm/i387.h
Oleg Nesterov 7575637ab2 x86, fpu: Fix math_state_restore() race with kernel_fpu_begin()
math_state_restore() can race with kernel_fpu_begin() if irq comes
right after __thread_fpu_begin(), __save_init_fpu() will overwrite
fpu->state we are going to restore.

Add 2 simple helpers, kernel_fpu_disable() and kernel_fpu_enable()
which simply set/clear in_kernel_fpu, and change math_state_restore()
to exclude kernel_fpu_begin() in between.

Alternatively we could use local_irq_save/restore, but probably these
new helpers can have more users.

Perhaps they should disable/enable preemption themselves, in this case
we can remove preempt_disable() in __restore_xstate_sig().

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: matt.fleming@intel.com
Cc: bp@suse.de
Cc: pbonzini@redhat.com
Cc: luto@amacapital.net
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Suresh Siddha <sbsiddha@gmail.com>
Link: http://lkml.kernel.org/r/20150115192028.GD27332@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-01-20 13:53:07 +01:00

109 lines
2.7 KiB
C

/*
* Copyright (C) 1994 Linus Torvalds
*
* Pentium III FXSR, SSE support
* General FPU state handling cleanups
* Gareth Hughes <gareth@valinux.com>, May 2000
* x86-64 work by Andi Kleen 2002
*/
#ifndef _ASM_X86_I387_H
#define _ASM_X86_I387_H
#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <linux/hardirq.h>
struct pt_regs;
struct user_i387_struct;
extern int init_fpu(struct task_struct *child);
extern void fpu_finit(struct fpu *fpu);
extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
extern void math_state_restore(void);
extern bool irq_fpu_usable(void);
/*
* Careful: __kernel_fpu_begin/end() must be called with preempt disabled
* and they don't touch the preempt state on their own.
* If you enable preemption after __kernel_fpu_begin(), preempt notifier
* should call the __kernel_fpu_end() to prevent the kernel/user FPU
* state from getting corrupted. KVM for example uses this model.
*
* All other cases use kernel_fpu_begin/end() which disable preemption
* during kernel FPU usage.
*/
extern void __kernel_fpu_begin(void);
extern void __kernel_fpu_end(void);
static inline void kernel_fpu_begin(void)
{
preempt_disable();
WARN_ON_ONCE(!irq_fpu_usable());
__kernel_fpu_begin();
}
static inline void kernel_fpu_end(void)
{
__kernel_fpu_end();
preempt_enable();
}
/* Must be called with preempt disabled */
extern void kernel_fpu_disable(void);
extern void kernel_fpu_enable(void);
/*
* Some instructions like VIA's padlock instructions generate a spurious
* DNA fault but don't modify SSE registers. And these instructions
* get used from interrupt context as well. To prevent these kernel instructions
* in interrupt context interacting wrongly with other user/kernel fpu usage, we
* should use them only in the context of irq_ts_save/restore()
*/
static inline int irq_ts_save(void)
{
/*
* If in process context and not atomic, we can take a spurious DNA fault.
* Otherwise, doing clts() in process context requires disabling preemption
* or some heavy lifting like kernel_fpu_begin()
*/
if (!in_atomic())
return 0;
if (read_cr0() & X86_CR0_TS) {
clts();
return 1;
}
return 0;
}
static inline void irq_ts_restore(int TS_state)
{
if (TS_state)
stts();
}
/*
* The question "does this thread have fpu access?"
* is slightly racy, since preemption could come in
* and revoke it immediately after the test.
*
* However, even in that very unlikely scenario,
* we can just assume we have FPU access - typically
* to save the FP state - we'll just take a #NM
* fault and get the FPU access back.
*/
static inline int user_has_fpu(void)
{
return current->thread.fpu.has_fpu;
}
extern void unlazy_fpu(struct task_struct *tsk);
#endif /* __ASSEMBLY__ */
#endif /* _ASM_X86_I387_H */